Econometrics Homework 4 Solutions

Similar documents
Exam ECON3150/4150: Introductory Econometrics. 18 May 2016; 09:00h-12.00h.

Fixed and Random Effects Models: Vartanian, SW 683

Empirical Application of Panel Data Regression

Please discuss each of the 3 problems on a separate sheet of paper, not just on a separate page!

Problem Set 10: Panel Data

Simultaneous Equations with Error Components. Mike Bronner Marko Ledic Anja Breitwieser

Lecture 3 Linear random intercept models

Quantitative Methods Final Exam (2017/1)

Exercices for Applied Econometrics A

point estimates, standard errors, testing, and inference for nonlinear combinations

CRE METHODS FOR UNBALANCED PANELS Correlated Random Effects Panel Data Models IZA Summer School in Labor Economics May 13-19, 2013 Jeffrey M.

1

****Lab 4, Feb 4: EDA and OLS and WLS

Applied Econometrics. Lecture 3: Introduction to Linear Panel Data Models

1 The basics of panel data

ECON 497 Final Exam Page 1 of 12

Fortin Econ Econometric Review 1. 1 Panel Data Methods Fixed Effects Dummy Variables Regression... 7

Introduction to Econometrics. Regression with Panel Data

Problem Set 5 ANSWERS

Introduction to Econometrics

Lab 07 Introduction to Econometrics

University of California at Berkeley Fall Introductory Applied Econometrics Final examination. Scores add up to 125 points

INTRODUCTION TO BASIC LINEAR REGRESSION MODEL

Microeconometrics (PhD) Problem set 2: Dynamic Panel Data Solutions

Jeffrey M. Wooldridge Michigan State University

Applied Economics. Panel Data. Department of Economics Universidad Carlos III de Madrid

Lecture notes to Stock and Watson chapter 8

Econometrics Homework 4 Solutions

Question 1 [17 points]: (ch 11)

Econometrics Midterm Examination Answers

Dynamic Panels. Chapter Introduction Autoregressive Model

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 10

(a) Briefly discuss the advantage of using panel data in this situation rather than pure crosssections

Practice 2SLS with Artificial Data Part 1

multilevel modeling: concepts, applications and interpretations

Description Quick start Menu Syntax Options Remarks and examples Stored results Methods and formulas Acknowledgment References Also see

. regress lchnimp lchempi lgas lrtwex befile6 affile6 afdec6 t

Longitudinal Data Analysis. RatSWD Nachwuchsworkshop Vorlesung von Josef Brüderl 25. August, 2009

GMM Estimation in Stata

Regression with Panel Data

Outline. Linear OLS Models vs: Linear Marginal Models Linear Conditional Models. Random Intercepts Random Intercepts & Slopes

Warwick Economics Summer School Topics in Microeconometrics Instrumental Variables Estimation

8. Nonstandard standard error issues 8.1. The bias of robust standard errors

Dynamic Panel Data Models

Econometrics Homework 1

xtdpdqml: Quasi-maximum likelihood estimation of linear dynamic short-t panel data models

4 Instrumental Variables Single endogenous variable One continuous instrument. 2

Measurement Error. Often a data set will contain imperfect measures of the data we would ideally like.

Monday 7 th Febraury 2005

Graduate Econometrics Lecture 4: Heteroskedasticity

Panel Data: Very Brief Overview Richard Williams, University of Notre Dame, Last revised April 6, 2015

Introductory Econometrics. Lecture 13: Hypothesis testing in the multiple regression model, Part 1

ECON Introductory Econometrics. Lecture 4: Linear Regression with One Regressor

ERSA Training Workshop Lecture 5: Estimation of Binary Choice Models with Panel Data

THE AUSTRALIAN NATIONAL UNIVERSITY. Second Semester Final Examination November, Econometrics II: Econometric Modelling (EMET 2008/6008)

Econ 371 Problem Set #6 Answer Sheet. deaths per 10,000. The 90% confidence interval for the change in death rate is 1.81 ±

4 Instrumental Variables Single endogenous variable One continuous instrument. 2

ECON Introductory Econometrics. Lecture 7: OLS with Multiple Regressors Hypotheses tests

Problem Set #3-Key. wage Coef. Std. Err. t P> t [95% Conf. Interval]

ECON Introductory Econometrics. Lecture 16: Instrumental variables

Handout 12. Endogeneity & Simultaneous Equation Models

ECON Introductory Econometrics. Lecture 5: OLS with One Regressor: Hypothesis Tests

Handout 11: Measurement Error

Chapter 10: Regression With Panel Data

Longitudinal Data Analysis Using Stata Paul D. Allison, Ph.D. Upcoming Seminar: May 18-19, 2017, Chicago, Illinois

Applied Statistics and Econometrics

Lecture 14. More on using dummy variables (deal with seasonality)

Problem Set #5-Key Sonoma State University Dr. Cuellar Economics 317- Introduction to Econometrics

Heteroskedasticity Example

Lab 11 - Heteroskedasticity

ECON 594: Lecture #6

Practice exam questions

Confidence intervals for the variance component of random-effects linear models

Statistical and Econometric Methods

Applied Statistics and Econometrics

Final Exam. Question 1 (20 points) 2 (25 points) 3 (30 points) 4 (25 points) 5 (10 points) 6 (40 points) Total (150 points) Bonus question (10)

Answer all questions from part I. Answer two question from part II.a, and one question from part II.b.

Using Stata for a memory saving fixed effects estimation of the three-way error component model

Binary Dependent Variables

Suggested Answers Problem set 4 ECON 60303

Econometrics II Censoring & Truncation. May 5, 2011

General Linear Model (Chapter 4)

Econometrics. 8) Instrumental variables

Empirical Asset Pricing

Final Exam. 1. Definitions: Briefly Define each of the following terms as they relate to the material covered in class.

Applied Statistics and Econometrics

Lecture 9: Panel Data Model (Chapter 14, Wooldridge Textbook)

ECON Introductory Econometrics. Lecture 11: Binary dependent variables

2. We care about proportion for categorical variable, but average for numerical one.

Lecture 24: Partial correlation, multiple regression, and correlation

Regression with a Single Regressor: Hypothesis Tests and Confidence Intervals

Spatial Regression Models: Identification strategy using STATA TATIANE MENEZES PIMES/UFPE

Instrumental Variables, Simultaneous and Systems of Equations

Problem Set 4 ANSWERS

Applied Statistics and Econometrics

Question 1 carries a weight of 25%; question 2 carries 25%; question 3 carries 20%; and question 4 carries 30%.

Lecture 8: Instrumental Variables Estimation

ECON2228 Notes 7. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 41

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018

An explanation of Two Stage Least Squares

Transcription:

Econometrics Homework 4 Solutions Computer Question (Optional, no need to hand in) (a) c i may capture some state-specific factor that contributes to higher or low rate of accident or fatality. For example, geographical feature, culture in driving, etc. (b) Pooled OLS with clustered standard errors.. reg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 lnincome age yr1984 yr1997, vce(robust) Linear regression Number of obs = 556 F( 21, 534) = 34.73 R squared = 0.5679 Root MSE =.00337 sb_useage.0045798.0013516 3.39 0.001.0019247.0072349 speed65.0002029.0005631 0.36 0.719.0009033.0013092 speed70.0019266.0005544 3.47 0.001.0008374.0030158 ba08.001981.0003625 5.47 0.000.0026931.001269 drinkage21.0005615.0010652 0.53 0.598.002654.0015309 lnincome.0184.0013082 14.07 0.000.0209698.0158302 age.0000179.0001694 0.11 0.916.0003506.0003148 yr1984.0032855.0015651 2.10 0.036.000211.00636 yr1985.0037588.0016269 2.31 0.021.000563.0069547 yr1986.004711.0016913 2.79 0.006.0013885.0080334 yr1987.0044055.0018591 2.37 0.018.0007534.0080575 yr1988.0048785.0019334 2.52 0.012.0010806.0086764 yr1989.003858.0018718 2.06 0.040.0001809.007535 yr1990.0048058.0019123 2.51 0.012.0010492.0085623 yr1991.0037004.0019337 1.91 0.056.0000981.007499 yr1992.0029305.0019717 1.49 0.138.0009427.0068037 yr1993.003368.0019972 1.69 0.092.0005554.0072914 yr1994.0037277.0020124 1.85 0.065.0002255.0076808 yr1995.0039587.0021007 1.88 0.060.0001679.0080854 yr1996.0044151.0020994 2.10 0.036.0002909.0085393 yr1997.0050835.0021389 2.38 0.018.0008819.0092851 _cons.1957515.0122827 15.94 0.000.1716231.2198799 The seat belt usage here has a positive effect on fatality, which is not as expected. We expect seat belt can save the driver and passengers even when there are accidents. Higher speed limit (the base group has a 55mph limit.) leads to a higher fatality, which make sense, as lower speed can reduce the impact of accidents. A lower blood alchohol limit (missing group is a higher blood alcohol level is 0.1.) is related to a lower fatality, which also makes sense because alcohol reduces the ability of judgement for drivers, which increases number of accidents. A higher legal drinking age is associated to a lower fatality rate, which also makes sense, though the coeffi cient is not significantly different from zero. States with higher income is associated with a lower fatality rate, which makes sense, as richer states may have better roads, or cars better maintained or with better safety measures, or with people driving more carefully. The age effect is not significant and close to zero (it the average age of a state, which has little variation across states). The year dummies 1

generally involves small coeffi cients, and there is no clear trend over the decade. (c) Random Effect Estimator:. *Random effect model. xtreg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 lnincome age yr1984 yr1997, re vce(robust) Random effects GLS regression Number of obs = 556 Group variable: fips Number of groups = 51 R sq: within = 0.7376 Obs per group: min = 8 between = 0.2761 avg = 10.9 overall = 0.4521 max = 15 Wald chi2(21) = 1148.23 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 (Std. Err. adjusted for 51 clusters in fips) fatalityrate Coef. Std. Err. z P> z [95% Conf. Interval] sb_useage.0030776.0015007 2.05 0.040.0060189.0001363 speed65.0009825.0006319 1.55 0.120.002221.000256 speed70.0007266.0004319 1.68 0.092.0001199.0015731 ba08.0011603.0003748 3.10 0.002.0018948.0004257 drinkage21.0007095.000573 1.24 0.216.0018327.0004136 lnincome.0093569.0041158 2.27 0.023.0174237.0012901 age.0002356.0005193 0.45 0.650.0007822.0012534 yr1984.0012335.0011133 1.11 0.268.0009486.0034155 yr1985.0015175.0012717 1.19 0.233.000975.0040099 yr1986.0028411.001364 2.08 0.037.0001677.0055145 yr1987.0036311.001633 2.22 0.026.0004305.0068316 yr1988.0037392.0018478 2.02 0.043.0001176.0073609 yr1989.0025717.0020652 1.25 0.213.0014759.0066194 yr1990.0024855.0021993 1.13 0.258.0018249.006796 yr1991.0016075.0023077 0.70 0.486.0029155.0061305 yr1992.0006467.0024266 0.27 0.790.0041094.0054028 yr1993.0009072.0025183 0.36 0.719.0040286.0058431 yr1994.0010045.0027394 0.37 0.714.0043647.0063737 yr1995.0013854.0029253 0.47 0.636.0043481.0071189 yr1996.0013555.003066 0.44 0.658.0046537.0073647 yr1997.0016532.0032724 0.51 0.613.0047607.008067 _cons.1051933.0374545 2.81 0.005.0317839.1786028 sigma_u.00310665 sigma_e.00161752 rho.78672599 (fraction of variance due to u_i) The most notable change is the coeffi cient on seat belt usage, from positive to negative, and marginally significant. Coeffi cient on speed65 has also become negative, but still insignificant. The effect of age has changed sign, but it is still very small. (d) Fixed Effect Estimator: 2

. xtreg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 lnincome age yr1984 yr1997, fe vce(robust) Fixed effects (within) regression Number of obs = 556 Group variable: fips Number of groups = 51 R sq: within = 0.7506 Obs per group: min = 8 between = 0.1139 avg = 10.9 overall = 0.0338 max = 15 F(21,50) = 52.30 corr(u_i, Xb) = 0.5086 (Std. Err. adjusted for 51 clusters in fips) sb_useage.0037186.0014515 2.56 0.013.0066339.0008032 speed65.0007833.0005801 1.35 0.183.0019484.0003818 speed70.0008042.0004572 1.76 0.085.0001142.0017225 ba08.0008225.0004433 1.86 0.069.0017128.0000678 drinkage21.0011337.0006221 1.82 0.074.0023831.0001158 lnincome.0062643.0066992 0.94 0.354.0071913.01972 age.001318.0006937 1.90 0.063.0000753.0027114 yr1984.0004319.001378 0.31 0.755.0031998.002336 yr1985.0010707.0017641 0.61 0.547.004614.0024726 yr1986.0005777.0020078 0.29 0.775.0046106.0034551 yr1987.0008722.0024939 0.35 0.728.0058813.0041368 yr1988.001885.002877 0.66 0.515.0076636.0038936 yr1989.0041766.0032564 1.28 0.206.0107172.0023641 yr1990.005266.0035402 1.49 0.143.0123767.0018448 yr1991.0066622.0037593 1.77 0.082.0142131.0008886 yr1992.008518.0039855 2.14 0.037.0165232.0005128 yr1993.0089399.004199 2.13 0.038.0173738.000506 yr1994.0096297.0045934 2.10 0.041.0188559.0004035 yr1995.0101123.0048961 2.07 0.044.0199464.0002782 yr1996.0110766.0052089 2.13 0.038.0215389.0006142 yr1997.0116075.0055341 2.10 0.041.0227231.0004919 _cons.0779904.0663611 1.18 0.245.2112805.0552998 sigma_u.00575371 sigma_e.00161752 rho.92675648 (fraction of variance due to u_i) In terms of order of magnitudes, the random effect and fixed effect models are similar and again seatbelt usage has a negative effect on fatality. However, the effect of income now becomes positive and insignificant, while age is positive and significant. (e) Here we test all the time varying variables:. *first generate the means. egen sb_usem=mean(sb_useage), by(fips). egen speed65m=mean(speed65), by(fips). egen speed70m=mean(speed70), by(fips). egen ba08m=mean(ba08), by(fips). egen drinkm=mean(drinkage21), by(fips). egen lnincm=mean(lnincome), by(fips). egen agem=mean(age), by(fips) 3

. xtreg fatalityrate sb_useage speed65 speed70 ba08 drinkage21 lnincome age yr1984 yr1997 sb_usem agem, re vce(robust) Random effects GLS regression Number of obs = 556 Group variable: fips Number of groups = 51 R sq: within = 0.7506 Obs per group: min = 8 between = 0.5441 avg = 10.9 overall = 0.6206 max = 15 Wald chi2(28) = 1293.30 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 (Std. Err. adjusted for 51 clusters in fips) fatalityrate Coef. Std. Err. z P> z [95% Conf. Interval] sb_useage.0036794.0014634 2.51 0.012.0065476.0008111 speed65.0007732.0005808 1.33 0.183.0019117.0003652 speed70.0008026.000459 1.75 0.080.000097.0017022 ba08.0008184.0004446 1.84 0.066.0016897.0000529 drinkage21.0011352.0006323 1.80 0.073.0023745.000104 lnincome.0062112.0063844 0.97 0.331.006302.0187243 age.001349.00068 1.98 0.047.0000162.0026817 yr1984.0004117.0013856 0.30 0.766.0031274.002304 yr1985.0010593.0017642 0.60 0.548.0045171.0023984 yr1986.0005755.0019916 0.29 0.773.004479.003328 yr1987.000891.0024551 0.36 0.717.0057029.0039209 yr1988.0019024.0028145 0.68 0.499.0074186.0036139 yr1989.0042006.0031721 1.32 0.185.0104178.0020165 yr1990.005289.0034377 1.54 0.124.0120268.0014488 yr1991.0066889.0036448 1.84 0.066.0138325.0004547 yr1992.008548.0038626 2.21 0.027.0161184.0009775 yr1993.0089729.0040654 2.21 0.027.016941.0010048 yr1994.0096658.0044412 2.18 0.030.0183704.0009613 yr1995.0101516.004732 2.15 0.032.0194262.0008771 yr1996.0111185.0050303 2.21 0.027.0209777.0012592 yr1997.0116522.0053424 2.18 0.029.0221232.0011812 sb_usem.0136737.0037679 3.63 0.000.0062888.0210586 speed65m.0027627.0021271 1.30 0.194.0014062.0069316 speed70m.0056357.005749 0.98 0.327.005632.0169034 ba08m.0029648.0018393 1.61 0.107.0065697.0006401 drinkm.0006738.0041371 0.16 0.871.0074347.0087823 lnincm.0239093.0061603 3.88 0.000.0359833.0118353 agem.0014076.0006089 2.31 0.021.002601.0002142 _cons.1948447.0346721 5.62 0.000.1268887.2628007 sigma_u.00307437 sigma_e.00161752 rho.78319974 (fraction of variance due to u_i). test sb_usem speed65m speed70m ba08m drinkm lnincm agem ( 1) sb_usem = 0 ( 2) speed65m = 0 ( 3) speed70m = 0 ( 4) ba08m = 0 ( 5) drinkm = 0 ( 6) lnincm = 0 ( 7) agem = 0 chi2( 7) = 37.07 Prob > chi2 = 0.0000 So, we reject the null that c i and regressors are uncorrelated, and we should use fixed effect. (f) Here I use the fixed effect specification. 4

( 1) yr1984 = 0 ( 2) yr1985 = 0 ( 3) yr1986 = 0 ( 4) yr1987 = 0 ( 5) yr1988 = 0 ( 6) yr1989 = 0 ( 7) yr1990 = 0 ( 8) yr1991 = 0 ( 9) yr1992 = 0 (10) yr1993 = 0 (11) yr1994 = 0 (12) yr1995 = 0 (13) yr1996 = 0 (14) yr1997 = 0 F( 14, 50) = 9.82 So we reject the null that there is no time effect. (g). reg d.fatalityrate d.sb_useage d.speed65 d.speed70 d.ba08 d.drinkage21 d.lnincome d.age yr1984 yr1997, vce(robust) noc Linear regression Number of obs = 497 F( 21, 476) = 6.30 R squared = 0.2343 Root MSE =.00174 D. sb_useage D1..0026035.0012698 2.05 0.041.0050986.0001084 speed65 D1..0004715.0005128 0.92 0.358.0005361.0014792 speed70 D1..0000269.0003734 0.07 0.943.0007068.0007606 ba08 D1..0002792.0003967 0.70 0.482.0010587.0005003 drinkage21 D1..0010048.0005709 1.76 0.079.0021266.000117 lnincome D1..0112131.0061541 1.82 0.069.0008795.0233056 age D1..0018264.0012464 1.47 0.143.0006227.0042755 yr1984.0014063.0011957 1.18 0.240.0037559.0009432 yr1985.0019675.0006068 3.24 0.001.0031598.0007752 yr1986.0001575.000565 0.28 0.781.0009528.0012677 yr1987.0016881.0006983 2.42 0.016.0030603.0003159 yr1988.0017077.0005591 3.05 0.002.0028062.0006092 yr1989.002627.0005816 4.52 0.000.0037699.0014842 yr1990.0016663.0004864 3.43 0.001.002622.0007105 yr1991.001701.0003556 4.78 0.000.0023998.0010022 yr1992.0022125.0004291 5.16 0.000.0030556.0013694 yr1993.0007109.0003267 2.18 0.030.0013528.0000689 yr1994.0010295.0003975 2.59 0.010.0018106.0002485 yr1995.0005935.0003941 1.51 0.133.0013679.0001808 yr1996.0012865.0004066 3.16 0.002.0020856.0004875 yr1997.0008694.0003739 2.33 0.020.0016041.0001347 5

. *use difference in year dummies too. reg d.fatalityrate d.sb_useage d.speed65 d.speed70 d.ba08 d.drinkage21 d.lnincome d.age d.yr1984 d.yr1985 d.yr1986 d.y > r1987 d.yr1988 d.yr1989 d.yr1990 d.yr1991 d.yr1992 d.yr1993 d.yr1994 d.yr1995 d.yr1996 d.yr1997, vce(robust) noc Linear regression Number of obs = 497 F( 21, 476) = 6.30 R squared = 0.2343 Root MSE =.00174 D. sb_useage D1..0026035.0012698 2.05 0.041.0050986.0001084 speed65 D1..0004715.0005128 0.92 0.358.0005361.0014792 speed70 D1..0000269.0003734 0.07 0.943.0007068.0007606 ba08 D1..0002792.0003967 0.70 0.482.0010587.0005003 drinkage21 D1..0010048.0005709 1.76 0.079.0021266.000117 lnincome D1..0112131.0061541 1.82 0.069.0008795.0233056 age D1..0018264.0012464 1.47 0.143.0006227.0042755 yr1984 D1..0014063.0011957 1.18 0.240.0037559.0009432 yr1985 D1..0033738.0014915 2.26 0.024.0063046.0004431 yr1986 D1..0032164.0018058 1.78 0.076.0067647.0003319 yr1987 D1..0049045.0021944 2.23 0.026.0092165.0005925 yr1988 D1..0066122.0025908 2.55 0.011.011703.0015213 yr1989 D1..0092392.0030107 3.07 0.002.015155.0033234 yr1990 D1..0109055.0033457 3.26 0.001.0174798.0043312 yr1991 D1..0126065.0035386 3.56 0.000.0195597.0056533 yr1992 D1..014819.0038478 3.85 0.000.0223798.0072582 yr1993 D1..0155298.0040818 3.80 0.000.0235503.0075093 yr1994 D1..0165594.0043401 3.82 0.000.0250875.0080313 yr1995 D1..0171529.0046398 3.70 0.000.0262699.0080359 yr1996 D1..0184395.0049572 3.72 0.000.0281802.0086987 yr1997 D1..0193089.0052399 3.68 0.000.0296051.0090127 The result is similar to Fixed effect estimator. (h) Using FE or FD estimator, it is found that seat belt, lower speed limit, lower alcohol allowance, higher minimum drinking age can reduce fatality rate. (i) Using fixed effect estimates, this means we increase sb_usage from 0.52 to 0.90, the fatality rate then decreases by (0.90 0.52)(.0037186) = 1.413 1 10 3. If there are 50000 million miles travelled per year, then the number of death reduced is 1.413 1 10 3 50000 71. This question is taken from Stock and Watson textbook. It comes from the paper Cohen and Einav (2003) "The Effect of Mandatory Seat Belt Laws on Driving Behavior and Traffi c Fatality" The Review of Economics and Statistics, 85(4): 828-843. 6