Multiscale analyses of the behaviour and damage of composite materials

Similar documents
CHARACTERIZATION AND DAMAGE EVOLUTION OF S.M.C COMPOSITES MATERIALS BY ULTRASONIC METHOD

Lecture #8: Ductile Fracture (Theory & Experiments)

FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

Coupling of plasticity and damage in glass fibre reinforced polymer composites

Anisotropic modeling of short fibers reinforced thermoplastics materials with LS-DYNA

Discrete Element Modelling of a Reinforced Concrete Structure

Mechanical modelling of SiC/SiC composites and design criteria

A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE

A TIME-DEPENDENT DAMAGE LAW IN DEFORMABLE SOLID: A HOMOGENIZATION APPROACH

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations

A Critical Plane-energy Model for Multiaxial Fatigue Life Prediction. of Homogeneous and Heterogeneous Materials. Haoyang Wei

The Power of Ultrasonic Characterisation for Completely Assessing the Elastic Properties of Materials

ME 2570 MECHANICS OF MATERIALS

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING

MODELING OF THE BEHAVIOR OF WOVEN LAMINATED COMPOSITES UNTIL RUPTURE

Authors: Correspondence: ABSTRACT:

Engineering Solid Mechanics

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture

Numerical modeling of standard rock mechanics laboratory tests using a finite/discrete element approach

Nanoindentation of Fibrous Composite Microstructures: Experimentation and Finite Element Investigation. Mark Hardiman

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION

Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE. University of Liège Aerospace & Mechanical Engineering

Introduction to Engineering Materials ENGR2000. Dr. Coates

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens.

Multiscale modeling of failure in ABS materials

THERMO-MECHANICAL BEHAVIOR OF A THERMOPLASTIC REINFORCED WITH DISCONTINUOUS GLASS FIBERS

Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading

An orthotropic damage model for crash simulation of composites

Modelling the behaviour of plastics for design under impact

Powerful Modelling Techniques in Abaqus to Simulate

Multi-scale digital image correlation of strain localization

Archetype-Blending Multiscale Continuum Method

In Situ Ultrasonic NDT of Fracture and Fatigue in Composites

Experimental study of mechanical and thermal damage in crystalline hard rock

EVALUATION OF DAMAGE DEVELOPMENT FOR NCF COMPOSITES WITH A CIRCULAR HOLE BASED ON MULTI-SCALE ANALYSIS

Mechanical Properties of Materials

20. Rheology & Linear Elasticity

Enhancing Prediction Accuracy In Sift Theory

Digimat material model for short fiber reinforced plastics at Volvo Car Corporation

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

Modelling the effects of various contents of fillers on the relaxation rate of filled rubbers

Flexural properties of polymers

Durability of bonded aircraft structure. AMTAS Fall 2016 meeting October 27 th 2016 Seattle, WA

QUESTION BANK Composite Materials

Chapter 7. Highlights:

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

An Elasto-Visco-Plastic Multiscale Model for Fibrous Unidirectional Composite Materials

An integrated approach to the design of high performance carbon fibre reinforced risers - from micro to macro - scale

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test

STRESS UPDATE ALGORITHM FOR NON-ASSOCIATED FLOW METAL PLASTICITY

Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics

Exercise: concepts from chapter 8

Towards Affordable, Closed-Loop Recyclable Future Low Carbon Vehicles. Supervisors : Dr. L.T. Harper, Dr. M. Johnson, Prof. N.A.

Identification of interface properties using Fibre Bragg Grating sensors in a fibre pull-out test Gabriel Dunkel, Laurent Humbert and John Botsis

MHA042 - Material mechanics: Duggafrågor

FINITE ELEMENT ANALYSIS OF A LAYERED COMPOSITE CYLINDER USING THE CONNECTION BETWEEN THE MACRO- AND MICROSTRUCTURE

Computational Analysis for Composites

Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur

Mechanical properties 1 Elastic behaviour of materials

CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES

Fatigue and Fracture

Module-4. Mechanical Properties of Metals

3D Compression Molding

Fracture Mechanics, Damage and Fatigue: Composites

MICROMECHANICAL MODELS FOR CONCRETE

Laboratory 4 Bending Test of Materials

NUMERICAL SIMULATION OF CONCRETE EXPOSED TO HIGH TEMPERATURE DAMAGE AND EXPLOSIVE SPALLING

Don Robbins, Andrew Morrison, Rick Dalgarno Autodesk, Inc., Laramie, Wyoming. Abstract

Fatigue Analysis of Wind Turbine Composites using Multi-Continuum Theory and the Kinetic Theory of Fracture

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka

Cohesive Band Model: a triaxiality-dependent cohesive model inside an implicit non-local damage to crack transition framework

Prediction of Elastic Constants on 3D Four-directional Braided

COMPARISON OF COHESIVE ZONE MODELS USED TO PREDICT DELAMINATION INITIATED FROM FREE-EDGES : VALIDATION AGAINST EXPERIMENTAL RESULTS

Mechanics of Earthquakes and Faulting

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Table of Contents. Foreword... xiii Introduction... xv

Fissuration en milieux isotrope et orthotrope via les intégrales invariantes: prise en compte des effets environnementaux

A Performance Modeling Strategy based on Multifiber Beams to Estimate Crack Openings ESTIMATE in Concrete Structures CRACK

Multi-Scale Modeling of Crash & Failure of Reinforced Plastics Parts with DIGIMAT to LS-DYNA interface

Microplane Model formulation ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

Prediction of Micromechanical Behaviour of Elliptical Frp Composites

Abstract. 1 Introduction

THE BEHAVIOUR OF REINFORCED CONCRETE AS DEPICTED IN FINITE ELEMENT ANALYSIS.

Ratcheting and Rolling Contact Fatigue Crack Initiation Life of Rails under Service Loading. Wenyi YAN Monash University, Australia

ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

Multiaxial Fatigue. Professor Darrell F. Socie. Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Mechanics of Earthquakes and Faulting

2 Experiment of GFRP bolt

NUMERICAL MODELLING OF COMPOSITE PIN- JOINTS AND EXPERIMENTAL VALIDATION

After lecture 16 you should be able to

Multiscale Approach to Damage Analysis of Laminated Composite Structures

HOMOGENIZATION AND UNCERTAINTY ANALYSIS FOR FIBER REINFORCED COMPOSITES

BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS

A RESEARCH ON NONLINEAR STABILITY AND FAILURE OF THIN- WALLED COMPOSITE COLUMNS WITH OPEN CROSS-SECTION

University of Sheffield The development of finite elements for 3D structural analysis in fire

Calculation of Damage-dependent Directional Failure Indices from the Tsai-Wu Static Failure Criterion

Using the Abaqus CDP Model in Impact Simulations

Tensile behaviour of anti-symmetric CFRP composite

Transcription:

Multiscale analyses of the behaviour and damage of composite materials Presented by Didier BAPTISTE ENSAM, LIM, UMR CNRS 8006 151 boulevard de l hôpital l 75013 PARIS, France Research works from: K.Derrien, J.Fitoussi,, F. Meraghni, E.Lepen, G.Guo,, M. Levesque, Z.Jendli.

Variability of the short fibres orientation From B. Ohl, Schneider

Microtomography X: volume view of the fibres distribution From B. OLH, Schneide

Example of a dispersed microstructure: S.M.C.

What are the difficulties? Mechanical properties depending on the analysed zone of the structure. Initial anisotropy depending on the distribution of fibres orientation Evolution of this anisotropy with the loading

Difficulties of the macroscopic approach Tensile tests in different directions Many tensile tests with unloading to determine the evolution of all the stiffness parameters due to damage Identification of a macroscopic behaviour law taking into account damage evolution.. (exemple SMC: 27 coefficients)

Objective: Experimental determination of all the mechanical properties from: one given distribution of the microstructure One loading direction

Objective Prediction of the mechanical properties for other distributions of microstructure for other path loadings (other directions, bi-traction, shear,.)

Objective Identification of an anisotropic behaviour law from the simulation of loading tests on a R.V.E. for other distributions of the microstructure and different loading paths. VIRTUAL TEST MACHINE

MULTI-SCALE BEHAVIOUR MODELLING PROCESS Statistical approach:weibull Local failure criteria Matrix Homogenization Model: Mori and Tanaka Reinforcement: Matrix Behaviour law: Distributions: Elasticity Aspect ratio Damage Viscoelasticity Orientation, Micro-cracks cracks Plasticity Volume fraction, Mechanical properties Experimental investigation Loading -unloading tests In situ tensile test inside SEM Quantification of micro cracks kinetics Equivalent homogeneous material

MICRO MACRO BEHAVIOUR MODELLING Objective: To predict the composite properties from the components ones. Σ = L(?) E imp DESCRIPTION of the Representative Volume Element E imp ellipsoïdes (λ i, fv i, θ i, φ i ) Σ = < σ i > i=0, N HOMOGENEISATION LOCALIZATION σ 0 = L 0 ε 0 σ r = L r ε r BEHAVIOUR ε 0 =B 0 Ε ε r =B r Ε

Interface damage criterion σ Interfacial stresses calculated by Mori and Tanaka model Σ τ Orientation θ Interfacial criterion:(σ/σ 0 ) 2 + (τ/τ 0 ) 2 < R interface

interface damage law: Statistical approach σ Damaged interface σ Interface Failure Probability: Pf=Vfd/Vf =1-exp[(((σ/σ 0 ) 2 + (τ/τ 0 ) 2 )/σ u )] m = Volume fraction of broken interface fibre/ Volume Fraction of total fibre for a given orientation (σ 0,τ 0, m) = f (ε)( Interface mechanical properties. Undamaged interface

Failure particule criterion Diap Katell Σ Σ Σ Σ Σ = 494 MPa Al-SiCp Σ = 509 MPa

Reinforcement failure law σ 3 Brittle fracture of the reinforcement Damage criterion: σ< R particule σ : Maximun principal stress in the particule σ 1 σ 2 Statistical particule failure law Pr ( σ, V ) = 1 exp V V 0 σ σu m V : Particule volume

Matrix damage law Matrix cracking Cavity growth criterion or Cracks density Maximum cracks density = 1 exp σ σu m 1 dr 9 = ε R 43 2 p e h σ m h ( + fp) σ e σ: stresses in the matrix

Modelling of the damaged microstructure

Simulation of a stress- strain response Σ Mori et Tanaka : Building of the stress-strain answer by an incremental method Local damage criteria Δd (θ) Σ = Σ + δσ Introduction of a crack volume fraction (new microstructure)

Identification of the material parameters of the behaviour law Distribution of reinforcement : Tomography Ultrasonic waves Flow numerical simulation of the process

Microtomography From B. Olh Schneider ESRF

Ultrasonics measurement Specimen Wave propagation time measurement under bi-tension Ultrasonic transducers

Determination of the distribution of fibres Transvers Vitesse wave des OT (m/s) rate 1620 1600 1580 1560 1540 1520 1500 1480 0 30 60 90 120 150 180 210 240 270 300 330 360 Angle de rotation de l'échantillon ( ) Rotation angle of the specimen C ii = ρ v OL ² C ij = ρ v OT ² C comp = f (f v,f(θ),c m,c r ) Mori and Tanaka model: volume fraction and distribution of fibres orientation

Damage quantification at the microscale In situ tensile test ( inside a S.E.M.) 10 cm Specimen Microscopic damage

High strain rate damage caracterisation Tensile test up to 20m/s Specimen σ Fuse 36*9*3,2 mm 3 Quantitative analyses of damage at the microscopic scale

Evolution of damage for SMC 140 120 100 Stress (MPa) 80 60 40 Stage 2 Damag e initiatio n Stage 3 Micro-cracks coalescence and damage accumulation 20 0 Stage 1 Elastic behaviour 0 0.5 1 1.5 2 2.5 St rain (%)

Quantification of damage evolution d microscopic 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0.0002 s-1 8 s-1 20.5 s-1 ε_ult 0 0 0.5 1 1.5 2 ε dε/dt (%) d= Number of broken interface fibres Total number of fibres

Identification of the visco- damage law at the micro scale The interface failure criterion is a function of the strain rate. d=p r = 1 - exp[(σ/σ 0 ) 2 +(τ/τ 0 ) 2 ] m 0.4 0.35 PROB-OPT DOM-EXP PROB-INT (σ 0,τ 0, m) = f ( ). ε Identification (matlab( matlab) minimisation algorithme: Levenberge marquardt + Hessien calculation d-micro 0.3 0.25 0.2 0.15 0.1 0.05 3 m/s 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 STRAIN déformation (%) Model Experiments 8/s 20/s STRAIN

Prediction of the lost of stiffness 14000 12000 Strain rate: Exp. 20 s -1 10000 E11 (MPa) 8000 6000 Mod. 4000 E11-eps11-- 20s-1(Simulation) E11-eps11(élastique)-- 20s-1(Expérience) 2000 0 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 STRAIN Déformation ε 11(%)

Prediction of the anisotropic evolution of all the stiffness coefficients 1.2 1.2 1.2 1.0 1.0 1.0 E1/E1 (MPa) 0.8 0.6 0.4 250 s-1 20 s-1 0.2 2.10-4 s-1 0.0 0.0 0.5 1.0 1.5 2.0 2.5 0.8 0.6 0.4 250 s-1 20 s-1 0.2 2.10-4 s-1 0.0 0.0 0.5 1.0 1.5 2.0 2.5 Déformation ε11 (%) Déformation ε11 (%) Anisotropic stiffness evolution of composite SMC-R26 For strain rates: 2.10-4, 20 et 250 s - 1. E2/E2 (MPa) E3/E3 (MPa) 0.8 0.6 0.4 250 s-1 0.2 20 s-1 2.10-4 s-1 0.0 0.0 0.5 1.0 1.5 2.0 2.5 Déformation ε11 (%) 3 2 1 1.2 1.2 1.2 1.0 1.0 1.0 G23/G23 (MPa) 0.8 0.6 0.4 0.2 250 s-1 20 s-1 2.10-4 s-1 G13/G13 (MPa) 0.8 0.6 0.4 0.2 250 s-1 20 s-1 2.10-4 s-1 G12/G12 (MPa) 0.8 0.6 0.4 0.2 250 s-1 20 s-1 2.10-4 s-1 0.0 0.0 0.5 1.0 1.5 2.0 2.5 Déformation ε11 (%) 0.0 0.0 0.5 1.0 1.5 2.0 2.5 Déformation ε11 (%) 0.0 0.0 0.5 1.0 1.5 2.0 2.5 Déformation ε11 (%)

Prediction of the macroscopic behaviour Elasticity + plasticity + damage + failure 600 Al-SiCp 500 Σ (MPa) 400 300 200 100 15% modèle m=4 15% expérience 20% modèle m=4 20% expérience 0 0 1 2 3 4 5 STRAIN Déformation macroscopique en % from K.DERRIEN

Prediction of the macroscopic behaviour Elasticity + plasticity with kinematic and isotropic hardening + damage Al-Al2O3 200 100 Stress (Mpa) 0-100 -200 expérience simulation -0,01-0,006-0,002 0 0,002 0,006 0,01 Total strain From E. LEPEN

Prediction of the macroscopic behaviour Elasticity + viscodamage S.M.C. 160 140 ε =150 s -1 120 Tensile stress (MPa) 100 80 60 40 20 ε =22 s -1 Model 22s-1: stress-strain22 Model 22s-1: stress-strain1 Experimental (22 s-1) Mode 150s-1: stress-strain11 Mode 150s-1l: stress-strain22 Experimental (150 s-1) ε 22 ε11 0-1 -0,5 0 0,5 1 1,5 2 2,5 Strain (%) ε 11 From Z. JENDLI

Prediction of the macroscopic behaviour Non linear viscoelasticity Stress (MPa) 20 18 16 14 12 10 8 6 4 2 0 Glass reinforced thermoplastic 10 MPa/s - Model 10 MPa/s - FE 1 MPa/s - Model 1 MPa/s - FE 0.1 MPa/s - Model 0.1 MPa/s - FE 0 0.2 0.4 0.6 0.8 1 Strain (%) From M. LEVESQUE

Prediction of the effect of the different microstructure

Prediction of the effect of the different microstructure

Prediction of the effect of the different microstructure

Prediction of the behaviour and damage evolution for different loading paths. Fibres Distribution d'orientation distribution des fibres 0,05 Contrainte (MPa) STRESS 70 60 50 40 30 20 10 0 0,04 Simulation micro-macro Matériaux CIC RANGER 0,03 Fi/Ff Comparaison C.I.C. simulation-expérience 0,02 Essais quasistatiques 0,01 0 Experiences Endo interface seul sans Model endo matricielle Fibre à 90 Loading in the 90 direction Fibre à 0 Loading in the Endo 0 interface + endo matricielle direction 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Déformation (%) STRAIN From J.FITOUSSI

Prediction of the behaviour under multiaxial sollicitations Objective: to perform virtual multiaxial tests (bi( bi- tension, shear+tension,..) To identify of a macroscopic damage criterion To identify the evolution of this damage surface with loading

Simulation of different loading paths : Iso-damage criterion S.M.C. From G. GUO

Iso-damage surface evolution 60 0/1 σ2 S.M.C. Iso relative fraction of broken interface fibres -1/1 1/1 40 20 0 10% 5% 1% 30% 20% -60-40 -20 0 20 40 60 σ1-20 Biaxial loading paths -40-60 From J. FITOUSSI

Micro damage evolution for different biaxial loading paths Volume fraction of broken interface fibres function of the fibres orientation:vfb Vfb 0.045 0.04 0.035 0.03 0.025 0.02 Tension 18MPa 0.015 0.01 0.005 Vfb 0.045 0.04 0.035 0.03 Bi-tension 18MPa Vfb 0.25 0.2 0-100 -80-60 -40-20 0 20 40 60 80 100 Angle Tension-compression 18MPa 0.025 0.15 0.02 0.015 0.1 0.01 0.05 0.005 0-100 -80-60 -40-20 0 20 40 60 80 100 Angle 0-100 -80-60 -40-20 0 20 40 60 80 100 Angle

Heterogeneous structure behaviour simulation Theses virtual tests allow to identify a three dimensionnal anisotropic behaviour law. Possibility to perform finite elements calculations: 2 solutions: 1. Macroscopic law identified by the micro macro relationship 2. Micro-macro model introduced in the FEM code (Umat( Umat, Abaqus)

Integrated Design Finite elements calculations of the process to get the distribution of fibres orientation. Finite elements calculations of the deformation and damage of an heterogeneous structure taking into account the spatial distribution of the microstructure.

Coupling of process simulation with structure design simulation F.E. MESH Different material data files mesh Moldflow Simulation of the process ( ex: Moldflow, ) Interpolation of the fibres orientation matrices Mesh (ex:radioss,abaqus ) Imput material data file Simulation of the deformation and the damage of the structure

Simulation of the mould filling by injection of short fibres composites. From P. CHINESTA

Prediction of the fibres orientation From P. CHINESTA

Simulation of bending + torsion of S.M.C. structure ABAQUS+ UMAT MICRO-MACRO LAW From G. GUO

Simulation of the behaviour of a structure using a micro-maco maco law for S.M.C. Force (N) 450 400 350 300 250 200 150 100 50 0-1,50% -1,00% -0,50% 0,00% 0,50% 1,00% 1,50% 2,00% Longitudinal strain ε22(%) F. E. Face in traction Test, Face in traction F.E. Face in compression Test, Face in compression From G. GUO

Simulation of the lost of stiffness due to damage Longitudinal Young s modulus (GPa) 15 12.5 10 7.5 5 2.5 0 6 0.25 1 1.5 2.25 2.75 1.5 3.5 4 4.75 thickness (mm) 9 28.5 24 21 16.5 13.5 width (mm) From G. GUO

Futur: Possibility to simulate the behaviour of a real heterogeneous composite structure 0 à 5% 5 à 10% 10 à 15% 15 à 20% 20 à 25 % 25 à 30% 35 à 40% 40 à 45% Different volume fraction, different distribution of fibres orientation. due to the injection process. From P. COUDRON INOPLAST

CONCLUSION Discontinuous reinforcement laws based on homogeneisation techniques Introduction of micro damage laws for each damage mechanisms Identification of the mic-mac mac law from ultrasonic measurements, tomography,, and in situ tensile tests Prediction of the macroscopic behavior and damage effect up to failure for multiaxial stress states Prediction of the deformation and damage of an heterogeneous structure by coupling process and structure finite elements simulations.

THANK YOU