Quantum Logic Spectroscopy and Precision Measurements

Similar documents
Ion trap quantum processor

Lecture 11, May 11, 2017

Quantum computation with trapped ions

Motion and motional qubit

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions

The Nobel Prize in Physics 2012

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

Ion trap quantum processor

Quantum information processing with trapped ions

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks

Which technology? Quantum processor. Cavity QED NMR. Superconducting qubits Quantum dots. Trapped atoms/ions. A. Ekert

Quantum information processing with trapped atoms

Quantum information processing with trapped ions

Quantum Computation with Neutral Atoms

Towards Quantum Computation with Trapped Ions

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

Quantum teleportation

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke

Fundamental Constants and Units

High Accuracy Strontium Ion Optical Clock

Ion traps for clocks and other metrological applications

1. Introduction. 2. New approaches

Zero-point cooling and low heating of trapped 111 Cd + ions

Trapped ion quantum control. Jonathan Home IDEAS league school,

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

Short Course in Quantum Information Lecture 8 Physical Implementations

Cooling Using the Stark Shift Gate

National Physical Laboratory, UK

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS

Atomic clocks. Clocks

Quantum computer: basics, gates, algorithms

Rydberg excited Calcium Ions for quantum interactions

ION TRAPS STATE OF THE ART QUANTUM GATES

Quantum information processing and cavity QED experiments with trapped Ca + ions

Quantum computation and quantum information

Search for temporal variations of fundamental constants

Investigating a qubit candidate: Spectroscopy on the S 1/2 to D 5/2 transition of a trapped calcium ion in a linear Paul trap

Brian King. SQuInT summer school June, Dept. Physics and Astronomy, McMaster University

Optical Clocks and Tests of Fundamental Principles

Quantum Computing with neutral atoms and artificial ions

Kenneth Brown, Georgia Tech

Ion crystallisation. computing

Cold Ions and their Applications for Quantum Computing and Frequency Standards

Stationary 87 Sr optical lattice clock at PTB ( Accuracy, Instability, and Applications)

arxiv:quant-ph/ v3 19 May 1997

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Quantum Information and Metrology with RF Traps at NIST D. J. Wineland, NIST, Boulder, CO

arxiv:quant-ph/ v1 29 Apr 2003

«Demonstration of a small programmable quantum computer with atomic qubits» Philip Rhyner, Colin Kälin

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Search for physics beyond the standard model with Atomic Clocks

Transportable optical clocks: Towards gravimetry based on the gravitational redshift

Cold Ions and their Applications for Quantum Computing and Frequency Standards

A central problem in cryptography: the key distribution problem.

Atom-based Frequency Metrology: Real World Applications

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Ion-trap quantum information processing: experimental status

Single atom laser-based clocks D. J. Wineland, NIST, Boulder. Hg + ion

Atom Quantum Sensors on ground and in space

Optical Clocks at PTB

Quantum Optics. Manipulation of «simple» quantum systems

Optical Clocks. Tanja E. Mehlstäubler. Physikalisch-Technische Bundesanstalt & Center for Quantum Engineering and Space Time Research

Titelmasterformat durch About atomic (optical) clocks Klicken bearbeiten

Quantum Metrology Optical Atomic Clocks & Many-Body Physics

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

The trapped-ion qubit tool box. Roee Ozeri

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara

Entanglement of Two Trapped-Ion Spin Qubits

Precisely Engineered Interactions between Light and Ultracold Matter

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Primary Frequency Standards at NIST. S.R. Jefferts NIST Time and Frequency Division

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Raman Sideband Cooling and Coherent Manipulation of Trapped Ions

Manipulating Single Atoms

Matter wave interferometry beyond classical limits

Optical frequency comb and precision spectroscopy. Fundamental constants. Are fundamental constants constant? Precision spectroscopy

Superconducting Resonators and Their Applications in Quantum Engineering

Quantum information processing with trapped Ca+ ions

High-Fidelity Universal Gate Set for 9 Be + Ion Qubits

Quantum Computation with Neutral Atoms Lectures 14-15

10.5 Circuit quantum electrodynamics

Niels Bohr Institute Copenhagen University. Eugene Polzik

spectroscopy of cold molecular ions

Experimental Demonstration of Spinor Slow Light

Quantum Simulation with Rydberg Atoms

Prospects for a superradiant laser

Quantum gates in rare-earth-ion doped crystals

Atom lasers. FOMO summer school 2016 Florian Schreck, University of Amsterdam MIT 1997 NIST Munich Yale 1998

Quantum computation with trapped ions and atoms

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris

Introduction to Circuit QED Lecture 2

Simultaneous cooling of axial vibrational modes in a linear ion trap

SR OPTICAL CLOCK WITH HIGH STABILITY AND ACCURACY *

Graduate Class, Atomic and Laser Physics: Rabi flopping and quantum logic gates

Laser-based precision spectroscopy and the optical frequency comb technique 1

Quantum Information Processing with Semiconductor Quantum Dots

Experimental Quantum Computing: A technology overview

Entanglement creation and characterization in a trapped-ion quantum simulator

Transcription:

Quantum Logic Spectroscopy and Precision Measurements Piet O. Schmidt PTB Braunschweig and Leibniz Universität Hannover Bad Honnef, 4. November 2009

Overview What is Quantum Metrology? Quantum Logic with Trapped Ions Designer Atoms (Innsbruck) Heisenberg Limited Spectroscopy (NIST Boulder) Quantum Logic Optical Clock (NIST Boulder/PTB Braunschweig) Direct Frequency Comb Spectroscopy (PTB Braunschweig) Other systems?

What is Quantum Metrology? Beat standard quantum limit Combine properties of similar/different systems Squeezing Entanglement Quantum Logic One of the first real application of QIP

Quantum Metrology Applications Interferometry & gravitational wave detection Quantum imaging Phase & frequency measurements Designer atoms frequency & atomic properties Quantum Logic Spectroscopy: precision spectroscopy optical clocks

Quantum Metrology Applications Interferometry & gravitational wave detection Quantum imaging Phase & frequency measurements Designer atoms frequency & atomic properties Quantum Logic Spectroscopy: precision spectroscopy optical clocks need efficient techniques to create entangled states

Why Trapped Ions? well isolated from environment long coherence times coherent control of internal and external deg. of freedom high fidelity quantum computing toolbox available near 100% internal state detection efficiency

Quantum Logic with Trapped Ions

Linear Ion Traps CE EC RF RF (radio frequency): V 0 cos(ω t t) EC (end caps): +U 0 CE (center electrodes): GND 3D harmonic trap

The Innsbruck Ion Trap d ion-electr 0.8 mm ω z 1 MHz ω r 3 MHz Innsbruck

Ion Billiard String of Mg + ions in linear Paul trap Braunschweig

Aux State detection using electron shelving detection spectroscopy/ coherent operations continuous excitation observe quantum jumps online fluorescence intensity time (s) i i Innsbruck

Aux State detection using electron shelving detection spectroscopy/ coherent operations detection efficiency: >99.85% pulsed excitation record number of detected photons per experiment and build histogramm Anzahl # of measurements der Messungen 8 7 6 5 4 3 2 1 i state occupied i state occupied D-Zustand besetzt 0 0 20 40 60 80 100 120 counts Zählrate per pro 9 ms S-Zustand besetzt Innsbruck

Quantized Motion 2-level-atom Γáω harmonic trap... coupled system............ excitation: various resonances spectroscopy: carrier and sidebands RSB: Δn = -1 CAR: Δn = 0 BSB: Δn = 1 ω n = 0 1 2 Laser detuning

Coherent State Manipulation π-pulse: carrier Rabi frequencies: CAR: BSB: Lamb-Dicke parameter: sideband time (µs) time (µs) Innsbruck

Quantum Logic Idea by: J. I. Cirac P. Zoller Collective motion of ions described by normal modes 4091

Creation of a Bell State I1I1* I1* I2I2* initial state BSB π/2 on Ion 1 RSB π on Ion 2 final state i n=1 n=0 X i n=1 n=0 I1 I2 I1 I2 I1 I2 I1 I2 i 1 i 2 0i i 1 i 2 0i+ i 1 i 2 1i i 1 i 2 0i+ i 1 i 2 0i i 1 i 2 ± i 1 i 2 also: i 1 i 2 ± i 1 i 2

1 st Example: Bell-State Spectroscopy Christian Roos, University of Innsbruck (Blatt group)

Time evolution of the Bell state i i Let ion 1 and ion 2 have different energy shifts: time ΔE Energy Measurement of phase evolution rate yields information about differential energy shift! C. F. Roos et al., Nature 443, 316 (2006)

Sources for ΔE Magnetic Fields: Zeeman Shift Electric Field Gradient: Quadrupole Shift P i D 5/2 detection 397 nm 729 nm i Problem for ion-based optical clocks S 1/2

Electric Quadrupole Shift m = -5/2-3/2-1/2 1/2 3/2 5/2 D 5/2 + + S 1/2 Electric quadrupole shift of the D 5/2 level (j=5/2): C. F. Roos et al., Nature 443, 316 (2006) Innsbruck

Solution: Designer Atoms Prepare the two-ion Bell state insensitive to linear Zeeman shift sensitive to quadrupole shift 5 MHz 10 Hz D 5/2 m = -5/2-3/2-1/2 1/2 3/2 5/2 D 5/2 m = -5/2-3/2-1/2 1/2 3/2 5/2 more generally: with m 1 +m 2 = m 3 +m 4 Quadrupole shift measurement: Measure phase evolution as a function of time C. F. Roos, quant-ph/0508148 Innsbruck

40 Ca + Quadrupole Shift Measurement electric field gradient: oscillation frequency: Δ 1 =(2π) 33.35(3) Hz C. F. Roos et al., Nature 443, 316 (2006) Innsbruck

40 Ca + Quadrupole Measurement Quadrupole shift versus electric field gradient (2nd order Zeeman effect) C. F. Roos et al., Nature 443, 316 (2006) Innsbruck

2 nd Example: Heisenberg Limited Spectroscopy Didi Leibfried, NIST Boulder (Wineland group)

Measurement Limits Classical: N independent measurements uncertainty decreases as Heisenberg limit: ΔE Δt ~ Energy N=1 N=2 N=3 Phase evolution: uncertainty decreases as Boulder Innsbruck

Creating GHZ States N qubits Encoding (Phase Gate) Encoding (Phase Gate) Decoding (Phase Gate) D. Leibfried et al., Science 304, 1476 (2004) Boulder Innsbruck

Heisenberg Limited Spectroscopy N qubits Encoding (Phase Gate) Decoding (Phase Gate) D. Leibfried et al., Science 304, 1476 (2004) Boulder Innsbruck

Results with 3 Qubits 45 % better than perfect experiment with unentangled atoms method scalable to arbitrary number of qubits D. Leibfried et al., Science 304, 1476 (2004) Boulder

Scaling up Contrast: 97% S/N Contrast: gain: 45% 84% S/N Contrast: gain: 38% 69% S/N Contrast: gain: 16% 52% S/N Contrast: gain: 3% 42% Need better gates! 0 D. Leibfried et al., Nature 438, 639 (2005) Boulder

3 rd Example: The Aluminum Ion Optical Clock (NIST Boulder/PTB Braunschweig)

Principle of Optical Clocks I(f) Laser Oscillator 500 THz fs-comb frequency feedback 10:33am State Detector Single Ion Laser ν 0

Aluminum as Optical Clock Reference Hans Dehmelt 1992 (NP 1989) Al + Features: narrow optical transition no electric quadrupole shift small black-body shift But: no accessible cooling transition 1 P 1 + 1 S 0 3 P 0 λ=167 nm (!) clock transition λ = 267.43 nm Γ 2π 8 mhz 27 Al + (I=5/2) partial level scheme

Spectroscopy of 27 Al + Use additional ion ( 9 Be + ) and quantum logic for sympathetic cooling internal state preparation internal state detection D.J. Wineland et. al., Proc. 6th Symposium on Frequency Standards and Metrology, 361 (2001)

Quantum Logic State Transfer initial state Al + spectroscopy RSB transfer pulse RSB transfer pulse detection i n=1 n=0 i n=1 n=0 Al + Be + X Al + Be + Al + Be + Al + Be + X Al + Be +

Single Pulse Rabi Spectroscopy 3 P 1 1 S 0 27 Al + Frequency Scan Time Scan Be + Al + contrast 93% coherence 5 flops P.O. Schmidt et al., Science, 309, 749 (2005) Boulder

Al + Clock Transition 1 excitation probability 0.8 0.6 0.4 0.2 0-20 -15-10 -5 0 5 10 15 20 frequency detuning (Hz) 8.4 Hz T. Rosenband et al., PRL 98, 220801 (2007) Boulder

Alternative approach: Spectroscopy of 27 Al + use additional ion ( 9 Be + ) and quantum logic for sympathetic cooling internal state preparation internal state detection D.J. Wineland et. al., Proc. 6th Symposium on Frequency Standards and Metrology, 361 (2001)

Deterministic clock state preparation probe m F =± 5/2 transitions to eliminate linear magnetic field shift conventional optical pumping is slow ( 20 s excited state lifetime!) use Be + assisted state preparation 3 P 0 1 khz / gauss 27 Al + Al CAR π-pulse π-pol. Al RSBcoolingField π-pulse on Be + independent (non σ pol. reversible) 1 S 0 m F = -5/2-3/2-1/2 +1/2 +3/2 +5/2 Applications in Ground State Cooling of Molecular Ions! Boulder

Spectroscopy of Zeeman States using Deterministic Preparation P.O. Schmidt et al., Science, 309, 749 (2005) 3 P 1 m F = -7/2-5/2-3/2-1/2 +1/2 +3/2 +5/2 +7/2 1 S 0 27 Al + Boulder

Al + Laboratory @ NIST/Boulder February 2005

Principle of Optical Clocks I(f) Laser Oscillator 500 THz fs-comb frequency feedback 10:42am State Detector Single Ion

Al + /Hg + Comparison μ-wave clock SQL Al + 100ms probe Al + : 2.3 10 17 systematic uncertainty First comparison of frequency standards at the 17 th th digit T. Rosenband et al., Science 319, 1808 (2008) Boulder

What does 10-17 mean? 1:100,000,000,000,000,000 50x better than Cs fountain clocks 1 s deviation in 3 billion years 1 st order Doppler shift: 3 nm/s or 300 μm/jahr Distance measurement earth-sun to 1/100 of the diameter of a hair 150 million kilometer 100 μm

History of Clock Uncertainties 10-12 Caesium uncertainty 10-14 10-16 10-18 H Hg + optical (ions) 1970 1980 1990 2000 2010 2020 year Ca Yb + Sr + Sr goal Hg + Hg + optical (neutral) Sr Al + @NIST Al + @PTB courtesy: T. Rosenband, NIST

The Al + Clock Project @ PTB improved clock laser improved systematics portabel Goals: more synergies with quantum logic (e.g. entangled ions, new traps) quantum sensors Geodesy clocks in space? tests of fundamental theories entangled ions

Clock Comparison e 1 hω 1 (α) g 1 hω 2 (α) e 2 g 2 α

Does α change? α/α = (-1.6± 2.3) 10-17 /year T. Rosenband et al., Science 319, 1808 (2008)

4 th Example: Direct Frequency Comb Spectroscopy using Quantum Logic (PTB Braunschweig)

Motivation Quasar absorption spectra suggest α may have changed in cosmological time More accurate laboratory spectra needed! Physics beyond the Standard Model? Goals: indirect, direct; m e /m p in molecules,

Direct Frequency Comb Spectroscopy Frequency Comb Laser Ca +, Ti +, Fe +, frequency comb emits many colors get complete level structure in one sweep absolute frequency reference can be used for many species also: Ye JILA/Boulder, Hollberg/Diddams NIST/Boulder, Eikema group Amsterdam, Hänsch MPQ and others

Quantum Logic Detection Ions initially in motional ground state spectroscopy ion: Ca + logic ion: 25 Mg + State detection Red Sideband Pulse

Status Raman laser driven Rabi oscillations after side-band cooling F=2, m F =2 F=3, m F =2 First try: Lamb-Dicke η 0.32 Limited by inefficient repumping Mg +

Quantum Logic Spectroscopy spectroscopy ion logic ion transfer state information logic ion is a sensor for spectroscopy ion spectroscopy ion controlled through logic ion combine advantages of atomic species universal technique

Other Systems: NV Color Centers Jiang et al., Science 326, 267 (2009)

Other Systems: NV Color Centers Jiang et al., Science 326, 267 (2009)

Other Systems: CQED & Molecules André et al., Nat. Phys. 2, 636 (2006)

The Team @ PTB START Program Master & PhD C. Bleuel, O. Mandel, I. Sherstov, D. Nigg P.-C. Carstens, S. Ludwig, P. Schmidt, S. Klitzing, B. Hemmerling

Strong synergies between QIP and metrology: Summary Heisenberg limited spectroscopy Designer Atoms Quantum Logic Optical Clock Direct Frequency Comb Spectroscopy Quantum enhanced metrology has a bright future!