Two hot issues in neutrino physics

Similar documents
Impact of light sterile!s in LBL experiments "

Sterile Neutrinos in July 2010

Status of Light Sterile Neutrinos Carlo Giunti

Sterile neutrinos. Stéphane Lavignac (IPhT Saclay)

Sterile Neutrinos. Carlo Giunti

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter

Oscillations Beyond Three-Neutrino Mixing (Status of Light Sterile Neutrinos) Carlo Giunti

Status of Light Sterile Neutrinos Carlo Giunti

Analysis of Neutrino Oscillation experiments

The reactor antineutrino anomaly & experimental status of anomalies beyond 3 flavors

Stefano Gariazzo. Light sterile neutrinos with pseudoscalar interactions in cosmology. Based on [JCAP 08 (2016) 067] University and INFN, Torino

On Minimal Models with Light Sterile Neutrinos

Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance

Neutrino Physics: Lecture 12

Neutrino Masses in Cosmology, Neutrinoless Double-Beta Decay and Direct Neutrino Masses Carlo Giunti

Reactor anomaly and searches of sterile neutrinos in experiments at very short baseline

Status of the Sterile Neutrino(s) Carlo Giunti

Oscillations Beyond Three-Neutrino Mixing. Carlo Giunti

NOW Conca Specchiulla, September 9-16, 2012

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Status of Sterile Neutrinos Carlo Giunti

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

The Reactor Antineutrino Anomaly

Why neutrinos? Patrick Huber. Center for Neutrino Physics at Virginia Tech. KURF Users Meeting June 7, 2013, Virginia Tech. P. Huber VT-CNP p.

Sterile Neutrino Searches: Experiment and Theory Carlo Giunti INFN, Sezione di Torino

Neutrino Anomalies & CEνNS

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Sterile neutrino oscillations

How many neutrino species are there?

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Stefano Gariazzo. Light sterile neutrino: the 2018 status. IFIC, Valencia (ES) CSIC Universitat de Valencia

C. Giunti Sterile Neutrino Mixing NOW Sep /25

arxiv: v2 [hep-ph] 7 May 2013

SNOW Global fits to neutrino oscillation data. Thomas Schwetz SISSA, Trieste

Dark Radiation and Inflationary Freedom

Thermalisation of Sterile Neutrinos. Thomas Tram LPPC/ITP EPFL

Overview of Reactor Neutrino

Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector

MiniBooNE, LSND, and Future Very-Short Baseline Experiments

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Yang-Hwan, Ahn (KIAS)

Short-Baseline Neutrino Oscillation Anomalies and Light Sterile Neutrinos. Carlo Giunti

Neutrino Oscillations And Sterile Neutrinos

ev-scale Sterile Neutrinos

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Solar Neutrino Road Map. Carlos Pena Garay IAS

Recent results from BBN and Planck 2015

Neutrino Mass: Overview of ββ 0ν, Cosmology and Direct Measurements Carlo Giunti

Neutrino Physics. Carlo Giunti

Sterile neutrinos: to be or not to be?

arxiv: v1 [hep-ph] 15 Apr 2019

Neutrinos and Astrophysics

Yang-Hwan Ahn Based on arxiv:

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Known and Unknown for Neutrinos. Kim Siyeon Chung-Ang g University Lecture at Yonsei Univ.

Updating the Status of Neutrino Physics

Phenomenological Status of Neutrino Mixing

Neutrinos & Large Extra Dimensions. Renata Zukanovich Funchal Universidade de São Paulo, Brazil

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

GLOBAL ANALYSIS OF NEUTRINO DATA

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons

Reactor Anomaly an Overview. Petr Vogel, Caltech INT Seattle 11/6/2013

Status and prospects of neutrino oscillations


The future of neutrino physics (at accelerators)

A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy. July 21, 2011, The international school Daniel Chalonge

Long baseline experiments

Neutrinos: status, models, string theory expectations

Yang-Hwan, Ahn (KIAS)

The Hunt for Sterile Neutrinos. H. Ray, University of Florida

Neutrino Mass Limits from Cosmology

How large is the "LSND anomaly"?

NEUTRINOS II The Sequel

Is nonstandard interaction a solution to the three neutrino tensions?

Overview of cosmological constraints on neutrino mass, number, and types

Neutrinos in Supernova Evolution and Nucleosynthesis

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

Critical Review on Neutrino Anomalies. Carlo Giunti

Sterile neutrino oscillations. Antonio Palazzo

Sterile Neutrinos. Patrick Huber. Center for Neutrino Physics Virginia Tech

Status of neutrino mass-mixing parameters and implications for single and double beta decay searches

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

The Daya Bay Reactor Neutrino Experiment

Neutrino Experiments: Lecture 3 M. Shaevitz Columbia University

Searching for Physics Beyond the Standard Model. IceCube Neutrino Observatory. with the. John Kelley for the IceCube Collaboration

How to make the short baseline sterile neutrino compatible with cosmology

Searching for non-standard interactions at the future long baseline experiments

Nonunitary mixing: current constraints and new ambiguity

Recent results from Super-Kamiokande

Outline. (1) Physics motivations. (2) Project status

Short baseline neutrino oscillation experiments at nuclear reactors

Reactor Neutrino Oscillation Experiments: Status and Prospects

Particle Physics: Neutrinos part II

Largeθ 13 Challenge and Opportunity

Future prospects of neutrino oscillation study Osamu Yasuda Tokyo Metropolitan University April 27, IPMU

Latest Results from MINOS and MINOS+ Will Flanagan University of Texas on behalf of the MINOS+ Collaboration

Short baseline experiments and sterile neutrinos. Nick van Remortel Solvay-Francqui Workshop on Neutrinos May

NEUTRINO COSMOLOGY. ν e ν µ. ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006

Neutrino mixing. Outline: description/review of mixing phenomenology possible experimental signatures short review of existing experimental results

A Novel and Simple Discrete Symmetry for Non-zero θ 13

Transcription:

Bari Xmas Workshop /1/011 Two hot issues in neutrino physics Antonio Palazzo Excellence Cluster Universe - TUM 1

Outline! - Introduction - The evidence of! 13 >0 - Hints of new light sterile neutrinos - Conclusions

The leptonic mixing Dirac CP-violating phase " is unknown Explicit form: s 3 ~ 0. s 13 ~ 0.0 s 1 ~ 0.31! 3 ~ 3 0! 13 ~ 0! 1 ~ 3 0 3

Evidence of non-zero! 13 (June 011) Synopsis of global 3$ oscillation analysis 3 N% 1 0 7.0 7.5.0-5!m /10 ev 0.5 0.30 0.35 sin " 1 0.00 0.0 0.0 sin " 13 0.3 0. 0.5 0. 0.7 sin " 3.0.5 3.0 #m -3 /10 ev Fogli, lisi, Marrone, A.P., Rotunno, PRD, 053007 (011) [arxiv:110.0] Old reactor fluxes: 3.0 sigma New reactor fluxes: 3. sigma

Why a non-zero! 13 is so important J = [U µ3 U e U µu e3] The Jarlskog invariant J gives a parameterization-independent measure of the CP violation induced by the complexity of U In the standard parameterization the expression of J is: J = 1 sin θ 1 sin θ 3 sin θ 13 cos θ 13 sin δ Only if all three! ij = 0 we can have CP violation quark-sector: J CKM ~ 3 x 10-5, much smaller than / J max = 1 3 0.1 lepton-sector: J may be as large as 3 x 10- (it will depend on ") 5

Why perturb such a beautiful picture? The 3# scheme explains all data with a few exceptions These seem to point towards sterile neutrino species # s s [singlets of U(1)xSU()] (I) Accumulating hints of ev # s s from oscillation phenomenology and cosmology (II) Indications of warm dark matter from astrophysical small-scale problems (kev # s s are a good option) I will discuss only type-i # s s

The 3+1 scheme: How to perturb the standard picture The th # state induces a small perturbation of the 3-flavor framework U s ~ 1!! s $m new >1eV! 3! e! µ"! #" $m atm! 3!! 1 $m sol!! 1 without spoiling its enormous success 7

Anomalous # e -disappearance at short-distance Hint #1 Hint # p(measured)/p(predicted) N OBS /(N EXP ) pred,new GALLEX Cr1 1.1 SAGE Cr 1.0 0.9 0. 0.7 GALLEX Cr SAGE Ar 1.15 1.1 1.05 1 0.95 0.9 0.5 0. SAGE coll., PRC 73 (00) 0505 ILL Bugey!3/ ROVNO Krasnoyarsk Goesgen Bugey3 Goesgen Krasnoyarsk!3 Goesgen Krasnoyarsk! Bugey3 PaloVerde CHOOZ In a # framework: P ee 1 sin θ new sin m newl E sin θ new 0.17 ± 0.1 (95%) P ee =1 j>k In a 3+1 scheme: U eju ek sin m jk L E m sol m atm m new 0.75 0.7 10 1 10 10 3 Distance to Reactor (m) Mention et al. arxiv:1101:755 [hep-ex] sin θ new U e = sin θ 1 Warning: The culprit may be hidden systematics

Fitting the short-distance # e -disappearance "# 10 10 5 dof "# contours 1 dof "# profile 90.00 % 95.00 % 99.00 % "# 10 10 5 dof "# contour (ev ) "m new 10 1 10 0 10!1 1 dof "# profile (ev ) "m new 10 1 10 0 10!1 10! 3 5 7 3 5 7 3 5 7 10!3 10! sin 10!1 10 0 (! new ) 5 10 "# 10! 3 5 7 10!3 1 FIG.. AllowedMention regionset inal., the PRD sin3 (θ 07300 new ) m (011) new plane obtained from the fit of th hypothesis, with sin (θ 13 ) = 0. The left panel is the combination of the reactors an with 51 Cr and 37 Ar radioactive sources. The right panel is the combination of the re data following the method of Ref. [5]. In both cases the ILL energy spectrum info sin θ new 0.1 m new 1 ev Our ILL re-analysis, including only the en- 9

Hint #3: Anomalous short-distance # e -appearance Beam Excess 17.5 15 1.5 10 Beam Excess p(! _ µ "!_ e,e+ )n p(! _ e,e+ )n other $m (ev /c ) Karmen Bugey CCFR 3+1 3+ 7.5 5 NOMAD.5 0 90% (L max -L <.3) 99% (L max -L <.) 0. 0. 0. 1 1. 1. L/E! (meters/mev) LSND, PRL 75 m(1995) LSND 050 ev ( matm msol) sin # Giunti and Laveder, arxiv:1107.15 C. Giunti Phenomenology of Sterile Neutrinos 1 May 011 5/59 Warning: Theory: In tension with disappearance searches: # µ -># e positive appearance signal incompatible with joint # e ># e (positive) & # µ -># µ (negative) searches sin θ eµ 1 sin θ ee sin θ µµ U e U µ Experiments: ~ few %o ~ 0.1 < few % 10

Hint #: Cosmology favors extra radiation CMB + LSS tend to prefer extra relativistic content ~ sigma effect [Hamann et al., PRL 105, 11301 (010)] Warnings: - It may be a statistical artifact driven by prior effects (Gonzalez-Morales et al., arxiv:110.505) - ev masses acceptable only abandoning standard %CDM (Kristiansen & Elgaroy arxiv:110.070, Hamann et al. arxiv:110.13) - N eff > at BBN strongly disfavored (Mangano & Serpico PLB 701, 9, 011) - N eff is not specific of # s and can also depend on the epoch (new light particles, decay of dark matter particles, quintessence, ) 11

Hint #5: Indication from the solar sector A.P. PRD 3 113013 (011) Warning:! 1 indistinguishable from! 13 1

evidence of! 13 >0 eats up hint of! 1 >0 A. P., work in preparation All the rest ALL Upper limit sin θ 1 < 0.05 (90% C.L.) Bound not incompatible with gallium & reactor anomalies 13

meaningful to make a combination A. P., work in preparation All the rest All Ga+react In that case non-zero! 1 is rescued and we would have a double indication:! 13 >0 &! 1 >0 at ~ 3& level. 1

Summary! - Neutrino data show a robust evidence of non-zero! 13. - Way open to CP-violation effects in the lepton sector. - Several anomalies suggest the existence of light # s. - Each indication is problematic and needs further scrutiny. - New experiments are indispensable to settle the issue (VSBL source expts., IceCube, Planck, ) 15