Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs

Similar documents
Enhanced Mobility CMOS

Lecture 9. Strained-Si Technology I: Device Physics

Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout

Recent Development of FinFET Technology for CMOS Logic and Memory

EE410 vs. Advanced CMOS Structures

Multiple Gate CMOS and Beyond

EECS130 Integrated Circuit Devices

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

A Multi-Gate CMOS Compact Model BSIMMG

The Pennsylvania State University. Kurt J. Lesker Company. North Carolina State University. Taiwan Semiconductor Manufacturing Company 1

This is the author s final accepted version.

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild)

Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain

Modeling and Computation of Gate Tunneling Current through Ultra Thin Gate Oxides in Double Gate MOSFETs with Ultra Thin Body Silicon Channel

Ultimately Scaled CMOS: DG FinFETs?

Single Electron Devices and Circuits

Simple Theory of the Ballistic Nanotransistor

Components Research, TMG Intel Corporation *QinetiQ. Contact:

Lecture 5: CMOS Transistor Theory

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Courtesy of S. Salahuddin (UC Berkeley) Lecture 4

Towards Atomistic Simulations of the Electro-Thermal Properties of Nanowire Transistors Mathieu Luisier and Reto Rhyner

Split-gate charge trap memories: impact of scaling on performances and consumption for low-power embedded applications

Prospects for Ge MOSFETs

Introduction and Background

MONTE CARLO SIMULATION OF THE ELECTRON MOBILITY IN STRAINED SILICON

Classification of Solids

The Evolution of Theory on Drain Current Saturation Mechanism of MOSFETs from the Early Days to the Present Day

Nanoscale CMOS Design Issues

The Devices: MOS Transistors

Lecture 11: MOSFET Modeling

OMEN an atomistic and full-band quantum transport simulator for post-cmos nanodevices

STRAIN EFFECTS ON THE VALENCE BAND OF SILICON: PIEZORESISTANCE IN P-TYPE SILICON AND MOBILITY ENHANCEMENT IN STRAINED SILICON PMOSFET

Comparative studies of Ge and Si p-channel metal oxide semiconductor field-effect-transistors with HfSiON dielectric and TaN metal gate

Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFET s

NEW VERSION OF LETI-UTSOI2 FEATURING FURTHER IMPROVED PREDICTABILITY, AND A NEW STRESS MODEL FOR FDSOI TECHNOLOGY

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

Microelectronics Part 1: Main CMOS circuits design rules

MOSFET SCALING ECE 663

Characteristics of MOSFET with Non-overlapped Source-Drain to Gate

Overview of Modeling and Simulation TCAD - FLOOPS / FLOODS

Low Frequency Noise in MoS 2 Negative Capacitance Field-effect Transistor

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

MOSFET: Introduction

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Quantum-size effects in sub-10 nm fin width InGaAs finfets

Measurement and Modeling of the n-channel and p-channel MOSFET s Inversion Layer Mobility at Room and Low Temperature Operation

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices

Lecture #27. The Short Channel Effect (SCE)

Keywords MOSFET, FinFET, Silicon, Germanium, InGaAs, Monte Carlo, Drift Diffusion.

Solid-State Electronics

High hole and electron mobilities using Strained Si/Strained Ge heterostructures

Semiconductor Physics Problems 2015

Si Nanowire FET Modeling and Technology

THE END OF simple scaling for a solid-state device technology

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions?

Modeling Random Variability of 16nm Bulk FinFETs

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components

!""#$%&'("')*+,%*-'$(,".,#-#,%'+,/' /.&$0#%#'/(1+,%&'.,',+,(&$+2#'3*24'5.' 6758!9&!

Technische Universität Graz. Institute of Solid State Physics. 11. MOSFETs

ECE 342 Electronic Circuits. 3. MOS Transistors

Indium arsenide quantum wire trigate metal oxide semiconductor field effect transistor

MOS Transistor I-V Characteristics and Parasitics

InGaAs Double-Gate Fin-Sidewall MOSFET

Integrated Circuits & Systems

A Compact Analytical Modelling of the Electrical Characteristics of Submicron Channel MOSFETs

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

Strained Si CMOS (SS CMOS) technology: opportunities and challenges

Analytical modelling and performance analysis of Double-Gate MOSFET-based circuit including ballistic/quasi-ballistic effects

MOS Transistor Theory

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Fig The electron mobility for a-si and poly-si TFT.

The Devices. Devices

Section 12: Intro to Devices

GaN based transistors

Nanometer Transistors and Their Models. Jan M. Rabaey

Solid-State Electronics

First-principles study of electronic properties of biaxially strained silicon: Effects on charge carrier mobility

Physics an performance of III-V nanowire heterojunction TFETs including phonon and impurity band tails:

MOSFET PIEZORESISTANCE COEFFICIENTS ON (100) SILICON NIDHI MOHTA

EECS240 Spring Lecture 21: Matching. Elad Alon Dept. of EECS. V i+ V i-

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 4: CMOS Transistor Theory

Investigation of the band gap widening effect in thin silicon double gate MOSFETs

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

Effect of Remote-Surface-Roughness Scattering on Electron Mobility in MOSFETs with High-k Dielectrics. Technology, Yokohama , Japan

Fundamentals of Nanoelectronics: Basic Concepts

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ]

Carbon Nanotube Electronics

FLCC Seminar. Spacer Lithography for Reduced Variability in MOSFET Performance

Long-channel MOSFET IV Corrections

Simple and accurate modeling of the 3D structural variations in FinFETs

Analytical Modeling of Threshold Voltage for a. Biaxial Strained-Si-MOSFET

An Analytical Model for a Gate-Induced-Drain-Leakage Current in a Buried-Channel PMOSFET

Transcription:

42nd ESSDERC, Bordeaux, France, 17-21 Sept. 2012 A2L-E, High Mobility Devices, 18 Sept. Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs M. Koyama 1,4, M. Cassé 1, R. Coquand 1,2,3, S. Barraud 1, H. Iwai 4, G. Ghibaudo 2, and G. Reimbold 1 1 CEA LETI, 2 IMEP-LAHC INPG-MINATEC, 3 STMicroelectronics, 4 FRC, Tokyo Institute of Technology

Introduction - Si nanowire MOSFETs FD-SOI/high-k/mid-gap MG (Undoped channel) Higher mobility Reduction of random dopant fluctuation (RDF) No poly-depletion Almost symmetrical Id-Vg curve for N- and PMOS Source Gate Gate Mid-gap MG High-k Undoped Si FD-SOI FET Drain Drain BOX Application Si nanowire MOSFETs High immunity to short channel effect (SCE) and drain induced barrier lowering (DIBL) Better electrostatic control Lower off-current (I OFF ) Steeper subthreshold slope (SS) Gate Source BOX Si Tri-gate NWFET Source BOX Si Drain Omega-gate NWFET Advantages in downscaling and power consumption 2

Issues and challenges Quantum confinement of carriers Downscaled cross-section of NW below 20nm 20nm Contributions of different crystallographic orientation Tri-gate: top surface and side-walls Ω-gate, GAA: rounded (omega-shaped, cylindrical) surface Stress engineering Improvement of device performance Promising solution to further scaling of CMOS technology Combination of NW architecture and stress 3

Purpose Understanding of carrier transport in SOI and ssoi Tri-gate and Omega-gate SiNW MOSFETs Influence on carrier transport - Channel shape Tri-gate vs Omega-gate - Width dimensions NW down to 10nm - Uniaxial tensile strain H Gate W Si Source BOX Si Drain Gate Si Source BOX Si Drain Measurement Carrier mobility on N- and PMOS NW FETs down to low temperature 4

Measured Si nanowires Gate stack: HfSiON(2nm)/ALD-TiN(5nm)/poly-Si(50nm) SOI and ssoi wafer Unstrained and strained NW - 50 channels NWs - Long channel transistors with Lg=10µm R.Coquand et al., Symp. VLSI Tech., p.13 (2012). Effective mobility extraction by conventional split C-V technique 5

Basic characteristics: Id-Vg curves I d /W tot (µa/µm) 10 3 10 0 10-3 10-6 Vd=0.9V Vd=40mV W=10nm H=11nm Tri-gate Vd=40mV Vd=0.9V Ω gate Vd=40mV Vd=0.9V 10-9 -1.5-1.0-0.5 0.0 0.5 1.0 1.5 V g (V) No I ON difference Vd=0.9V Vd=40mV W=23nm H=10nm Unstrained TG vs ΩG NWs 10 3 10 0 10-3 10-6 Vd=0.9V Vd=40mV ssoi-tg Vd=40mV Vd=0.9V SOI-TG Vd=40mV Vd=0.9V 10-9 -1.5-1.0-0.5 0.0 0.5 1.0 1.5 V g (V) Vd=0.9V Vd=40mV Vt shift Strained TG W=16nm H=10.5nm Unstrained vs strained TGNWs NMOS: I ON enhancement Vt shift ~ 40mV PMOS: I ON deterioration Subthreshold slope (SS) ~ 70mV/dec: Well behaved characteristics 6

Scattering-limited mobility in MOSFET Effective mobility, µ eff Coulomb scattering Low Surface roughness Phonon scattering scattering High Temperature Total mobility S.Takagi et al., Trans. Electron Dev., 41, 2357 (1994). Inversion charge density, Phonon scattering (PS) depends on temperature (T) Coulomb scattering (CS) Surface roughness scattering (SRS) T independent Carrier transport is limited by 3 scattering mechanisms 7

Temperature dependent mobility <TGNW vs Wide FET> Effective Mobility (cm²/vs) 1400 1 0 800 600 400 NMOS TGNW: W=10nm T=20K T=300K 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 ( 10 13 cm -2 ) TGNW Wide FET Wide FET Effective Mobility (cm²/vs) 600 500 400 300 Wide FET: W=10µm PMOS 250 150 50 K 300K ( 10 13 cm -2 ) TGNW Wide FET K @ High 0.6 0.7 0.8 0.9 1.0 T=50K T=300K 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Tri-gate NW NMOS: Mobility deterioration @ high PMOS: Small mobility improvement @ high Maximum peak position shift to lower 8

Contribution of surface orientation to effective mobility Maximum mobility in unstrained wide FET Si surface orientation Top surface () Side-walls (110) µ eff_max (cm 2 /Vs) in SOI Electron (NMOS) 330 190 Hole (PMOS) 119 158 Gate [110] Source BOX Si Drain Top Si() Side-wall Si(110) Advantage Si()//[110] (top surface): electron transport Si(110)//[110] (side-walls): hole transport H.Irie et al., IEDM Tech. Dig., 225 (4). Electron mobility degradation Hole mobility enhancement as the width decreases Nanowire: Increasing the contribution of (110)-oriented side-walls 9

Extracted top and surface mobility in Tri-gate NW Effective Mobility (cm²/vs) 0 900 800 700 600 500 400 300 ~µ C TGNW: W=10nm µ top µ side-wall 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Tri-gate NW ( 10 13 cm -2 ) NMOS ~µ SR_top T=K µ ~µ SR_side-wall total eff Effective Mobility (cm²/vs) = W top() 2H µ eff + W + 2H W + 2H µ 450 400 350 300 250 150 50 µ top µ side-wall 0 0.0 0.2 0.4 0.6 0.8 1.0 ( 10 13 cm -2 ) Larger contribution of (110) side-wall PMOS ~µ SR_side-wall ~µ SR_top side wall(110) eff T=K Maximum mobility (Coulomb and Phonon) Surface roughness-limited mobility 10

Temperature dependent mobility <TGNW vs ΩGNW> TGNW: W=30nm ΩGNW: W=23nm Effective Mobility (cm²/vs) 1600 1400 1 0 800 600 400 NMOS ΩGNW TGNW T=20K T=300K 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Effective Mobility (cm²/vs) 800 700 600 500 400 300 T=20K T=300K 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 N 13-2 inv ( 10 13 cm -2 ) ( 10 13 cm -2 ) PMOS ΩGNW TGNW ΩG N- and PMOS Maximum mobility enhancement @ low T Lower Coulomb scattering due to H 2 anneal process 11

Stress effect on carrier transport along [110] (b) lateral strain relaxation s-si [110] [110] BOX BoX Biaxial vs uniaxial stress (~1.4GPa) - Biaxial tensile stress (in () plane) - Uniaxial stress along channel direction (Lateral strain relaxation) Mobility enhancement (degradation) from strain effect - Repopulation of Si conduction valleys - Reduction of intervalley phonon scattering Strain NMOS PMOS (transport //[110]) () (110) () (110) no strain 0-0 + biaxial tensile + - / = uniaxial tensile // [110] ++ ++ -- - Uniaxial tensile stress along [110] direction: Improving electron mobility 12

Top width (W top ) dependent effective mobility <TG vs WG> µ eff (cm 2 /Vs) @ High 500 400 300 Tri-gate +55% =1.0 10 13 cm -2 +70% 0.01 0.1 1 10 NW Wide W top (µm) ssoi SOI NMOS µ eff (cm 2 /Vs) @ High 500 400 300 Ω-gate +50% +65% 0.01 0.1 1 10 NW Wide W top (µm) Electron mobility degradation as the width narrowing =0.9 10 13 cm -2 ssoi SOI Uniaxial strained NW with ~50% gain in µ eff Still enhanced TG and ΩG devices exhibit almost the same mobility improvement - Strain relaxation - Piezoresistive properties Same in both geometries 13

Top width (W top ) dependent effective mobility <TG vs WG> µ eff (cm 2 /Vs) @ High 140 120 80 60 Tri-gate -30% =1.0 10 13 cm -2 ssoi SOI 0.01 0.1 1 10 W top (µm) PMOS Ω-gate TG and ΩGNW represent roughly the same mobility Strained NWs; No mobility improvement as W top decreases µ eff (cm 2 /Vs) @ High -25% =0.8 10 13 cm -2 ssoi SOI 0.01 0.1 1 10 W top (µm) Uniaxial tensile strain for PMOS Counterbalance of better mobility in unstrained Si(110) Large mobility degradation for Si() top surface 140 120 80 60 Agreement with NMOS 14

Temperature dependent mobility <SOI vs strained-soi> µ eff (cm 2 /Vs) @ High NMOS 3000 0 ~µ SR_wide Unstrained =0.8 10 13 cm -2 Strained Tri-gate Ω-gate Tri-gate Ω-gate W=10nm W=10µm W=23nm W=10µm W=16nm W=10µm W=33nm W=10µm 20 300 20 300 Temperature (K) Wide FET 3000 0 ~µ SR_wide ~µ SR_NW ~µ SR_NW Temperature (K) T>K T<K Phonon-limited mobility: Improvement from strain effect Mobility saturation from surface roughness scattering (SRS) SR-limited mobility: Small enhancement by strain effect Roughly same properties in both TG and ΩG geometries 15

Temperature dependent mobility <SOI vs strained SOI> µ eff (cm 2 /Vs) @ High PMOS 500 50 ~µ SR_NW ~µ SR_wide Unstrained Wide FET 500 =0.7 10 13 cm -2 Strained Tri-gate Ω-gate Tri-gate Ω-gate W=30nm W=10µm W=23nm W=10µm W=36nm W=10µm W=33nm W=10µm 20 300 50 20 300 Temperature (K) ~µ SR_wide ~µ SR_NW Temperature (K) Whole T range Stress influence to mobility (Phonon- and SR-limited) Enhancement: Wide FETs Degradation: TG and ΩG NWs Same in both NWs Biaxial stress (wide FET): Improvement Uniaxial stress (both NWs): Deterioration 16

Temperature dependent maximum mobility Influence of phonon scattering µ max ~ µ phonon T γ Values of power law exponent γ Tri-gate Wide (10µm) NMOS SOI ssoi 0.95 0.64 PMOS SOI ssoi 1.00 1.18 w/o H 2 anneal NW 0.94 0.63 0.98 1.25 Ω-gate Wide (10µm) 1.05 0.69 1.03 1.07 with H 2 anneal NW 1.05 0.41 1.12 1.13 Larger stress influence for NMOS Phonon-limited mobility Dependent on the strain effect Independent on channel shape width dimension 17

Conclusions Carrier transport in strained and unstrained TG and ΩG NWs i) Transport properties in TGNWs (down to 10nm 10nm section) Agreement with the contribution of different orientation Larger Si(110) side-wall contribution ii) ΩGNWs (down to W top-view of 23 nm) Roughly same mobility behavior as TGNWs Lower Coulomb scattering iii) Uniaxial strain in both nanowire geometries Enhancing NMOS performance Diminishing PMOS performance Phonon-limited and SR-limited mobility No significant difference from the channel shape 18

Modifiez les styles du texte du masque Deuxième niveau > Troisième niveau Thank you for Merci de votre your kind attention attention E-mail: masahiro.koyama@cea.fr 19

Backup slides 20

Temperature dependent mobility <TGNW vs ΩGNW> TGNW: W=10nm W=30nm ΩGNW: W=23nm Effective Mobility (cm²/vs) 1600 1400 1 0 800 600 400 NMOS ΩGNW TGNW (30nm) T=20K T=300K 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Effective Mobility (cm²/vs) 1600 1400 1 0 800 600 400 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 N 13-2 inv ( 10 13 cm -2 ) ( 10 13 cm -2 ) NMOS ΩGNW TGNW (10nm) T=20K T=300K ΩG NMOS Maximum mobility enhancement @ low T Lower Coulomb scattering due to H 2 anneal process 21

Temperature dependent mobility <TGNW> TGNW: W=10nm vs W=30nm Effective Mobility (cm²/vs) 1 0 800 600 400 NMOS T=20K T=300K 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 ( 10 13 cm -2 ) W=10nm W=30nm Larger contribution of (110) side-wall 300K 250K K 150K K 50K 20K Maximum mobility (Coulomb and Phonon) Surface roughness-limited mobility 22

Temperature dependent mobility <SOI vs strained SOI> µ eff (cm 2 /Vs) @ High NMOS 3000 0 3000 0 20 300 20 300 Tri-gate W=10nm W=30nm W=10µm Unstrained Ω-gate W=23nm W=10µm Wide FET ~µ SR_NW ~µ SR_NW =0.8 10 13 cm -2 Tri-gate W=16nm W=36nm W=10µm Strained Ω-gate W=33nm W=10µm Difference between W top =10nm & 30nm TGNWs Contribution of (110) side-walls 23

Extraction of µ top and µ side-wall contribution for Tri-gate NW Contribution of surface orientation to effective mobility µ µ total eff = W top() 2H µ eff + W + 2H W + 2H µ side wall(110) eff = α µ total eff W µ 2H top() eff side wall(110) eff W + 2H α = 2H J. Chen et al., Symp., VLSI Tech., p.32 (8). R. Coquand et al., Proc., ULIS conf. (2012). Si surface orientation Top surface () Side-walls (110) Electron (NMOS) + - µ eff (cm 2 /Vs) Hole (PMOS) - + H Gate [110] W Source BOX Si Drain Top Si() Side-wall Si(110) Scattering behavior on µ top and µ side-wall? 24

Scattering influence in µ top and µ side-wall of Tri-gate NW Effective Mobility (cm²/vs) 0 900 800 700 600 500 400 300 ~µ C NMOS T=K T=300K 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 ( 10 13 cm -2 ) ~µ SR_top ~µ SR_side-wall µ top µ side-wall µ Si(110) TGNW: W=10nm µ side-wall ~ referential µ Si(110) Mobility limit Scattering mechanism Coulomb (µ C ) Surface roughness (µ SR ) µ top () Strong Weak µ side-wall (110) Weak Strong 25

Scattering influence in µ top and µ side-wall of Tri-gate NW Effective Mobility (cm²/vs) 550 500 450 400 350 300 250 150 50 ~µ C ~µ SR_side-wall ~µ SR_top 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 ( 10 13 cm -2 ) PMOS T=K T=300K µ top µ side-wall µ Si(110) TGNW: W=30nm µ side-wall ~ µ Si(110) @ high Mobility limit Scattering mechanism Coulomb (µ C ) Surface roughness (µ SR ) µ top () No difference µ side-wall (110) Similar slope 26

H 2 anneal impact in wide device Effective Mobility (cm²/vs) 1600 1400 1 0 800 600 400 Wide FET NMOS Wide FET: W=10µm 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 ( 10 13 cm -2 ) 300K 250K K 150K K 50K 20K Enhancement Coulomb-limited mobility SR-limited mobility 500 450 400 350 300 250 150 50 ΩG_with H 2 (W=10µm) TG_w/o H 2 (W=10µm) PMOS 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 ( 10 13 cm -2 ) 300K 250K K 150K K 50K 20K Enhancement Coulomb-limited mobility 27

Mobility improvement from strain effect Mobility gain in Strained-Si nmosfet (tensile) Increase of the 2-fold valley occupancy (population) with lower conductivity mass Decrease the phonon scattering rate between the 2-fold and the 4-fold valleys (intervalley scattering) Strain effect for hole (tensile) Breking of the valence band degeneracy Reduction of conductivity mass 28

Fablication process Undoped FD-SOI wafer (Mesa isolation) - with or w/o biaxial tensile stress of ~1.4 GPa NW patterning (DUV lithography) - with or w/o H 2 anneal HfSiON(2nm)/ALD TiN(5nm)/poly-Si(50nm) gate stack Gate patterning Spacer 1 formation S/D epitaxy (T Si =18nm) LDD implantation Spacer 2 formation HDD implantation Silicidation Back-end 29

Basic characteristics: Id-Vg curves I d /W tot (µa/µm) 10 2 10 0 10-2 10-4 Vd=40mV NMOS 2.5 2.0 1.5 1.0 10 1 10-1 10-3 10-5 Vd=-40mV PMOS 1.0 0.8 0.6 0.4 Tri-gate Omega-gate strained-tg strained-ωg 10-6 0.5 10-7 0.2 I d /W tot (µa/µm) 0.0 0.5 1.0 0.0 1.5 10 3 40 10-8 10 1 32 10-1 10-3 Vd=0.9V 24 16 d tot 10-9 0.0-0.5-1.0 0.0-1.5 10 2 10 10 0 8 10-2 10-4 Vd=-0.9V 6 4 Tri-gate Omega-gate strained-tg strained-ωg 10-5 8 10-6 2 10-7 0 0.0 0.5 1.0 1.5 V g (V) 10-8 0.0-0.2-0.4-0.6-0.8-1.0-1.2-1.4 V g (V) 0 30