Towards Quantum Computation with Trapped Ions

Size: px
Start display at page:

Download "Towards Quantum Computation with Trapped Ions"

Transcription

1 Towards Quantum Computation with Trapped Ions Ion traps for quantum computation Ion motion in linear traps Nonclassical states of motion, decoherence times Addressing individual ions Sideband cooling of the common motion Heating and cooling of an ion string Entanglement with trapped ions Cavity QED with a single ion R. Blatt, Universität Innsbruck, Institut für Experimentalphysik AG Quantenoptik und Spektroskopie

2 Why Quantum Computers? applications in physics and mathematics factorization of large numbers (P. Shor, 1994) can be achieved much faster on a quantum computer than with a classical computer factorization of number with L digits: classical computer: ~exp(l 1/3 ), quantum computer: ~ L 2 fast database search (L. Grover, 1997) search data base with N entries: classical computer: O(N), quantum computer: O(N 1/2 ) simulation of Schrödinger equations spectroscopy: quantum computer as atomic state synthesizer D. M. Meekhof et al., Phys. Rev. Lett. 76, 1796 (1996) quantum physics with information guided eye

3 Computation is is a physical process input physical object set computation physical process shift output physical object read Classical Computer - bits, registers - gates - classical processes (switches), dissipative Quantum Computer - qubits, quantum registers - quantum gates - coherent processes - preparation and manipulation of entangled states

4 Quantum bits and quantum registers classical bit: physical object in state 0 or 1 register: bit rows quantum bit (qubit): quantum register: superposition of two orthogonal quantum states ψ = c c1 L 2-level atoms, 2 L quantum states 1 2 L states correspond to numbers 0,..., 2 L most general state of the register is the superposition ψ = c c c c (binary) = c c c 7 7 (decimal)

5 A universal quantum gate: CNOT gate C-NOT: Controlled-NOT gate (XOR) CN : ε 1 ε 2 ε 1 ε 1 ε 2 addition modulo together with single qubit rotations is UNIVERSAL control bit target bit problem: physical implementation with - coherence during computation - state measurement with 100% efficiency - realization of n-qubit gates

6 General scheme of of a quantum computation quantum F (x) processor F(000) F(001) F(010) F(011) F(100) F(101) F(110) F(111) INPUT quantum logic gates OUTPUT

7 The requirements for quantum computation D. P. DiVincenzo, Quant. Inf. Comp. 1 (Special), 1 (2001) I. Scalable physical system, well characterized qubits II. Ability to initialize the state of the qubits III. Long relevant coherence times, much longer than gate operation time IV. Universal set of quantum gates V. Qubit-specific measurement capability VI. VII. Ability to interconvert stationary and flying qubits Ability to faithfully transmit flying qubits between specified locations The seven commandments for QC!!

8 Which technology? Quantum Processor Cavity QED NMR superconductors quantum dots trapped ions

9 Quantum Computer: Implementation with Trapped Ions HARDWARE/OPERATION REQUIREMENTS TRAPPED IONS Q-bits long coherence times isolated in free space (frequency standards) Q-register row of Q-bits linear ion traps, ion strings Q-gate interaction between Q-bits, operations on individual Q- bits Coulomb repulsion spatial separation allows one to address individual ions Input state preparation Optical cooling, state preparation with laser pulses Computation coherent state manipulation internal, external excitations, entanglement Output state measurement (100% efficiency) Quantum jump technique

10 Ion storage generics ion confinement requires a focusing force in 3 dimensions: r binding force F ~ 2 r F = ee = e Φ Φ ~ r quadrupole potential Φ = Φ r ( x + y 2z 2 0 ) Paul trap: Φ0 = U 0 + V0 cosωt Penning trap: Φ0 = U 0 + axial magn. field equation of motion in a Paul trap: + ( a 2q cosωt) x = 0 a ~ U V 0, q ~ 0 ẋ Ω 4 MATHIEU EQUATION 2 frequencies of secular motion: superimposed is micromotion with: ω, ω, ω x y Ω z ω 2 ( a + 1 q ) Ω 2

11 Paul trap endcap electrode z lens fluorescence detection ring electrode x y endcap electrode cooling beam

12 Linear Ion Traps Paul mass filter Innsbruck Los Alamos München Boulder, Mainz, Aarhus Boulder

13 Innsbruck linear ion trap 0.5 mm 2 mm 5 mm 10 mm ωz 700 khz ω x, 1.2 y 2 MHz

14 Innsbruck linear ion trap (2000) 1.0 mm 6 mm ω z MHz ω x, y MHz

15 L ions in linear trap Quantum Computer with Trapped Ions J. I. Cirac, P. Zoller; Phys. Rev. Lett. 74, 4091 (1995) h quantum bits, quantum register - narrow optical transitions - groundstate Zeeman coherences h 2-qubit quantum gate h state vector of quantum computer Ψ = x x xl 1 x0 c 0 CM h state measurement with 100% efficiency, quantum jump technique h decoherence small (!?), heating small (!?) h quantum computation as a series of quantum gate operations (series of laser pulses)

16 String of of Ca + ions in in a linear Paul trap 70 µm IBK'97

17 Ion strings

18 Linear Ion Trap Linear ion trap I. Waki et al., Phys. Rev. Lett. 68, 2007 (1992) M.G. Raizen et al., Phys. Rev. A 45, 6493 (1992) - up to about 30 ions (string) - ions separated by about µm collective quantized motion - anisotropic oscillator: ν z << ν x, ν y - ion motion coupled by Coulomb repulsion - eigenmodes (nearly) independent of the number of ions center of mass mode breathing mode ν 1 =ν z ν = 2 3ν z

19 Common mode excitation ν 3ν 29 / 5ν

20 Common mode excitations Center of mass mode ν position breathing mode 3ν time

21 Level scheme of of Ca+ + P 3/2 854 nm qubit on narrow S - D quadrupole transition τ 1s P 1/2 393 nm 397 nm 866 nm D 5/2 D 3/2 729 nm S 1/2

22 Three required steps D 5/2 Absorption spectrum: Resolve secular motion 200 khz Additional cooling stage: Sideband cooling S 1/2 "red" "blue" sideband n-1 n n+1 "carrier" Addressing individual ions 729 nm electrooptic deflector

23 Spectroscopy with quantized fluorescence (quantum jumps) P monitor S D spectroscopy absorption and emission cause fluorescence steps (digital quantum jump signal) S histogram of absorption events absorptions D laser detuning

24 State detection by by quantized fluorescence 8 7 D state occupied S state occupied # of measurements e g detection efficiency: 99.85% counts per 9 ms

25 Spectroscopy of of the S 1/2 1/2 D 5/2 5/2 transition Zeeman structure in non-zero magnetic field: : 5/2 D 5/2-5/2-3/2-1/2 1/2 3/2 2-level-system S 1/2-1/2 1/2 + vibrational degrees of freedom:

26 Quantized Ion Motion e 2-level-atom harmonic trap... coupled system n 1,e n,e n +1,e... g Ω Γ ν {... n 1, g n,g n +1,g excitation: various resonances spectroscopy: carrier and sidebands n = 0 D 5/2 n = -1 n = 1 S 1/2 ω n = 0 1 2

27 Excitation spectrum of of a single ion

28 Narrow Carrier Resonance D-state excitation probability (90) Hz Spectral resolution: Laser Detuning at 729 nm (Hz)

29 Ramsey spectroscopy on on quadrupole transition Excitation probability Excitation probability Laser Detuning at 729 nm (khz) Zoom-in: Data and Fit π/2 π/2 9µs T=100µs µs t Contrast (%) Vary T: measure phase coherence on superposition states S + 1/ 2 D5/ 2 1/e coherence time: 2ms Laser linewidth: 75(10)Hz Delay T in ms

30 Laser Cooling of of Trapped Atoms e ATOM TRAP... Regimes: g Ω Γ ν { ν < Γ E D = ħγ weak confinement, Doppler cooling 2, n >> 1... n 1,e n 1, g n,e n, g n +1,e n +1, g... ν > Γ E strong confinement, sideband cooling ( 2 2 Γ 4ν 1 2) S = ħν + cooling heating n << 1

31 Absorption on on quadrupole transition (with motional sidebands) ν e g P 0 A A A B B R

32 Sideband cooling on on S 1/2 1/2 D 5/2 transition 5/2 Cooling cascade: P 3/2 D 5/2 S 1/2 n 1 n n +1 Ω 2 PD Γeff 2 2 ΓSP + 4 PD Γ SP Effective two-level system: I. Marzoli et al., Phys. Rev. A 49, 2771 (1994)

33 Sideband absorption spectrum 99.9 % ground state population after Doppler cooling n z = P D 0.4 P D 0.4 after sideband cooling Detuning δω (MHz) Detuning δω (MHz) Ch. Roos et al., Phys. Rev. Lett. 83, 4713 (1999)

34 Generation and manipulation of of Fock states p,1> d,0> d,1> d,2> d,0> d,1> d,2> d,3> s,0> s,1> s,2> π-pulse s,0> s,1> s,2> s,3>

35 Preparation of of Fock states 1 Ch. Roos et al., Phys. Rev. Lett. 83, 4713 (1999) Population of D state Time (µs) n r =0, n z =0 n r =0, n z =1

36 Cooling and heating cooling Ch. Roos et al., Phys. Rev. Lett. 83, 4713 (1999) <n z > cooling: 0.2 ms phonon Cooling Time (ms) <n> heating <n y > <n z > Delay Time (ms) heating: radial: axial: ms phonon ms phonon

37 Addressing of of individual ions in in a linear Paul trap Experimental setup: CCD images: laser beam steering with an electrooptic deflector Fiber output 729nm viewport Paul trap lens 20µm P 3/2 P 1/2 40Ca + 854nm 866nm telescope 397nm 729nm D 5/2 D 3/2 dichroic beamsplitter S 1/2 detection at 397nm CCD H.C. Nägerl et al., Phys. Rev. A 60, 145 (1999)

38 Intensity of of addressing beam at at ion position H. Rohde et al., J. Opt. B: Quant. Semiclass. Opt. 3, 34 (2001) Normalized Intensity waist: 3.7 (0.3) µm Intensity determined by measuring the light shift of the addressing beam Position (µm)

39 Light power at 729nm (arb. units) Addressing of of ions in in linear trap Measurement of light shift by addressing beam Beam diameter: 2 w 0 = 2.7 µm Focus position (µm)

40 Excitation spectrum of of two ions

41 Sideband cooling of of two ions RED sidebands BLUE sidebands ν z ν ν ν y 3 ν y ν z 3 y y 0.6 D-state population P 0 > 98% P 0 > 96% P 0 > 95% Detuning at 729 nm (MHz)

42 Two ion cooling and heating cooling of the rocking mode ω R = ω 2 axial ω 2 radial

43 Fluorescence of of two ions # of measurements ee ge or eg gg Count rate in 9 ms

44 Rabi oscillations of oftwo ions, one illuminated Ground state probability e,0 e, Time (µs) g,0 g,1 Carrier of CM motion

45 Rabi oscillations of of two ions, one illuminated 1 qf0354, Ground State Probability e,0 e, Time (µs) g,0 g,1 blue sideband of CM motion

46 D,0 S,0 Problem: D,1 S,1 AC Stark shifts off-resonant (carrier) excitation (spectator modes) Off-resonant carrier excitation S - D excitation probability Ω ω = 2π = 2π carrier z interaction time (µs) 1.8 MHz 1.09 MHz Solution: cooling of all spectator modes

47 Cooling and heating transitions (tailoring absorption) n 1 strong n n +1 weak n +1 n n n n 1 n avoiding carrier excitation reduces heating cooling efficient for a wider range of frequencies

48 n n Ground state cooling with quantum interference Detuning g g> n 1 n G. Morigi, J. Eschner, C. Keitel, Phys. Rev. Lett. 85, 4458 (2000) Absorption g,ω g,k g γ e> r,ω r,k r r> Absorption of cooling laser (a.u.) n n 1 1 transitions are enhanced by bright resonance transitions are suppressed by quantum interference -2 n + +1 n 1 n n n ( g r ) /ν

49 Simultaneous ground state cooling C.F. Roos et al., Phys. Rev. Lett. 85, 5547 (2000) S 1/2 to D 1/2 excitation probability Simultaneous ground state cooling of axial and radial motion axial: P(0)=73% radial: P(0)=58% 0 axial -3.2 MHz radial -1.6 MHz lower sidebands radial +1.6 MHz upper sidebands axial +3.2 MHz

50 Ground state cooling with quantum interference measured cooling limit vs. light shift 4 Best radial (1.6 MHz) cooling: 3.5 P(0) = 80% Cooling limit <n> ν radial = 1.6 MHz Best axial (3.2 MHz) cooling: P(0) = 90% from Doppler limit: Light shift δ (MHz) <n> = 17 (radial), <n> = 8 (axial) C.F. Roos et al., Phys. Rev. Lett. 85, 5547 (2000)

51 EIT cooling: Ideal scheme for ion strings Calculated EIT cooling for a string of 10 ions mean phonon number absorption (a.u.) (MHz) EIT ω /2π = 0.7MHz z vibr. mode frequency (MHz)

52 Relevant time scales τ trap τ π-pulse τ coherence τ heating τ D 1 µs 10 µs 100 µs 1 ms 10 ms 100 ms 1 s heating is NOT the dominant problem in the near future decoherence will allow for CNOT equivalent operations with fidelity above 0.5

53 Preparation of of Bell states in in a linear ion trap State preparation and excitation of common vibrational mode D,0> D,1> Excitation of 1st ion blue sideband, π/2-pulse: qm Superposition: S1, 0> + D1, 1> S2> ( ) S,0> S,1> Read-out of vibrational mode to state of 2nd ion Excitation of 2nd ion red sideband, π-pulse: Bell state: S1, S2> + D1, D2> 0> ( ) detection efficiency close to 100%, generalization to N ions possible D,0> S,0> D,1> S,1>

54 Cavity QED with a single ion optical cavity Paul trap qubits photons P 3/2 P 1/2 S 1/2 D 5/2 D 3/2 729 nm g g = 1s -1 = 110 k = 610 s 3-1 s 5-1 N n S C = 1.4(0.2) = 510-7

55 High finesse cavity: interface from atomic to to photonic qubit Paul trap optical cavity Experimental parameters: cavity decay time: κ ~ s -1 (opt. finesse) (κ ~ s -1 ) cavity ion coupling: g ~ s -1 atom spont. decay: γ ~ 1 s -1 qubits P 1/2 D 5/2 photons Experimental sequence: i) Ion in superposition state ii) Cavity tuned to qubit transition, vacuum cavity field induces spontaneous decay iii) Photonic qubit leaves cavity S 1/2 729 cav Applications: - single photon source - Interface: static qubits flying qubits - Cavity QED with continuously trapped atoms - Quantum feedback

56 Ion trap in in a cavity

57 Ion trap in in a cavity (detail) 2 cm 0.8 mm mirror cap compensation electrode

58 Single ion interacting with a standing wave Excitation probability Visibility: 96% Piezo offset voltage (V)

59 Carrier and sideband excitation in inthe standing wave

60 Towards Quantum Computation with Trapped Ca + Ions ion strings as qubits and quantum registers in linear traps Innsbruck Ca + experiments - spherical trap (ν z = 4.5 MHz, ν x,y = 2 MHz) - linear trap (ν z = 0.7 MHz, ν x,y = 2 MHz, ν z = 1.2 MHz, ν x,y = 4 MHz) spectroscopy of the S D transition: resolution 7 x sideband cooling - using coupled transitions, Raman cooling, EIT cooling, sympathetíc cooling relevant time scales - coherence time: several ms - heating times: > 100 ms addressing of individual ions Next: preparation of Bell states, Bell measurements realization of the Cirac-Zoller gate CNOT gate operations currently possible CQED with trapped ions, interface to photonic qubits

61 Institut für Experimentalphysik F. Schmidt-Kaler S. Gulde J. Eschner G. Lancaster D. Leibfried A. Mundt C. Becher A. Kreuter C. Roos H. Häffner P. Barton P. Spitzer H. Rohde D. Rotter M. Riebe R. B. AG Quantenoptik und Spektroskopie FWF SFB F015: Control and Measurement of Coherent Quantum Systems TMR-networks: Quantum Structures, Quantum Information IHP-network: QUEST IST-network: QUBITS Austrian Industry: Institute for Quantum Information Ges.m.b.H.

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions Quantum Information Processing with Trapped Ions Overview: Experimental implementation of quantum information processing with trapped ions 1. Implementation concepts of QIP with trapped ions 2. Quantum

More information

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions Rainer Blatt Institut für Experimentalphysik, Universität Innsbruck, Institut für Quantenoptik und Quanteninformation, Österreichische

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Quantum information processing and cavity QED experiments with trapped Ca + ions

Quantum information processing and cavity QED experiments with trapped Ca + ions Quantum information processing and cavity QED experiments with trapped Ca + ions S. Gulde, H. Häffner, M. Riebe, G. Lancaster, A. Mundt, A. Kreuter, C. Russo, C. Becher, J. Eschner, F. Schmidt-Kaler, I.

More information

Quantum computation with trapped ions

Quantum computation with trapped ions Abstract Since the first preparation of a single trapped, laser-cooled ion by Neuhauser et el. in 198, a continuously increasing degree of control over the of single ions has been achieved, such that what

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

Quantum information processing with trapped ions

Quantum information processing with trapped ions Quantum information processing with trapped ions Courtesy of Timo Koerber Institut für Experimentalphysik Universität Innsbruck 1. Basic experimental techniques 2. Two-particle entanglement 3. Multi-particle

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion ion interaction induced by laser pulses that excite the ion`s

More information

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS 1 QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS C. F. ROOS, M. CHWALLA, T. MONZ, P. SCHINDLER, K. KIM, M. RIEBE, and R. BLATT Institut für Experimentalphysik, Universität Innsbruck,

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Quantum information processing with trapped atoms

Quantum information processing with trapped atoms Quantum information processing with trapped atoms Introduction Fundamentals: ion iontraps, quantum bits, bits, quantum gates Implementations: 2-qubit gates, teleportation, More recent, more advanced, Jürgen

More information

Quantum information processing with trapped Ca+ ions

Quantum information processing with trapped Ca+ ions r[ THE ROYAL 10.1098/rsta.2003.1206 *Je. SOCIETY Quantum information processing with trapped Ca+ ions BY S. GULDE1, H. HAFFNER1, M. RIEBE1, G. LANCASTER1, C. BECHER1, J. ESCHNER1, F. SCHMIDT-KALER1, I.

More information

Quantum teleportation

Quantum teleportation Quantum teleportation "Deterministic quantum teleportation with atoms", M. Riebe et al., Nature 429, 734 (2004). "Deterministic quantum teleportation of atomic qubits", M. D. Barrett et al., Nature 429,

More information

Which technology? Quantum processor. Cavity QED NMR. Superconducting qubits Quantum dots. Trapped atoms/ions. A. Ekert

Which technology? Quantum processor. Cavity QED NMR. Superconducting qubits Quantum dots. Trapped atoms/ions. A. Ekert Which technology? 000 001 010 011 Quantum processor 100 011 110 011 Cavity QED NMR Superconducting qubits Quantum dots Trapped atoms/ions A. Ekert Which technology? 000 001 010 011 Quantum processor 100

More information

Quantum computer: basics, gates, algorithms

Quantum computer: basics, gates, algorithms Quantum computer: basics, gates, algorithms single qubit gate various two qubit gates baby-steps shown so far with ion quantum processors and how to reach a scalable device in future Ulm, Germany: 40 Ca

More information

Cold Ions and their Applications for Quantum Computing and Frequency Standards

Cold Ions and their Applications for Quantum Computing and Frequency Standards Cold Ions and their Applications for Quantum Computing and Frequency Standards Trapping Ions Cooling Ions Superposition and Entanglement Ferdinand Schmidt-Kaler Institute for Quantum Information Processing

More information

Investigating a qubit candidate: Spectroscopy on the S 1/2 to D 5/2 transition of a trapped calcium ion in a linear Paul trap

Investigating a qubit candidate: Spectroscopy on the S 1/2 to D 5/2 transition of a trapped calcium ion in a linear Paul trap Investigating a qubit candidate: Spectroscopy on the S 1/2 to D 5/2 transition of a trapped calcium ion in a linear Paul trap H. C. Nägerl,* Ch. Roos, D. Leibfried, H. Rohde, G. Thalhammer, J. Eschner,

More information

Quantum Logic Spectroscopy and Precision Measurements

Quantum Logic Spectroscopy and Precision Measurements Quantum Logic Spectroscopy and Precision Measurements Piet O. Schmidt PTB Braunschweig and Leibniz Universität Hannover Bad Honnef, 4. November 2009 Overview What is Quantum Metrology? Quantum Logic with

More information

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018 CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Kevin Gui Scribe: Kevin Gui Lecture 06: Trapped Ion Quantum Computing October 8, 2018 1 Introduction Trapped ion is one of the physical

More information

Zero-point cooling and low heating of trapped 111 Cd + ions

Zero-point cooling and low heating of trapped 111 Cd + ions PHYSICAL REVIEW A 70, 043408 (2004) Zero-point cooling and low heating of trapped 111 Cd + ions L. Deslauriers, P. C. Haljan, P. J. Lee, K-A. Brickman, B. B. Blinov, M. J. Madsen, and C. Monroe FOCUS Center,

More information

The Nobel Prize in Physics 2012

The Nobel Prize in Physics 2012 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

Quantum information processing with trapped ions

Quantum information processing with trapped ions Quantum information processing with trapped ions Dietrich Leibfried Time and Frequency Division National Institute of Standards and Technology Boulder, CO USA The remaining QIP challenge DiVincenzo requirements:

More information

Ion crystallisation. computing

Ion crystallisation. computing Ion crystallisation and application to quantum computing Cooling with incrased laser power: (a) reduced Doppler width (b) Kink in the line profile (b) P=0.2 mw P=0.5 mw Excitation spectra of an ion cloud

More information

A central problem in cryptography: the key distribution problem.

A central problem in cryptography: the key distribution problem. Scientific American 314, 48-55 (2016) A central problem in cryptography: the key distribution problem. Mathematics solution: public key cryptography. Public-key cryptography relies on the computational

More information

arxiv:quant-ph/ v3 19 May 1997

arxiv:quant-ph/ v3 19 May 1997 Correcting the effects of spontaneous emission on cold-trapped ions C. D Helon and G.J. Milburn Department of Physics University of Queensland St Lucia 407 Australia arxiv:quant-ph/9610031 v3 19 May 1997

More information

ION TRAPS STATE OF THE ART QUANTUM GATES

ION TRAPS STATE OF THE ART QUANTUM GATES ION TRAPS STATE OF THE ART QUANTUM GATES Silvio Marx & Tristan Petit ION TRAPS STATE OF THE ART QUANTUM GATES I. Fault-tolerant computing & the Mølmer- Sørensen gate with ion traps II. Quantum Toffoli

More information

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013 Ground state cooling via Sideband cooling Fabian Flassig TUM June 26th, 2013 Motivation Gain ultimate control over all relevant degrees of freedom Necessary for constant atomic transition frequencies Do

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

arxiv: v1 [quant-ph] 14 Aug 2013

arxiv: v1 [quant-ph] 14 Aug 2013 A quantum information processor with trapped ions arxiv:1308.3096v1 [quant-ph] 14 Aug 2013 Contents Philipp Schindler 1, Daniel Nigg 1, Thomas Monz 1, Julio T. Barreiro 1, Esteban Martinez 1, Shannon X.

More information

Cooling Using the Stark Shift Gate

Cooling Using the Stark Shift Gate Imperial College London Cooling Using the Stark Shift Gate M.B. Plenio (Imperial) A. Retzker (Imperial) Maria Laach 7/3/007 Department of Physics and Institute for Mathematical Sciences Imperial College

More information

Rydberg excited Calcium Ions for quantum interactions

Rydberg excited Calcium Ions for quantum interactions Warsaw 08.03.2012 Rydberg excited Calcium Ions for quantum interactions Innsbruck Mainz Nottingham Igor Lesanovsky Outline 1. The R-ION consortium Who are we? 2. Physics Goals What State are of we the

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

arxiv:quant-ph/ v1 19 Dec 2003

arxiv:quant-ph/ v1 19 Dec 2003 e-mail: ferdinand.schmidt-kaler@uibk.ac.at, FAX: +4355795 Key words Quantum computing, quantum bits, entanglement, single ions arxiv:quant-ph/36v 9 Dec 3 Appl.Phys.B manuscript No. (will be inserted by

More information

High-fidelity simulations of ion trajectories in miniature ion traps using the boundary-element method

High-fidelity simulations of ion trajectories in miniature ion traps using the boundary-element method High-fidelity simulations of ion trajectories in miniature ion traps using the boundary-element method Boris Brkić,* Stephen Taylor, Jason F. Ralph, and Neil France Department of Electrical Engineering

More information

arxiv:quant-ph/ v2 22 Nov 2005

arxiv:quant-ph/ v2 22 Nov 2005 High fidelity simulations of ion trajectories in miniature ion traps using the boundary-element method Boris Brkić, Stephen Taylor, Jason F. Ralph, and Neil France Department of Electrical Engineering

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Brian King. SQuInT summer school June, Dept. Physics and Astronomy, McMaster University

Brian King. SQuInT summer school June, Dept. Physics and Astronomy, McMaster University Ion Traps for Quantum Computing Ann Arbor Garching Innsbruck Boulder SQuInT summer school June, 2003 Brian King Dept. Physics and Astronomy, McMaster University http://physserv.mcmaster.ca/~kingb/king_b_h.html

More information

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state. Different ion-qubit choises - One electron in the valence shell; Alkali like 2 S 1/2 ground state. Electronic levels Structure n 2 P 3/2 n 2 P n 2 P 1/2 w/o D Be + Mg + Zn + Cd + 313 nm 280 nm 206 nm 226

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

A SINGLE-ION STOCHASTIC QUANTUM PROCESSOR

A SINGLE-ION STOCHASTIC QUANTUM PROCESSOR International Journal of Modern Physics B c World Scientific Publishing Company A SINGLE-ION STOCHASTIC QUANTUM PROCESSOR PAUL BLACKBURN MIGUEL ORSZAG Facultad de Física, Pontificia Universidad Católica

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Kenneth Brown, Georgia Tech

Kenneth Brown, Georgia Tech Kenneth Brown, Georgia Tech Choice of Bits 100 BC 1949 AD 1949 AD 1822 (1991) AD 2013 AD Hearing Aid Images from www.hearingaidmuseum.com Choices of Qubits Waterloo Bristol Wisconsin NMR Photons Neutral

More information

Requirements for scaleable QIP

Requirements for scaleable QIP p. 1/25 Requirements for scaleable QIP These requirements were presented in a very influential paper by David Divincenzo, and are widely used to determine if a particular physical system could potentially

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0 (two-qubit gate): tools: optical dipole force P 3/2 P 1/2 F = -1.5 F n=3 n=3 n=0 S 1/2 n=0 optical dipole force is state dependent tools: optical dipole force (e.g two qubits) ω 2 k1 d ω 1 optical dipole

More information

arxiv:quant-ph/ v1 16 Mar 2007

arxiv:quant-ph/ v1 16 Mar 2007 Deterministic loading of individual atoms to a high-finesse optical cavity Kevin M. Fortier, Soo Y. Kim, Michael J. Gibbons, Peyman Ahmadi, and Michael S. Chapman 1 1 School of Physics, Georgia Institute

More information

Entanglement of Two Trapped-Ion Spin Qubits

Entanglement of Two Trapped-Ion Spin Qubits Entanglement of Two Trapped-Ion Spin Qubits A thesis submitted for the degree of Doctor of Philosophy Jonathan Home Hilary Term 26 Linacre College Oxford Abstract Entanglement of two trapped-ion spin qubits.

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

«Demonstration of a small programmable quantum computer with atomic qubits» Philip Rhyner, Colin Kälin

«Demonstration of a small programmable quantum computer with atomic qubits» Philip Rhyner, Colin Kälin «Demonstration of a small programmable quantum computer» Philip Rhyner, Colin Kälin 14.05.2018 Introduction PART 1: Trapped ion quantum computers Ion trap States, Initialization and Measurement One- and

More information

arxiv: v1 [quant-ph] 25 Sep 2008

arxiv: v1 [quant-ph] 25 Sep 2008 Quantum computing with trapped ions H. Häffner a,b,c,d C. F. Roos a,b R. Blatt a,b arxiv:0809.4368v1 [quant-ph] 25 Sep 2008 a Institut für Quantenoptik und Quanteninformation, Österreichische Akademie

More information

arxiv:quant-ph/ v1 29 Apr 2003

arxiv:quant-ph/ v1 29 Apr 2003 Atomic Qubit Manipulations with an Electro-Optic Modulator P. J. Lee, B. B. Blinov, K. Brickman, L. Deslauriers, M. J. Madsen, R. arxiv:quant-ph/0304188v1 29 Apr 2003 Miller, D. L. Moehring, D. Stick,

More information

arxiv:quant-ph/ v2 26 Jan 1999

arxiv:quant-ph/ v2 26 Jan 1999 Quantum computation with ions in thermal motion Anders Sørensen and Klaus Mølmer Institute of Physics and Astronomy, University of Aarhus DK-8 Århus C arxiv:quant-ph/9839v 6 Jan 999 We propose an implementation

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

Trapped ions, entanglement, and quantum computing*

Trapped ions, entanglement, and quantum computing* Trapped ions, entanglement, and quantum computing* C. J. Myatt, B. E. King, D. Kielpinski, D. Leibfriedt, Q. A. Turchette, C. S. Wood, W. M. Itano, C. Monroe, and D. J. Wineland Time and Frequency Division,

More information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information QSIT09.L03 Page 1 2.0 Basic Elements of a Quantum Information Processor 2.1 Classical information processing 2.1.1 The carrier of information - binary representation of information as bits (Binary digits).

More information

arxiv:quant-ph/ v1 17 Aug 2000

arxiv:quant-ph/ v1 17 Aug 2000 Wave Packet Echoes in the Motion of Trapped Atoms F.B.J. Buchkremer, R. Dumke, H. Levsen, G. Birkl, and W. Ertmer Institut für Quantenoptik, Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Quantum computing with cavity QED

Quantum computing with cavity QED Quantum computing with cavity QED Ch. J. Schwarz Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE Albuquerque, New Mexico 87106 Physics & Astronomy, University of

More information

1. Introduction. 2. New approaches

1. Introduction. 2. New approaches New Approaches To An Indium Ion Optical Frequency Standard Kazuhiro HAYASAKA National Institute of Information and Communications Technology(NICT) e-mail:hayasaka@nict.go.jp ECTI200 . Introduction Outline

More information

Europe PMC Funders Group Author Manuscript Nat Photonics. Author manuscript; available in PMC 2013 September 01.

Europe PMC Funders Group Author Manuscript Nat Photonics. Author manuscript; available in PMC 2013 September 01. Europe PMC Funders Group Author Manuscript Published in final edited form as: Nat Photonics. 2013 March ; 7(3): 219 222. doi:10.1038/nphoton.2012.358. Quantum-state transfer from an ion to a photon A.

More information

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots The 3 rd GCOE Symposium 2/17-19, 19, 2011 Tohoku University, Sendai, Japan Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum

More information

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations.

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations. QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING Philippe Grangier, Institut d'optique, Orsay 1. Quantum cryptography : from basic principles to practical realizations. 2. Quantum computing : a conceptual revolution

More information

Quantum Optics in Wavelength Scale Structures

Quantum Optics in Wavelength Scale Structures Quantum Optics in Wavelength Scale Structures SFB Summer School Blaubeuren July 2012 J. G. Rarity University of Bristol john.rarity@bristol.ac.uk Confining light: periodic dielectric structures Photonic

More information

Tunable Ion-Photon Entanglement in an Optical Cavity

Tunable Ion-Photon Entanglement in an Optical Cavity Europe PMC Funders Group Author Manuscript Published in final edited form as: Nature. ; 485(7399): 482 485. doi:10.1038/nature11120. Tunable Ion-Photon Entanglement in an Optical Cavity A. Stute 1, B.

More information

arxiv:quant-ph/ Mar 2006

arxiv:quant-ph/ Mar 2006 Scalable multi-particle entanglement of trapped ions H. Häffner 1,2, W. Hänsel 1, C. F. Roos 1,2, J. Benhelm 1,2, D. Chek al kar 1, M. Chwalla 1, T. Körber 1,2, U. D. Rapol 1,2, M. Riebe 1, P. O. Schmidt

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

Trapped ion quantum control. Jonathan Home IDEAS league school,

Trapped ion quantum control. Jonathan Home  IDEAS league school, Trapped ion quantum control Jonathan Home www.tiqi.ethz.ch IDEAS league school, 11.09.2015 Lectures Ken Brown, IDEAS League school, Sweden 1) Basics (review). Measurement, Preparation, Coherent control

More information

Quantum computation with trapped ions and atoms

Quantum computation with trapped ions and atoms Quantum computation with trapped ions and atoms F. Rohde (1), J. Eschner (1,2) (1) ICFO Institut de Ciències Fotòniques, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona), Spain (2) Experimentalphysik,

More information

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles Quantum Computation 650 Spring 2009 Lectures 1-21 The World of Quantum Information Marianna Safronova Department of Physics and Astronomy February 10, 2009 Outline Quantum Information: fundamental principles

More information

Experimental Demonstration of Spinor Slow Light

Experimental Demonstration of Spinor Slow Light Experimental Demonstration of Spinor Slow Light Ite A. Yu Department of Physics Frontier Research Center on Fundamental & Applied Sciences of Matters National Tsing Hua University Taiwan Motivation Quantum

More information

Simultaneous cooling of axial vibrational modes in a linear ion trap

Simultaneous cooling of axial vibrational modes in a linear ion trap Simultaneous cooling of axial vibrational modes in a linear ion trap Christof Wunderlich* National University of Ireland, Maynooth, Maynooth Co. Kildare, Ireland Giovanna Morigi Abteilung Quantenphysik,

More information

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates DÉPARTEMENT DE PHYSIQUE DE L ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL Cavity Quantum Electrodynamics Lecture : entanglement engineering with quantum gates Michel BRUNE Les Houches 003 1 CQED

More information

Raman Sideband Cooling and Coherent Manipulation of Trapped Ions

Raman Sideband Cooling and Coherent Manipulation of Trapped Ions Raman Sideband Cooling and Coherent Manipulation of Trapped Ions A thesis submitted for the degree of Doctor of Philosophy 0.7 0.6 Fraction of ions shelved 0.5 0.4 0.3 0.2 1000 800 600 400 200 0 200 400

More information

Implementing Quantum walks

Implementing Quantum walks Implementing Quantum walks P. Xue, B. C. Sanders, A. Blais, K. Lalumière, D. Leibfried IQIS, University of Calgary University of Sherbrooke NIST, Boulder 1 Reminder: quantum walk Quantum walk (discrete)

More information

Quantum Computing with Trapped Ion Hyperfine Qubits

Quantum Computing with Trapped Ion Hyperfine Qubits Quantum Information Processing, Vol. 3, Nos. 1 5, October 2004 ( 2004) Quantum Computing with Trapped Ion Hyperfine Qubits B. B. Blinov, 1,3 D. Leibfried, 2 C. Monroe, 1 and D. J. Wineland 2 Received January

More information

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Quantum Integrated Circuits Quantum currents & voltages Microfabricated atoms Digital to Analog Converter

More information

Computational Study of Vibrational Qubits in Anharmonic Linear Ion Traps

Computational Study of Vibrational Qubits in Anharmonic Linear Ion Traps Marquette University e-publications@marquette Dissertations (29 -) Dissertations, Theses, and Professional Projects Computational Study of Vibrational Qubits in Anharmonic Linear Ion Traps Lei Wang Marquette

More information

Controlled Coherent Excitations in a Single. Cadmium Ion with an Ultrafast Laser

Controlled Coherent Excitations in a Single. Cadmium Ion with an Ultrafast Laser Controlled Coherent Excitations in a Single Cadmium Ion with an Ultrafast Laser by Rudolph Nicolas Kohn Jr. A senior honors thesis submitted to the Department of Physics of the University of Michigan College

More information

arxiv: v1 [quant-ph] 24 Aug 2007

arxiv: v1 [quant-ph] 24 Aug 2007 1 arxiv:0708.395v1 [quant-ph] 4 Aug 007 Recent progress on the manipulation of single atoms in optical tweezers for quantum computing A. Browaeys, J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko,

More information

The trapped-ion qubit tool box. Roee Ozeri

The trapped-ion qubit tool box. Roee Ozeri The trapped-ion qubit tool box Contemporary Physics, 5, 531-550 (011) Roee Ozeri Weizmann Institute of Science Rehovot, 76100, Israel ozeri@weizmann.ac.il Physical Implementation of a quantum computer

More information

Quantum Simulation with Rydberg Atoms

Quantum Simulation with Rydberg Atoms Hendrik Weimer Institute for Theoretical Physics, Leibniz University Hannover Blaubeuren, 23 July 2014 Outline Dissipative quantum state engineering Rydberg atoms Mesoscopic Rydberg gates A Rydberg Quantum

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Quantum computation with trapped ions

Quantum computation with trapped ions Quantum computation with trapped ions Jürgen Eschner ICFO - Institut de Ciencies Fotoniques, 08860 Castelldefels (Barcelona), Spain Summary. The development, status, and challenges of ion trap quantum

More information

Is an ion string laser-cooled like a single ion?

Is an ion string laser-cooled like a single ion? INSTITUTE OF PHYSICSPUBLISHING JOURNAL OFPHYSICSB: ATOMIC, MOLECULAR AND OPTICAL PHYSICS J. Phys. B: At. Mol. Opt. Phys. 36 (2003) 1041 1048 PII: S0953-4075(03)55679-6 Is an ion string laser-cooled like

More information

Scalable creation of multi-particle entanglement

Scalable creation of multi-particle entanglement Scalable creation of multi-particle entanglement Status quantum processor F. Schmidt-Kaler Spin-qubits in single ions, and www.quantenbit.de Quantum register reconfigurations Quantum-enhanced magnetometry

More information

Entanglement creation and characterization in a trapped-ion quantum simulator

Entanglement creation and characterization in a trapped-ion quantum simulator Time Entanglement creation and characterization in a trapped-ion quantum simulator Christian Roos Institute for Quantum Optics and Quantum Information Innsbruck, Austria Outline: Highly entangled state

More information

arxiv: v2 [quant-ph] 18 Mar 2011

arxiv: v2 [quant-ph] 18 Mar 2011 Phase-coherent detection of an optical dipole force by Doppler velocimetry arxiv:1103.3334v2 [quant-ph] 18 Mar 2011 M. J. Biercuk 1,2, H. Uys 1,3, J. W. Britton 1, A. P. VanDevender 1, and J. J. Bollinger

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004

Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004 Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004 A very active research field: Code information in simple systems (atoms, photons..) and use

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Ion-trap quantum information processing: experimental status

Ion-trap quantum information processing: experimental status Ion-trap quantum information processing: experimental status Author Kielpinski, David Published 2008 Journal Title Frontiers of Physics in China DOI https://doi.org/10.1007/s11467-008-0034-y Copyright

More information

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham Rydberg excited Calcium Ions for quantum interactions Innsbruck Mainz Nottingham Brussels 26.03.2013 The R-ION Consortium Ferdinand Schmidt-Kaler University of Mainz/Germany Trapped ions Experiment Jochen

More information

Teleportation of a two-atom entangled state via cavity decay

Teleportation of a two-atom entangled state via cavity decay Vol 16 No 6, June 007 c 007 Chin. Phys. Soc. 1009-1963/007/16(06)/1678-05 Chinese Physics and IOP Publishing Ltd Teleportation of a two-atom entangled state via cavity decay Ye Sai-Yun( ) Department of

More information

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas Raman-Induced Oscillation Between an Atomic and Molecular Gas Dan Heinzen Changhyun Ryu, Emek Yesilada, Xu Du, Shoupu Wan Dept. of Physics, University of Texas at Austin Support: NSF, R.A. Welch Foundation,

More information

arxiv:quant-ph/ v1 4 Nov 2002

arxiv:quant-ph/ v1 4 Nov 2002 State-Insensitive Trapping of Single Atoms in Cavity QED J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Nägerl, D. M. Stamper-Kurn, and H. J. Kimble Norman Bridge Laboratory of Physics 12-33

More information