D/A Converters. D/A Examples

Similar documents
PARALLEL DIGITAL-ANALOG CONVERTERS

EE247 Lecture 16. Serial Charge Redistribution DAC

Nyquist-Rate D/A Converters. D/A Converter Basics.

Digital to Analog Converters I

Data Converter Fundamentals

Successive Approximation ADCs

Summary Last Lecture

Nyquist-Rate A/D Converters

EXTENDING THE RESOLUTION OF PARALLEL DIGITAL-ANALOG CONVERTERS

A novel Capacitor Array based Digital to Analog Converter

Analog and Telecommunication Electronics

Pipelined A/D Converters

Edited By : Engr. Muhammad Muizz bin Mohd Nawawi

Lecture 340 Characterization of DACs and Current Scaling DACs (5/1/10) Page 340-1

EE247 Lecture 19. EECS 247 Lecture 19: Data Converters 2006 H.K. Page 1. Summary Last Lecture

Analog and Telecommunication Electronics

Research Article Linearity Analysis on a Series-Split Capacitor Array for High-Speed SAR ADCs

EE 435. Lecture 38. DAC Design Current Steering DACs Charge Redistribution DACs ADC Design

Switched-Capacitor Filters

Top-Down Design of a xdsl 14-bit 4MS/s Σ Modulator in Digital CMOS Technology

Behavioral Model of Split Capacitor Array DAC for Use in SAR ADC Design

EE100Su08 Lecture #9 (July 16 th 2008)

Lecture 10, ATIK. Data converters 3

BEHAVIORAL MODEL OF SPLIT CAPACITOR ARRAY DAC FOR USE IN SAR ADC DESIGN

EE 505 Lecture 7. Spectral Performance of Data Converters - Time Quantization - Amplitude Quantization Clock Jitter Statistical Circuit Modeling

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters

EE 435. Lecture 36. Quantization Noise ENOB Absolute and Relative Accuracy DAC Design. The String DAC

The influence of parasitic capacitors on SAR ADC characteristics

Digital Electronic Meters

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

EE 435. Lecture 26. Data Converters. Data Converter Characterization

DATASHEET AD7520, AD7521. Features. Ordering Information. Pinouts. 10-Bit, 12-Bit, Multiplying D/A Converters. FN3104 Rev.4.

EE 521: Instrumentation and Measurements

EE 435. Lecture 26. Data Converters. Differential Nonlinearity Spectral Performance

ir. Georgi Radulov 1, dr. ir. Patrick Quinn 2, dr. ir. Hans Hegt 1, prof. dr. ir. Arthur van Roermund 1 Eindhoven University of Technology Xilinx

ECEN 610 Mixed-Signal Interfaces

EE 435. Lecture 29. Data Converters. Linearity Measures Spectral Performance

Oversampling Converters

Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL. University of California at San Diego, La Jolla, CA

Pipelined multi step A/D converters

EE247 Analog-Digital Interface Integrated Circuits

Digital Signal 2 N Most Significant Bit (MSB) Least. Bit (LSB)

EE 435. Lecture 26. Data Converters. Data Converter Characterization

Analog to Digital Conversion

EE 435. Lecture 28. Data Converters Linearity INL/DNL Spectral Performance

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm-1 Exam (Solution)

SWITCHED CAPACITOR AMPLIFIERS

Lecture 120 Filters and Charge Pumps (6/9/03) Page 120-1

LECTURE 090 FILTERS AND CHARGE PUMPS

EE 505 Lecture 10. Statistical Circuit Modeling

Measurement and Instrumentation. Sampling, Digital Devices, and Data Acquisition

DAC10* PRODUCT PAGE QUICK LINKS Last Content Update: 02/23/2017

An 85%-Efficiency Fully Integrated 15-Ratio Recursive Switched- Capacitor DC-DC Converter with 0.1-to-2.2V Output Voltage Range

EE 505 Lecture 11. Statistical Circuit Modeling. R-string Example Offset Voltages

Measurement and Modeling of MOS Transistor Current Mismatch in Analog IC s

Lecture 320 Improved Open-Loop Comparators and Latches (3/28/10) Page 320-1

CMOS Cross Section. EECS240 Spring Today s Lecture. Dimensions. CMOS Process. Devices. Lecture 2: CMOS Technology and Passive Devices

Analog / Mixed-Signal Circuit Design Based on Mathematics

System on a Chip. Prof. Dr. Michael Kraft

Successive approximation time-to-digital converter based on vernier charging method

Lab 3 Revisited. Zener diodes IAP 2008 Lecture 4 1

Vidyalankar S.E. Sem. III [INFT] Analog and Digital Circuits Prelim Question Paper Solution

EE 230 Lecture 40. Data Converters. Amplitude Quantization. Quantization Noise

A Modeling Environment for the Simulation and Design of Charge Redistribution DACs Used in SAR ADCs

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators

Chapter 8. Low-Power VLSI Design Methodology

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

Very Large Scale Integration (VLSI)

Switched Capacitor: Sampled Data Systems

EE 505 Lecture 10. Statistical Circuit Modeling

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

EE 505. Lecture 27. ADC Design Pipeline

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier I & Step Response

Master Degree in Electronic Engineering. Analog and Telecommunication Electronics course Prof. Del Corso Dante A.Y Switched Capacitor

High-Speed, High-Resolution, Radiation-Tolerant SAR ADC for Particle Physics Experiments

Switched Capacitor Circuits I. Prof. Paul Hasler Georgia Institute of Technology

Background Digital Calibration Techniques for Pipelined ADC s y

EE 505 Lecture 8. Clock Jitter Statistical Circuit Modeling

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) SUMMER 14 EXAMINATION Model Answer

Extremely small differential non-linearity in a DMOS capacitor based cyclic ADC for CMOS image sensors

A Gray Code Based Time-to-Digital Converter Architecture and its FPGA Implementation

Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies. Philips Research, The Netherlands

EECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3

An Anti-Aliasing Multi-Rate Σ Modulator

Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion

A Nonuniform Quantization Scheme for High Speed SAR ADC Architecture

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

Slide Set Data Converters. Digital Enhancement Techniques

D is the voltage difference = (V + - V - ).

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier II Multi-Stage Designs

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents

Lecture 23. Dealing with Interconnect. Impact of Interconnect Parasitics

On the design of Incremental ΣΔ Converters

UNIVERSITÀ DEGLI STUDI DI CATANIA. Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo

8-bit 50ksps ULV SAR ADC

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Lecture 7, ATIK. Continuous-time filters 2 Discrete-time filters

Experimental Verification of a Timing Measurement Circuit With Self-Calibration

ELEN 610 Data Converters

Transcription:

D/A architecture examples Unit element Binary weighted Static performance Component matching Architectures Unit element Binary weighted Segmented Dynamic element matching Dynamic performance Glitches Reconstruction filter DAC Examples D/A Converters EECS 47 Lecture 4: D/A Converter B. Boser D/A Examples Voltage, Charge, or Current Based E.g. Resistor string Charge redistribution M-DAC EECS 47 Lecture 4: D/A Converter B. Boser

R-String DAC Unit element Inherently monotonic B resistors and B switches for B bits Simple and relatively fast up to ~ bits High element count, settling time for B > : τ.5 x B RC Vref R R R3 S S S3 S4 Vout S_N Ref: M. Pelgrom, A -b 5-MHz CMOS D/A Converter with 75-W Buffer, JSSC, Dec. 99, pp. 347. R_N C EECS 47 Lecture 4: D/A Converter B. Boser 3 Charge Redistribution DAC reset CP Vout ^(B-) C b_b- (msb) 8C b3 4C b C b C b (lsb) C Vref V out B i bi C i V B C + C P ref Binary weighted Monotonicity depends on element matching B+ capacitors ( B unit elements) EECS 47 Lecture 4: D/A Converter B. Boser 4

M-DAC Iout ^(B-) Iref 4 Iref Iref Iref Binary weighted Often realized with unit elements also Monotonicity depends on element matching B current sources ( B - unit elements) EECS 47 Lecture 4: D/A Converter B. Boser 5 Static DAC INL / DNL Errors Component Matching Systematic Errors Contact resistance Edge effects in capacitor arrays Process gradient Finite current source output resistance Random Errors Lithography Often Gaussian distribution (central limit theorem) C. Conroy et al, Statistical Design Techniques for D/A Converters, JSSC Aug. 989, pp. 8-8. EECS 47 Lecture 4: D/A Converter B. Boser 6

Gaussian Distributions.4.35.3 p ( x µ ) ( ) x e π Probability density p(x).5..5..5-3 - - 3 x / EECS 47 Lecture 4: D/A Converter B. Boser 7 Yield.4 P ( X x + X ) + X x X e X erf dx Probability density p(x).3.. π.5.5.5 3 P(-X x +X) 95.4.8 68.3.6.4 38.3..5.5.5 3 X EECS 47 Lecture 4: D/A Converter B. Boser 8

Yield X/s P(-X x X) [%] X/s P(-X x X) [%]. 5.859.4 3.843.6 45.494.8 57.689. 68.689. 76.986.4 83.8487.6 89.4.8 9.839. 95.45. 97.93.4 98.365.6 99.678.8 99.489 3. 99.73 3. 99.866 3.4 99.936 3.6 99.968 3.8 99.9855 4. 99.9937 EECS 47 Lecture 4: D/A Converter B. Boser 9 Example Measurements show that the offset voltage of a batch of operational amplifiers follows a Gaussian distribution with mv and µ. Fraction of opamps with V os < X 6mV: X/ 3 99.73 % yield (we d still test before shipping!) Fraction of opamps with V os < X 4µV: X/. 5.85 % yield EECS 47 Lecture 4: D/A Converter B. Boser

DNL Unit Element DAC E.g. Resistor string DAC: R I i i DNLi Ri R R DNL o R I i ref Ri Ri ref o o Ri R o Ri R DNL of unit element DAC is independent of resolution! i Example: If R/R %, what DNL spec goes into the datasheet so that 99.9% of all converters meet the spec? Answer: From table: X/ 3.3 DNL R/R % 3.3 DNL 3.3% +/-.33 LSB EECS 47 Lecture 4: D/A Converter B. Boser DAC INL Error is maximum at mid-scale: INL B ε B with N Depends on DAC resolution and element matching ε Ref: Kuboki et al, TCAS, 6/98 EECS 47 Lecture 4: D/A Converter B. Boser

Untrimmed DAC INL Example: INL B + log ε B ε INL INL. LSB ε % B 8.6 ε.5% B.6 ε.% B 3.3 ε.% B 5.3 EECS 47 Lecture 4: D/A Converter B. Boser 3 Simulation Example DNL [in LSB] - DNL and INL of Bit converter (from converter decision thresholds) -.4 / +.3 LSB, avg6.7e-5, std.dev., range.69 5 5 5 3 35 4 bin ε % B INL.3 LSB (midscale) INL [in LSB] -. / +.8 LSB, avg., std.dev., range.99-5 5 5 3 35 4 bin EECS 47 Lecture 4: D/A Converter B. Boser 4

Binary Weighted DAC INL same as for unit element DAC Sample realization of binary weighted DAC: DNL depends on transition Iout ^(B-) Iref 4 Iref Iref Iref Consider EECS 47 Lecture 4: D/A Converter B. Boser 5 DNL of Binary Weighted DAC ( DNL / ε ) 5 Worst-case transition occurs at mid-scale: DNL B B ( ) + ( ) 443 ε B... ε 443 ε... 5 4 6 8 4 DAC input code Example: B, ε % DNL.64 LSB EECS 47 Lecture 4: D/A Converter B. Boser 6

Simulation Example DNL [in LSB] - DNL and INL of Bit converter (from converter decision thresholds) -.9 / +.4 LSB, avg-7.5e-5, std.dev.39, range.3 5 5 5 3 35 4 bin ε % B DNL.6 LSB (midscale) INL [in LSB] - -.7 / +.7 LSB, avg3.3e-4, std.dev.33, range.3 5 5 5 3 35 4 bin MSB transitions clearly visible EECS 47 Lecture 4: D/A Converter B. Boser 7 Another Random Run DNL [in LSB] - - DNL and INL of Bit converter (from converter decision thresholds) - / +. LSB, avg-9.3e-5, std.dev.35, range.4 5 5 5 3 35 4 bin Now (by chance) worst DNL is mid-scale. Statistical result! INL [in LSB] -.8 / +.8 LSB, avg-.e-3, std.dev.37, range.6-5 5 5 3 35 4 bin EECS 47 Lecture 4: D/A Converter B. Boser 8

Unit Element vs Binary Weighted Unit Element DAC DNL INL ε B ε Binary Weighted DAC DNL INL B B ε ε INL Number of switched elements: S B S B Significant difference in performance and complexity! EECS 47 Lecture 4: D/A Converter B. Boser 9 DAC INL/DNL Summary DAC architecture has significant impact on DNL INL is independent of DAC architecture and requires element matching commensurate with overall DAC precision Results are for uncorrelated random element variations Systematic errors and correlations are usually also important Ref: Kuboki, S.; Kato, K.; Miyakawa, N.; Matsubara, K. Nonlinearity analysis of resistor string converters. IEEE Transactions on Circuits and Systems, vol.cas-9, (no.6), June 98. p.383-9. EECS 47 Lecture 4: D/A Converter B. Boser

Segmented DAC Objective: compromise between unit element and binary weighted DAC Approach: B MSB bits unit elements B B-B LSB bits binary weighted INL: unaffected DNL: worst case occurs when LSB DAC turns off and one more MSB DAC element turns on: same as binary weighted DAC with B + bits Switched Elements: ( B -) + B EECS 47 Lecture 4: D/A Converter B. Boser Comparison Example: B, B 5, B 7 ε % DAC Architecture INL DNL # s.e. Unit element Binary weighted Segmented.3.3.3..64.6 495 3+7 EECS 47 Lecture 4: D/A Converter B. Boser

Dynamic DAC Error: Glitch Consider binary weighted DAC transition DAC output depends on timing ideal 5.5.5 3 early 5 Plot shows situation where MSBs switch on time LSBs switch On time Early Late late 5.5.5 3.5.5 3 Time EECS 47 Lecture 4: D/A Converter B. Boser 3 Glitch Energy Glitch energy (worst case): t B- LSB energy: T Need t B- << T or t << -B+ Examples: f s [MHz] B 6 t [ps] << 488 <<.5 << Compare to digital circuit clock skew EECS 47 Lecture 4: D/A Converter B. Boser 4

DAC Reconstruction Filter Need for and requirements depend on application Tasks: Correct for sinc distortion Remove aliases (stair-case approximation) DAC Input sinc DAC Output.5.5.5.5 3 x 6.5.5.5.5 3 x 6.5 B f s /.5.5 Frequency.5 3 x 6 EECS 47 Lecture 4: D/A Converter B. Boser 5 Reconstruction Filter Options Digital Filter DAC SC Filter ZOH CT Filter Digital and SC filter possible only in combination with oversampling (signal bandwidth B << f s /) Digital filter can prewarp spectrum to compensate inband sinc attenuation (from ZOH) EECS 47 Lecture 4: D/A Converter B. Boser 6

Sample DAC Implementations Untrimmed segmented T. Miki et al, An 8-MHz 8-bit CMOS D/A Converter, JSSC December 986, pp. 983. A. Van den Bosch et al, A -GSample/s Nyquist Current-Steering CMOS D/A Conveter, JSSC March, pp. 35. Current copiers: D. W. J. Groeneveld et al, A Self-Calibration Techique for Monolithic High-Resolution D/A Converters, JSSC December 989, pp. 57. Dynamic element matching: R. J. van de Plassche, Dynamic Element Matching for High- Accuracy Monolithic D/A Converters, JSSC December 976, pp. 795. EECS 47 Lecture 4: D/A Converter B. Boser 7 EECS 47 Lecture 4: D/A Converter B. Boser 8

EECS 47 Lecture 4: D/A Converter B. Boser 9 EECS 47 Lecture 4: D/A Converter B. Boser 3

EECS 47 Lecture 4: D/A Converter B. Boser 3 EECS 47 Lecture 4: D/A Converter B. Boser 3

EECS 47 Lecture 4: D/A Converter B. Boser 33 EECS 47 Lecture 4: D/A Converter B. Boser 34

EECS 47 Lecture 4: D/A Converter B. Boser 35 Dynamic Element Matching During Φ During Φ () () I Io( + ) I Io( ) () () I I ( ) I I ( + ) o o I o / I o / I I I () () I + I Io Io ( ) + ( + ) f clk / error I o EECS 47 Lecture 4: D/A Converter B. Boser 36

Dynamic Element Matching During Φ During Φ () () I Io( + ) I Io( ) () () I I ( ) I I ( + ) I () 3 I o () I 4 o ( + ) ( + )( + ) () I3 + I I3 Io 4 Io 4 () 3 I () 3 I o () I 4 o ( + )( + ) + ( )( ) ( + ) ( ) ( )( ) I o /4 I o /4 I o / I 3 I 4 I f clk / error I f clk / error E.g. % matching error is (%).% I o EECS 47 Lecture 4: D/A Converter B. Boser 37