Quantum teleportation

Size: px
Start display at page:

Download "Quantum teleportation"

Transcription

1 Quantum teleportation "Deterministic quantum teleportation with atoms", M. Riebe et al., Nature 429, 734 (2004). "Deterministic quantum teleportation of atomic qubits", M. D. Barrett et al., Nature 429, 737 (2004). Motivation 1

2 Teleportation idea (Bennett 1993) ALICE measurement in Bell basis recover input state 1 class. communication unknown input state 2 3 rotation BOB Bell state Full formal procedure 2

3 Very simple description (see Bouwmeester et al.) Particle 2 and 3 are prepared in an entangled state where one particle is always in the "opposite" state of the other. When the result of the Bell measurement between 1 and 2 is then 2 is in the "opposite" state of the unknown state of 1. Thus particle 3, being in the opposite state to 2, will be in the same state as 1. If the result of the Bell measurement is a different state, the appropriate rotation has to be applied to particle 3. Teleportation of atomic qubit states Figure from Kimble, Nature N&V 3

4 Teleportation protocol Atomare Quantenbits, Rabi-Oszillationen 4

5 Atomares Quantenbit 2-Niveau-Atom Überlagerung Qubits in 40 Ca + ion Ground state + long-lived excited state Zeeman substates of level -1/2 1/2 5

6 Zeeman structure of the S 1/2 D 5/2 transition Zeeman structure in non-zero magnetic field: : D 5/2 5/2 3/2 1/2-1/2-3/2-5/2 2-level-system 1/2 5/2 S 1/2-1/2 1/2 Optical qubit transition Superpositions of S 1/2 (m=1/2) and D 5/2 (m=5/2) forms qubit P 3/2 Manipulation by laser pulses on 729 nm transition (~ 1 ms coherence time) P 1/2 τ 1 s 729 nm D 5/2 (m=5/2)> D 3/2 qubit S 1/2 S 1/2 (m=1/2)> 6

7 Qubit dynamics D> S> Rabi oscillations 7

8 Quantum bits: superpositions Laser excitation switches continuously between on and off Measurement shows either on (bright) or off (dark) % population (a) Time of excitation (µs) Rabi oscillations cont'd. 8

9 Das zentrale Werkzeug: Rabi-Oszillationen Resonant angeregtes 2-Niveau-Atom Absorption Stimulierte Emission Wahrsch. Zeit Laser Auf der betrachteten Zeitskala ist e> ein stabiler Zustand (zerfällt nicht spontan). Die Wahrscheinlichkeit, das Atom in g> oder e> zu finden, oszilliert mit Ramsey - Methode Resonant angeregtes 2-Niveau-Atom Absorption Stimulierte Emission Wahrsch. Zeit Laser "π/2 - Puls" "π/2 - Puls" Während der Laser aus ist, entwickelt sich die Quantenphase 9

10 Ramsey - Methode Resonant angeregtes 2-Niveau-Atom Absorption Stimulierte Emission Wahrsch. Atom in e> Zeit Laser "π/2 - Puls" "π/2 - Puls" Das Ergebnis des zweiten Pulses hängt von der Quantenphase ab. Ramsey - Methode Resonant angeregtes 2-Niveau-Atom Absorption Stimulierte Emission Wahrsch. Atom in g> Zeit Laser "π/2 - Puls" "π/2 - Puls" Das Ergebnis des zweiten Pulses hängt von der Quantenphase ab. 10

11 Ramsey - Methode Resonant angeregtes 2-Niveau-Atom Absorption Stimulierte Emission Wahrsch.?? Zeit Laser "π/2 - Puls" "π/2 - Puls" Sehr kleine Wechselwirkungen können die Quantenphase verändern. Ramsey - Methode Resonant angeregtes 2-Niveau-Atom Absorption Stimulierte Emission Wahrsch.?? Zeit Messung winziger Phasenverschiebungen 11

12 Ionenfalle und Bewegungs-Quantenbit Classic Paul trap endcap electrode z lens fluorescence detection ring electrode x y endcap electrode cooling beam 12

13 Ion storage Ion confinement requires a focusing force in 3 dimensions binding force, that is Quadrupole potential (saddle potential) Paul trap: (Penning trap: axial magn. field) Equation of motion in a Paul trap: This is a special case of the MATHIEU EQUATION (stability diagram ) Intuitive picture: time-averaged kinetic energy of driven motion = effective potential in which the ion oscillates freely with frequency Full motion = secular motion at with superimposed micromotion at (Intuitive picture works when ) Jan Huwer Doktorarbeit 13

14 14

15 Trapping ions Paul trap mechanism Trapped charged particles Linear trap ~1 mm size Ion strings Laser cooling Localization << λ Laser Coulomb repulsion Interaction by common modes of motion Ion trajectory in a Paul trap 1D-solution of Mathieu equation single Al dust particle in trap position in trap secular motion at ω time micromotion at ξ Wuerker, Shelton, Langmuir, J. Appl. Phys. 30, 342 (1959) Secular motion = harmonic oscillator with frequency ω 15

16 Legacy : circular trap for single ions Miniature Paul trap Single atoms (Ba + ) in in trap 4.7 µm Ring Ø ~ 1 mm RF ~25 MHz, ~ 500V RF secular frequency ~ 1 MHz Linear ion trap evolution Paul mass filter Innsbruck Los Alamos München Boulder, Mainz, Aarhus Boulder 16

17 Innsbruck linear ion trap (2000) 1.0 mm 6 mm ω z MHz ω x, y MHz State-of-the-art linear Paul trap ( 40 Ca+ ions) R. Blatt ~100 µm 17

18 Ion strings in a linear Paul trap H.C. Nägerl et al., Appl. Phys. B 66, 603 (1998). First observations: Raizen et al., PRA 45, 6493 (1992), Waki et al., PRL 68, 2007 (1992). Quantized motion... 2> 1> n=0> 1> 0> motional qubit N ions 3 N oscillators 18

19 Motional sidebands 2-level-atom harmonic trap coupled system & transitions e... D 5/2 g Ω Γ ω { 2 1 n = 0 S 1/2 ω n> = 0> 1> 2> spectroscopy: carrier and sidebands n = 0 n = -1 n = 1 Laser detuning Rabi frequencies Carrier: Red SB: Blue SB: Ω Ω η n Ω η n +1 η = k <0 x 2 0> 1/2 «1 Excitation spectrum of the S 1/2 D 5/2 transition ω ax = 1.0 MHz ω rad = 5.0 MHz (only one Zeeman component) 19

20 Qubits in a single 40 Ca + ion internal qubit D 5/2 1> motional qubit... "computational subspace" D,0> D,1> 729 nm S 1/2 0> 2> 1> n=0> ω 1> 0> S,0> S,1> COHERENT LASER MANIPULATION (Rabi oscillations) S,n> D,n> : carrier transition ( = 0) S,n> D,n±1> : sideband transition ( = ±ω) First single-ion quantum gate: Monroe et al. (Wineland), PRL 75, 4714 (1995). Qubit rotations in computational subspace D,0> D,1> Laser-driven transitions are described by unitary operators (if Ω >> Γ D, Γ Laser ) : carrier: θ = Ω t C iφ + iφ ( ) θ R( θ, φ) = exp i 2 e σ + e σ S,0> S,1> red sideband: θ = Ω t SB iφ iφ ( ) θ + R1 ( θ, φ) = exp i 2 e σ a + e σ a computational subspace (levels with n>1 ignored) blue sideband: θ = Ω t + θ iφ + iφ R1 ( θ, φ) = exp i 2 ( e σ a + e σ a) SB where Example: excitation on blue sideband with 20

21 2 Ionen und quantenlogisches Gatter 2 ions + motion = 3 qubits With several ions, the motional qubits are shared motional qubit acts as the "bus" between the ions vibrational modes computational subspace: 2 ions, 1 mode D,D,1> D,D,0> laser on ion 2 laser on ion 1 D,S,1> D,S,0> S,D,1> S,D,0> laser on ion 1 laser on ion 2 S,S,1> S,S,0> 21

22 Excitation spectrum of two ions Quantum gate proposal(s) controlled NOT ε 1 ε 2 ε1 ε1 ε control bit bit target bit bit Further gate proposals: Cirac & Zoller Mølmer & Sørensen, Milburn Jonathan & Plenio & Knight Geometric phases 22

23 Quantum gate proposal(s) phase gate control bit bit target bit bit Further gate proposals: Cirac & Zoller Mølmer & Sørensen, Milburn Jonathan & Plenio & Knight Geometric phases Details of C-Z gate operation (Phase gate) 23

24 Desired result, schematic S S S D D S D D S S S D D D D S control target Cirac-Zoller two-ion controlled-not gate ε1 ε 2 Preparation Detection S> = bright D> = dark ion 1 motion ion 2 S, D 0 0 S, D SWAP CNOT SWAP -1 control qubit "bus" qubit target qubit 24

25 ion 1 motion ion 2 Cirac-Zoller two-ion controlled-not operation S S Ion 1,, D D pulse sequence Ion 2 SWAP SWAP blue π 0 c π/2 0 blue π/2 ½ 0 CNOT Phase blue π π/2 blue π/2 ½ 0 blue π π/2 c π/2 π blue π π control bit bit target bit bit CNOT gate = Phase gate enclosed by π/2- pulses Phase gate implemented by composite pulses Photonenrückstoß und Laser-Kühlung 25

26 26

27 = 27

28 28

29 Coherent state manipulation D,0 D,1 carrier S,0 S,1 carrier and sideband Rabi oscillations with Rabi frequencies sideband Lamb-Dicke parameter Each point : average of individual measurements, preparation coherent rotation state detection 29

30 e,0> e,1> e,2> g,0> g,1> g,2> Laser cooling of trapped atoms Photon recoil: p> p +ħk laser +ħk spont > laser spont. In trap: transitions between energy eigenstates n> n'> atom motion Lamb-Dicke regime: only n> n±1> Cooling principle: cooling transitions more probable than heating transitions Final temperature: equilibrium of heating and cooling 30

31 Doppler and sideband cooling Γ > Ω trap Doppler cooling Ω Absorption Γ/2 Γ < Ω trap Absorption ν laser ν atom ν Sideband cooling Ω Γ leads into ground state! Ground state cooling with Γ > Ω? Narrow resonances through quantum interference in multilevel system ν laser ν atom ν Methoden 31

32 Ion trap setup RF linear trap: ω 0.7-2Mhz ω 5MHz Longitudinal confinement Radial confinement: oscillating saddle potential Double trap apparatus 32

33 Innsbruck linear ion trap GND RF RF 5mm GND +HV +HV ω axial ω radial MHz 5 MHz Two 2-level systems 1> 0> 1> 0> Laser pulses for coherent manipulation etc cw laser τ coh >> τ gate I ν t AOM ν+, Φ, Ampl I Φ 2 Φ 1 Φ 3 to trap t (That's the difficult bit!), Φ, Ampl RF AOM AOM = acousto-optical acousto-opticalmodulator, based basedon on Bragg Braggdiffraction "Ampl" "Ampl" = Amplitude, Amplitude, includes includesswitching switchingon/off 33

34 Addressing of ions in a string Well-focussed laser beam beam steering with electro-optical deflector addressing waist ~ mm < 1/400 intensity on neighbouring ion first demonstration: H.C. Nägerl et al., Phys. Rev. A 60, 145 (1999) Discrimination of qubit states State detection by photon scattering on S 1/2 to P 1/2 transition at 397 nm P 3/2 τ 8 ns Photons observed : S 1/2 = S> No photons : D 5/2 = D> P 1/2 397 nm 866 nm τ 1 s D 5/2 D> D 3/2 qubit Detector S 1/2 S 1/2 S> 34

35 State detection: shelving P monitor S D (Shelving level can, but need not be the same as qubit state) Anzahl # of measurements der Messungen Histogram of counts in 9 ms Poisson distribution N ± N ½ discrimination efficiency 99.85% D-Zustand D state occupied besetzt S S-Zustand state occupied besetzt Zählrate pro 9 ms counts in 9 ms H. Dehmelt 1975 Quantum state discrimination with 2 ions Individual ion detection on CCD camera Two-ion histogram (1000 experiments) 5µm SS> DS> SS> region 1 region 2 SD> DS> DD> SD> DD> quantum state populations p SS,p SD,p DS,p DD 35

36 Gate pulses (I) : SWAP Swap information from internal into motional qubit and back naive idea : π-pulse on blue SB (works if initial state is not S,1>) composite SWAP (from NMR) computational subspace D,0 S,0 π D,1 S,1 Ω Rabi ~η 1 out of CS! π 2 Ω Rabi ~η 2 computational subspace D,0 π S,0 π D,1 S,1 4π A.M. Childs et al., Phys. Rev. A 63, (2001) 3-step composite SWAP operation π on D,1 S, 2 π on D, 0 S,1 I. Chuang et al., Innsbruck (2002) 36

37 Hiding qubits Detect quantum state of one ion only (needed for teleportation) Protect neighbours from addressing errors D 5/2 D 5/2 π S 1/2 S 1/2 ion #1 ion #2 D D D 5/2 D 5/2 S 1/2 S 1/2 ion #1 ion #2 superposition state of ion #2 protected Teleportation eines atomaren Zustands 37

38 38

39 Teleportation protocol Teleportation in Innsbruck (Riebe et al.) "Hide": protect ion from interaction with laser pulses (manipulation or measurement) on the other ions 39

40 Quantum teleportation with atoms: result 83 % class.: 67 % no cond. op.: 50 % M. Riebe et al., Nature 429, 734 (2004) 40

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

Quantum information processing with trapped atoms

Quantum information processing with trapped atoms Quantum information processing with trapped atoms Introduction Fundamentals: ion iontraps, quantum bits, bits, quantum gates Implementations: 2-qubit gates, teleportation, More recent, more advanced, Jürgen

More information

Quantum computation with trapped ions

Quantum computation with trapped ions Abstract Since the first preparation of a single trapped, laser-cooled ion by Neuhauser et el. in 198, a continuously increasing degree of control over the of single ions has been achieved, such that what

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions Rainer Blatt Institut für Experimentalphysik, Universität Innsbruck, Institut für Quantenoptik und Quanteninformation, Österreichische

More information

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions Quantum Information Processing with Trapped Ions Overview: Experimental implementation of quantum information processing with trapped ions 1. Implementation concepts of QIP with trapped ions 2. Quantum

More information

Towards Quantum Computation with Trapped Ions

Towards Quantum Computation with Trapped Ions Towards Quantum Computation with Trapped Ions Ion traps for quantum computation Ion motion in linear traps Nonclassical states of motion, decoherence times Addressing individual ions Sideband cooling of

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion ion interaction induced by laser pulses that excite the ion`s

More information

Quantum information processing with trapped ions

Quantum information processing with trapped ions Quantum information processing with trapped ions Courtesy of Timo Koerber Institut für Experimentalphysik Universität Innsbruck 1. Basic experimental techniques 2. Two-particle entanglement 3. Multi-particle

More information

Quantum Logic Spectroscopy and Precision Measurements

Quantum Logic Spectroscopy and Precision Measurements Quantum Logic Spectroscopy and Precision Measurements Piet O. Schmidt PTB Braunschweig and Leibniz Universität Hannover Bad Honnef, 4. November 2009 Overview What is Quantum Metrology? Quantum Logic with

More information

Quantum computer: basics, gates, algorithms

Quantum computer: basics, gates, algorithms Quantum computer: basics, gates, algorithms single qubit gate various two qubit gates baby-steps shown so far with ion quantum processors and how to reach a scalable device in future Ulm, Germany: 40 Ca

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

ION TRAPS STATE OF THE ART QUANTUM GATES

ION TRAPS STATE OF THE ART QUANTUM GATES ION TRAPS STATE OF THE ART QUANTUM GATES Silvio Marx & Tristan Petit ION TRAPS STATE OF THE ART QUANTUM GATES I. Fault-tolerant computing & the Mølmer- Sørensen gate with ion traps II. Quantum Toffoli

More information

Quantum information processing and cavity QED experiments with trapped Ca + ions

Quantum information processing and cavity QED experiments with trapped Ca + ions Quantum information processing and cavity QED experiments with trapped Ca + ions S. Gulde, H. Häffner, M. Riebe, G. Lancaster, A. Mundt, A. Kreuter, C. Russo, C. Becher, J. Eschner, F. Schmidt-Kaler, I.

More information

Cooling Using the Stark Shift Gate

Cooling Using the Stark Shift Gate Imperial College London Cooling Using the Stark Shift Gate M.B. Plenio (Imperial) A. Retzker (Imperial) Maria Laach 7/3/007 Department of Physics and Institute for Mathematical Sciences Imperial College

More information

Cold Ions and their Applications for Quantum Computing and Frequency Standards

Cold Ions and their Applications for Quantum Computing and Frequency Standards Cold Ions and their Applications for Quantum Computing and Frequency Standards Trapping Ions Cooling Ions Superposition and Entanglement Ferdinand Schmidt-Kaler Institute for Quantum Information Processing

More information

Quantum information processing with trapped ions

Quantum information processing with trapped ions Quantum information processing with trapped ions Dietrich Leibfried Time and Frequency Division National Institute of Standards and Technology Boulder, CO USA The remaining QIP challenge DiVincenzo requirements:

More information

Which technology? Quantum processor. Cavity QED NMR. Superconducting qubits Quantum dots. Trapped atoms/ions. A. Ekert

Which technology? Quantum processor. Cavity QED NMR. Superconducting qubits Quantum dots. Trapped atoms/ions. A. Ekert Which technology? 000 001 010 011 Quantum processor 100 011 110 011 Cavity QED NMR Superconducting qubits Quantum dots Trapped atoms/ions A. Ekert Which technology? 000 001 010 011 Quantum processor 100

More information

arxiv:quant-ph/ v3 19 May 1997

arxiv:quant-ph/ v3 19 May 1997 Correcting the effects of spontaneous emission on cold-trapped ions C. D Helon and G.J. Milburn Department of Physics University of Queensland St Lucia 407 Australia arxiv:quant-ph/9610031 v3 19 May 1997

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018 CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Kevin Gui Scribe: Kevin Gui Lecture 06: Trapped Ion Quantum Computing October 8, 2018 1 Introduction Trapped ion is one of the physical

More information

The Nobel Prize in Physics 2012

The Nobel Prize in Physics 2012 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado

More information

Rydberg excited Calcium Ions for quantum interactions

Rydberg excited Calcium Ions for quantum interactions Warsaw 08.03.2012 Rydberg excited Calcium Ions for quantum interactions Innsbruck Mainz Nottingham Igor Lesanovsky Outline 1. The R-ION consortium Who are we? 2. Physics Goals What State are of we the

More information

Ion crystallisation. computing

Ion crystallisation. computing Ion crystallisation and application to quantum computing Cooling with incrased laser power: (a) reduced Doppler width (b) Kink in the line profile (b) P=0.2 mw P=0.5 mw Excitation spectra of an ion cloud

More information

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS 1 QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS C. F. ROOS, M. CHWALLA, T. MONZ, P. SCHINDLER, K. KIM, M. RIEBE, and R. BLATT Institut für Experimentalphysik, Universität Innsbruck,

More information

Trapped ions, entanglement, and quantum computing*

Trapped ions, entanglement, and quantum computing* Trapped ions, entanglement, and quantum computing* C. J. Myatt, B. E. King, D. Kielpinski, D. Leibfriedt, Q. A. Turchette, C. S. Wood, W. M. Itano, C. Monroe, and D. J. Wineland Time and Frequency Division,

More information

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013 Ground state cooling via Sideband cooling Fabian Flassig TUM June 26th, 2013 Motivation Gain ultimate control over all relevant degrees of freedom Necessary for constant atomic transition frequencies Do

More information

Zero-point cooling and low heating of trapped 111 Cd + ions

Zero-point cooling and low heating of trapped 111 Cd + ions PHYSICAL REVIEW A 70, 043408 (2004) Zero-point cooling and low heating of trapped 111 Cd + ions L. Deslauriers, P. C. Haljan, P. J. Lee, K-A. Brickman, B. B. Blinov, M. J. Madsen, and C. Monroe FOCUS Center,

More information

Investigating a qubit candidate: Spectroscopy on the S 1/2 to D 5/2 transition of a trapped calcium ion in a linear Paul trap

Investigating a qubit candidate: Spectroscopy on the S 1/2 to D 5/2 transition of a trapped calcium ion in a linear Paul trap Investigating a qubit candidate: Spectroscopy on the S 1/2 to D 5/2 transition of a trapped calcium ion in a linear Paul trap H. C. Nägerl,* Ch. Roos, D. Leibfried, H. Rohde, G. Thalhammer, J. Eschner,

More information

«Demonstration of a small programmable quantum computer with atomic qubits» Philip Rhyner, Colin Kälin

«Demonstration of a small programmable quantum computer with atomic qubits» Philip Rhyner, Colin Kälin «Demonstration of a small programmable quantum computer» Philip Rhyner, Colin Kälin 14.05.2018 Introduction PART 1: Trapped ion quantum computers Ion trap States, Initialization and Measurement One- and

More information

Quantum information processing with trapped Ca+ ions

Quantum information processing with trapped Ca+ ions r[ THE ROYAL 10.1098/rsta.2003.1206 *Je. SOCIETY Quantum information processing with trapped Ca+ ions BY S. GULDE1, H. HAFFNER1, M. RIEBE1, G. LANCASTER1, C. BECHER1, J. ESCHNER1, F. SCHMIDT-KALER1, I.

More information

arxiv: v1 [quant-ph] 14 Aug 2013

arxiv: v1 [quant-ph] 14 Aug 2013 A quantum information processor with trapped ions arxiv:1308.3096v1 [quant-ph] 14 Aug 2013 Contents Philipp Schindler 1, Daniel Nigg 1, Thomas Monz 1, Julio T. Barreiro 1, Esteban Martinez 1, Shannon X.

More information

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0 (two-qubit gate): tools: optical dipole force P 3/2 P 1/2 F = -1.5 F n=3 n=3 n=0 S 1/2 n=0 optical dipole force is state dependent tools: optical dipole force (e.g two qubits) ω 2 k1 d ω 1 optical dipole

More information

A central problem in cryptography: the key distribution problem.

A central problem in cryptography: the key distribution problem. Scientific American 314, 48-55 (2016) A central problem in cryptography: the key distribution problem. Mathematics solution: public key cryptography. Public-key cryptography relies on the computational

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state. Different ion-qubit choises - One electron in the valence shell; Alkali like 2 S 1/2 ground state. Electronic levels Structure n 2 P 3/2 n 2 P n 2 P 1/2 w/o D Be + Mg + Zn + Cd + 313 nm 280 nm 206 nm 226

More information

Physics of and in Ion Traps

Physics of and in Ion Traps Physics of and in Ion Traps Proposed Topics: TRIUMF, Vancouver June 01 Basics of Paul- and Penning-traps (equ. of motion, trap geometries, influence of trap imperfections,) Ion detection and cooling (Buffer

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Raman Sideband Cooling and Coherent Manipulation of Trapped Ions

Raman Sideband Cooling and Coherent Manipulation of Trapped Ions Raman Sideband Cooling and Coherent Manipulation of Trapped Ions A thesis submitted for the degree of Doctor of Philosophy 0.7 0.6 Fraction of ions shelved 0.5 0.4 0.3 0.2 1000 800 600 400 200 0 200 400

More information

Ion-trap quantum information processing: experimental status

Ion-trap quantum information processing: experimental status Ion-trap quantum information processing: experimental status Author Kielpinski, David Published 2008 Journal Title Frontiers of Physics in China DOI https://doi.org/10.1007/s11467-008-0034-y Copyright

More information

Atom trifft Photon. Rydberg blockade. July 10th 2013 Michael Rips

Atom trifft Photon. Rydberg blockade. July 10th 2013 Michael Rips Atom trifft Photon Rydberg blockade Michael Rips 1. Introduction Atom in Rydberg state Highly excited principal quantum number n up to 500 Diameter of atom can reach ~1μm Long life time (~µs ~ns for low

More information

Quantum computation with trapped ions and atoms

Quantum computation with trapped ions and atoms Quantum computation with trapped ions and atoms F. Rohde (1), J. Eschner (1,2) (1) ICFO Institut de Ciències Fotòniques, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona), Spain (2) Experimentalphysik,

More information

Implementation of the Deutsch- Josza Algorithm on an ion-trap quantum computer

Implementation of the Deutsch- Josza Algorithm on an ion-trap quantum computer Implementation o the Deutsch- Josza Algorithm on an ion-trap quantum computer S. Gulde et Al. Przemyslaw Kotara HU Berlin (Ger) Tijl Schmelzer - U Ghent (Be) Outline Theory: Problem/Motivation The algorithm

More information

Trapped ion quantum control. Jonathan Home IDEAS league school,

Trapped ion quantum control. Jonathan Home  IDEAS league school, Trapped ion quantum control Jonathan Home www.tiqi.ethz.ch IDEAS league school, 11.09.2015 Lectures Ken Brown, IDEAS League school, Sweden 1) Basics (review). Measurement, Preparation, Coherent control

More information

The trapped-ion qubit tool box. Roee Ozeri

The trapped-ion qubit tool box. Roee Ozeri The trapped-ion qubit tool box Contemporary Physics, 5, 531-550 (011) Roee Ozeri Weizmann Institute of Science Rehovot, 76100, Israel ozeri@weizmann.ac.il Physical Implementation of a quantum computer

More information

Requirements for scaleable QIP

Requirements for scaleable QIP p. 1/25 Requirements for scaleable QIP These requirements were presented in a very influential paper by David Divincenzo, and are widely used to determine if a particular physical system could potentially

More information

arxiv:quant-ph/ v1 29 Apr 2003

arxiv:quant-ph/ v1 29 Apr 2003 Atomic Qubit Manipulations with an Electro-Optic Modulator P. J. Lee, B. B. Blinov, K. Brickman, L. Deslauriers, M. J. Madsen, R. arxiv:quant-ph/0304188v1 29 Apr 2003 Miller, D. L. Moehring, D. Stick,

More information

Kenneth Brown, Georgia Tech

Kenneth Brown, Georgia Tech Kenneth Brown, Georgia Tech Choice of Bits 100 BC 1949 AD 1949 AD 1822 (1991) AD 2013 AD Hearing Aid Images from www.hearingaidmuseum.com Choices of Qubits Waterloo Bristol Wisconsin NMR Photons Neutral

More information

Graduate Class, Atomic and Laser Physics: Rabi flopping and quantum logic gates

Graduate Class, Atomic and Laser Physics: Rabi flopping and quantum logic gates Graduate Class, Atomic and Laser Physics: Rabi flopping and quantum logic gates Prof Andrew Steane April 17, 2008 Weeks 1 3 Trinity term. The 1st class will be introductory. To prepare for it, please do

More information

Brian King. SQuInT summer school June, Dept. Physics and Astronomy, McMaster University

Brian King. SQuInT summer school June, Dept. Physics and Astronomy, McMaster University Ion Traps for Quantum Computing Ann Arbor Garching Innsbruck Boulder SQuInT summer school June, 2003 Brian King Dept. Physics and Astronomy, McMaster University http://physserv.mcmaster.ca/~kingb/king_b_h.html

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

MITOCW watch?v=ljoupmi--5c

MITOCW watch?v=ljoupmi--5c MITOCW watch?v=ljoupmi--5c The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

High-Fidelity Universal Gate Set for 9 Be + Ion Qubits

High-Fidelity Universal Gate Set for 9 Be + Ion Qubits High-Fidelity Universal Gate Set for 9 Be + Ion Qubits J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, and D. J. Wineland National Institute

More information

Titelmasterformat durch About atomic (optical) clocks Klicken bearbeiten

Titelmasterformat durch About atomic (optical) clocks Klicken bearbeiten Titelmasterformat durch About atomic (optical) clocks Klicken bearbeiten Christian Lisdat Goslar 12.02.2013 Gesetz über die Einheiten im Messwesen und die Zeitbestimmung Why clocks? 6 Physikalisch-Technische

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Computational Study of Vibrational Qubits in Anharmonic Linear Ion Traps

Computational Study of Vibrational Qubits in Anharmonic Linear Ion Traps Marquette University e-publications@marquette Dissertations (29 -) Dissertations, Theses, and Professional Projects Computational Study of Vibrational Qubits in Anharmonic Linear Ion Traps Lei Wang Marquette

More information

Controlled Coherent Excitations in a Single. Cadmium Ion with an Ultrafast Laser

Controlled Coherent Excitations in a Single. Cadmium Ion with an Ultrafast Laser Controlled Coherent Excitations in a Single Cadmium Ion with an Ultrafast Laser by Rudolph Nicolas Kohn Jr. A senior honors thesis submitted to the Department of Physics of the University of Michigan College

More information

Quantum gates in rare-earth-ion doped crystals

Quantum gates in rare-earth-ion doped crystals Quantum gates in rare-earth-ion doped crystals Atia Amari, Brian Julsgaard Stefan Kröll, Lars Rippe Andreas Walther, Yan Ying Knut och Alice Wallenbergs Stiftelse Outline Rare-earth-ion doped crystals

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Quantum Dense Coding and Quantum Teleportation

Quantum Dense Coding and Quantum Teleportation Lecture Note 3 Quantum Dense Coding and Quantum Teleportation Jian-Wei Pan Bell states maximally entangled states: ˆ Φ Ψ Φ x σ Dense Coding Theory: [C.. Bennett & S. J. Wiesner, Phys. Rev. Lett. 69, 88

More information

Entanglement creation and characterization in a trapped-ion quantum simulator

Entanglement creation and characterization in a trapped-ion quantum simulator Time Entanglement creation and characterization in a trapped-ion quantum simulator Christian Roos Institute for Quantum Optics and Quantum Information Innsbruck, Austria Outline: Highly entangled state

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Optical Clocks and Tests of Fundamental Principles

Optical Clocks and Tests of Fundamental Principles Les Houches, Ultracold Atoms and Precision Measurements 2014 Optical Clocks and Tests of Fundamental Principles Ekkehard Peik Physikalisch-Technische Bundesanstalt Time and Frequency Department Braunschweig,

More information

Entanglement of Two Trapped-Ion Spin Qubits

Entanglement of Two Trapped-Ion Spin Qubits Entanglement of Two Trapped-Ion Spin Qubits A thesis submitted for the degree of Doctor of Philosophy Jonathan Home Hilary Term 26 Linacre College Oxford Abstract Entanglement of two trapped-ion spin qubits.

More information

example: e.g. electron spin in a field: on the Bloch sphere: this is a rotation around the equator with Larmor precession frequency ω

example: e.g. electron spin in a field: on the Bloch sphere: this is a rotation around the equator with Larmor precession frequency ω Dynamics of a Quantum System: QM postulate: The time evolution of a state ψ> of a closed quantum system is described by the Schrödinger equation where H is the hermitian operator known as the Hamiltonian

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Europe PMC Funders Group Author Manuscript Nat Photonics. Author manuscript; available in PMC 2013 September 01.

Europe PMC Funders Group Author Manuscript Nat Photonics. Author manuscript; available in PMC 2013 September 01. Europe PMC Funders Group Author Manuscript Published in final edited form as: Nat Photonics. 2013 March ; 7(3): 219 222. doi:10.1038/nphoton.2012.358. Quantum-state transfer from an ion to a photon A.

More information

High-fidelity simulations of ion trajectories in miniature ion traps using the boundary-element method

High-fidelity simulations of ion trajectories in miniature ion traps using the boundary-element method High-fidelity simulations of ion trajectories in miniature ion traps using the boundary-element method Boris Brkić,* Stephen Taylor, Jason F. Ralph, and Neil France Department of Electrical Engineering

More information

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41 Supplementary Figure γ 4 Δ+δe Γ34 Γ43 γ 3 Δ Ω3,4 Pump Ω3,4, Ω3 Γ3 Γ3 Γ4 Γ4 Γ Γ Supplementary Figure Schematic picture of theoretical model: The picture shows a schematic representation of the theoretical

More information

High Accuracy Strontium Ion Optical Clock

High Accuracy Strontium Ion Optical Clock High Accuracy Strontium Ion Optical Clock Helen Margolis, Geoff Barwood, Hugh Klein, Guilong Huang, Stephen Lea, Krzysztof Szymaniec and Patrick Gill T&F Club 15 th April 2005 Outline Optical frequency

More information

From trapped ions to macroscopic quantum systems

From trapped ions to macroscopic quantum systems 7th International Summer School of the SFB/TRR21 "Control of Quantum Correlations in Tailored Matter 21-13 July 2014 From trapped ions to macroscopic quantum systems Peter Rabl Yesterday... Trapped ions:

More information

Simultaneous cooling of axial vibrational modes in a linear ion trap

Simultaneous cooling of axial vibrational modes in a linear ion trap Simultaneous cooling of axial vibrational modes in a linear ion trap Christof Wunderlich* National University of Ireland, Maynooth, Maynooth Co. Kildare, Ireland Giovanna Morigi Abteilung Quantenphysik,

More information

Memory-built-in quantum teleportation with photonic and

Memory-built-in quantum teleportation with photonic and Memory-built-in quantum teleportation with photonic and atomic qubits Yu-Ao Chen,2, Shuai Chen, Zhen-Sheng Yuan,2, Bo Zhao, Chih-Sung Chuu, Jörg Schmiedmayer 3 & Jian-Wei Pan,2 Physikalisches Institut,

More information

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22 Quantum Mechanica Peter van der Straten Universiteit Utrecht Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 1 / 22 Matrix methode Peter van der Straten (Atom Optics) Quantum Mechanica

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

Quantum computation with trapped ions

Quantum computation with trapped ions Quantum computation with trapped ions Jürgen Eschner ICFO - Institut de Ciencies Fotoniques, 08860 Castelldefels (Barcelona), Spain Summary. The development, status, and challenges of ion trap quantum

More information

Demonstration of a Fundamental Quantum Logic Gate

Demonstration of a Fundamental Quantum Logic Gate VOLUME 75, NUMBER 5 PH YS ICAL REVIEW LETTERS 18 DECEMBER 1995 Demonstration of a Fundamental Quantum Logic Gate C. Monroe, D. M. Meekhof, B.E. King, W. M. Itano, and D. J. Wineland National Institute

More information

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas Raman-Induced Oscillation Between an Atomic and Molecular Gas Dan Heinzen Changhyun Ryu, Emek Yesilada, Xu Du, Shoupu Wan Dept. of Physics, University of Texas at Austin Support: NSF, R.A. Welch Foundation,

More information

arxiv: v2 [quant-ph] 9 Jan 2009

arxiv: v2 [quant-ph] 9 Jan 2009 Large Scale Quantum Computation in an Anharmonic Linear Ion Trap G.-D. Lin 1, S.-L. Zhu 2,1, R. Islam 3, K. Kim 3, M.-S. Chang 3, S. Korenblit 3, C. Monroe 3, and L.-M. Duan 1 1 FOCUS Center and MCTP,

More information

Quantum teleportation with atoms: quantum process tomography

Quantum teleportation with atoms: quantum process tomography Quantum teleportation with atoms: quantum process tomography M Riebe 1, M Chwalla 1, J Benhelm 1, H Häffner 1,, W Hänsel 1, C F Roos 1, and R Blatt 1, 1 Institut für Experimental Physik, Universität Innsbruck,

More information

arxiv:atom-ph/ v1 15 Mar 1996

arxiv:atom-ph/ v1 15 Mar 1996 Quantum Reservoir Engineering J.F. Poyatos, J.I. Cirac, and P. Zoller Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25, A 6020 Innsbruck, Austria. arxiv:atom-ph/9603002v1 15

More information

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave spectroscopy for hyperfine structure t measurements Energy of a hyperfine state Hyperfine coupling constants: A:

More information

arxiv:quant-ph/ v2 22 Nov 2005

arxiv:quant-ph/ v2 22 Nov 2005 High fidelity simulations of ion trajectories in miniature ion traps using the boundary-element method Boris Brkić, Stephen Taylor, Jason F. Ralph, and Neil France Department of Electrical Engineering

More information

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Cooperative atom-light interaction in a blockaded Rydberg ensemble Cooperative atom-light interaction in a blockaded Rydberg ensemble α 1 Jonathan Pritchard University of Durham, UK Overview 1. Cooperative optical non-linearity due to dipole-dipole interactions 2. Observation

More information

Ultracold atoms and molecules

Ultracold atoms and molecules Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop s.knoop@vu.nl VU, June 014 1 Ultracold atoms laser cooling evaporative cooling BEC Bose-Einstein condensation atom trap: magnetic

More information

arxiv: v1 [quant-ph] 25 Sep 2008

arxiv: v1 [quant-ph] 25 Sep 2008 Quantum computing with trapped ions H. Häffner a,b,c,d C. F. Roos a,b R. Blatt a,b arxiv:0809.4368v1 [quant-ph] 25 Sep 2008 a Institut für Quantenoptik und Quanteninformation, Österreichische Akademie

More information

Physics of Quantum Computation

Physics of Quantum Computation Physics of Quantum Computation Dr. Javier Cerrillo Sommersemester 016, Technische Universität Berlin Contents 1 Prelude: Quantum teleportation 9 1.1 Description of the protocol..............................

More information

arxiv:quant-ph/ v1 16 Mar 2007

arxiv:quant-ph/ v1 16 Mar 2007 Deterministic loading of individual atoms to a high-finesse optical cavity Kevin M. Fortier, Soo Y. Kim, Michael J. Gibbons, Peyman Ahmadi, and Michael S. Chapman 1 1 School of Physics, Georgia Institute

More information

arxiv:quant-ph/ v2 26 Jan 1999

arxiv:quant-ph/ v2 26 Jan 1999 Quantum computation with ions in thermal motion Anders Sørensen and Klaus Mølmer Institute of Physics and Astronomy, University of Aarhus DK-8 Århus C arxiv:quant-ph/9839v 6 Jan 999 We propose an implementation

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

SYMPATHETIC HEATING AND COOLING OF TRAPPED ATOMIC AND MOLECULAR IONS

SYMPATHETIC HEATING AND COOLING OF TRAPPED ATOMIC AND MOLECULAR IONS SYMPATHETIC HEATING AND COOLING OF TRAPPED ATOMIC AND MOLECULAR IONS A Thesis Presented to The Academic Faculty by Craig R. Clark In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

arxiv: v1 [quant-ph] 14 Mar 2014

arxiv: v1 [quant-ph] 14 Mar 2014 Modular Entanglement of Atomic Qubits using both Photons and Phonons D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe Joint Quantum Institute, University of Maryland

More information