Conference on Superconductor-Insulator Transitions May 2009

Similar documents
Enhancement of the finite-frequency superfluid response in the pseudogap regime of strongly disordered superconducting films , Rome, Italy.

Phase fluctuations in a strongly disordered s-wave NbN superconductor close to the metal-insulator transition

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Superconductor to insulator transition: a short overview on recent ideas. C.Castellani

Phase fluctuations in a conventional s-wave superconductor: Role of dimensionality and disorder. A Thesis

Measurement of magnetic penetration depth and superconducting energy gap in very thin epitaxial NbN films

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

Can superconductivity emerge out of a non Fermi liquid.

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A.

Disordered Superconductors

Photoemission Studies of Strongly Correlated Systems

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

Superconducting properties and Hall effect of epitaxial NbN thin films

High-Temperature Superconductors: Playgrounds for Broken Symmetries

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells

Tunneling Spectroscopy of PCCO

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

Scanning Tunneling Microscopy & Spectroscopy: A tool for probing electronic inhomogeneities in correlated systems

Electrostatic Tuning of Superconductivity. Allen M. Goldman School of Physics and Astronomy University of Minnesota

The Higgs particle in condensed matter

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

Purely electronic transport in dirty boson insulators

Scanning Tunnelling Microscopy Observations of Superconductivity

Heavy Fermion systems

Talk online at

The Hubbard model in cold atoms and in the high-tc cuprates

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Superconductivity - Overview

Vortices in superconductors& low temperature STM

arxiv:cond-mat/ v1 8 Mar 1995

Vortex drag in a Thin-film Giaever transformer

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Crossover from phase fluctuation to amplitudedominated superconductivity: A model system

Cooperative Phenomena

Single Electron Tunneling Examples

BKT transition in thin superconducting films and artificial nanostructures

Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS

Intrinsic tunnelling data for Bi-2212 mesa structures and implications for other properties.

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP

The High T c Superconductors: BCS or Not BCS?

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator

Citation PHYSICAL REVIEW LETTERS (2000), 85( RightCopyright 2000 American Physical So

Quantum Transport in InAs/GaSb

April Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity

Conference on Superconductor-Insulator Transitions May 2009

Spectroscopy at nanometer scale

Tuning order in cuprate superconductors

Electrical conduction in solids

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

Principles of Electron Tunneling Spectroscopy

What's so unusual about high temperature superconductors? UBC 2005

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

InAs/GaSb A New Quantum Spin Hall Insulator

Enhancement of superconducting Tc near SIT

characterization in solids

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

3.1 Electron tunneling theory

Magnetically Induced Electronic States in 2D Superconductors

Supplementary Figures

Superconductivity Induced Transparency

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

2 Metallic point contacts as a physical tool

Real Space Bogoliubov de Gennes Equations Study of the Boson Fermion Model

A BCS Bose-Einstein crossover theory and its application to the cuprates

Theory of Lifetime Effects in Point-Contacts: Application to Cd 2 Re 2 O 7

SYED AMMAL ENGINEERING COLLEGE: RAMANATHAPURAM Dr.E.M.Abdullah Campus DEPARTMENT OF PHYSICS Question Bank Engineering physics II PH6251 (R-2013)

Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates

Non-Fermi Liquids and Bad Metals in NdNiO3 Thin Films

Spectroscopy at nanometer scale

Graphite, graphene and relativistic electrons

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

lattice that you cannot do with graphene! or... Antonio H. Castro Neto

Quantum oscillations in insulators with neutral Fermi surfaces

Supplementary Figures.

Micro & nano-cooling: electronic cooling and thermometry based on superconducting tunnel junctions

High-T c superconductors

Mean field theories of quantum spin glasses

Conductor Insulator Quantum

FROM NODAL LIQUID TO NODAL INSULATOR

Charge transport in oxides and metalinsulator

Chapter 12: Semiconductors

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture.

Polariton Condensation

Quasiparticle dynamics and interactions in non uniformly polarizable solids

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu.

In an electric field R and magnetic field B, the force on an electron (charge e) is given by:

arxiv: v1 [cond-mat.str-el] 31 Jan 2010

Disordered Ultracold Gases

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n

Strongly Correlated Systems:

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover

Superconducting properties of carbon nanotubes

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors

Nonadiabatic dynamics and coherent control of nonequilibrium superconductors

Quantum wells and Dots on surfaces

Transcription:

2035-7 Conference on Superconductor-Insulator Transitions 18-23 May 2009 Tunneling studies in a disordered s-wave superconductor close to the Fermi glass regime P. Raychaudhuri Tata Institute of Fundamental Research Mumbai India

Tunneling studies on a 3-dimensional disordered s-wave superconductor close to the Fermi Glass regime Pratap Raychaudhuri Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai.

Collaborators Madhavi Chand S P Chockalingam John Jesudasan Anand Kamlapure, Mintu Mondal, Archana Mishra, Vivas Bagwe Vikram Tripathi Johan Vanacken, Gufei Zhang Leuven

Plan of the talk Introduction What is good about NbN (films)? Tuning the disorder with deposition conditions Transport and Hall measurements S. P. Chockalingam, Madhavi Chand et al., Phys. Rev. B 77, 214503 (2008) Evolution of superconducting properties with disorder Tunneling measurements S. P. Chockalingam, Madhavi Chand et al., Phys. Rev. B 79, 094509 (2009).

Introduction Δ: Binding energy of Cooper Pair Ψ=Ψ 0 e iθ 1.2 Δ (mev) 0.8 0.4 Can phase fluctuations destroy superconductivity at a lower temperature? 0 1 2 3 4 5 6 7 8 T(K) T c

Beyond Anderson Theorem 2-dimension T=0 H = J < i, j> = ρ cos ( θ θ ) Continuous system H s d 3 i r θ j 2 Increasing disorder Amit Ghosal, Mohit Randeria and Nandini Trivedi, Phys. Rev. Lett. 81, 3940 (1998) also M. V. Feigelman et al., Phys. Rev. Lett. 98, 027001 (2007).

Superconductor-Insulator Transitions Quench-condensed Bi films Sambandamurthy et al., Phys Rev B 64, 104506 (2001) Y. Liu et al., Phys Rev B 47, 5931 (1993) R P Barber et al, Phys. Rev. B 49, 3409 (1994) B. Sacepe et al., Phys. Rev. Lett. 101, 157006 (2008).

Can Superconductivity get destroyed by (thermal) phase fluctuations in a 3D disordered film? Ideal Sample: A disordered superconductor with no intentional source of granularity 3D single crystal / epitaxial thin film with vacancy. At which level of disorder does this effect manifest itself?

ξ 5nm T c ~16K λ 200nm NbN Thickness of our films > 50nm Grows as epitaxial thin film on (100) MgO substrate using reactive magnetron sputtering: MgO NbN NaCl structure

Stability Phase diagram of NbN Stoichiometric NbN Tc (K) 16 15 14 13 12 11 10 9 Nb 2 N Nb 1-x N 40 80 120 160 200 240 280 Sputtering Power (W) Increasing Nb/N 2 ratio in the plasma

Growth Protocols of dc sputtered of NbN films Substrate Temperature: 600 0 C, Total Ambient pressure (Ar+N 2 ): 5mTorr Log Intensity (arb units) 1-NbN-250W 1-NbN-150W 1-NbN-200W 1-NbN-40W (200) NbN (100) (a) 40W Log Intensity (arb. units) l-8.77 l-2.56 37 38 39 40 41 42 43 44 45 2θ (degrees) 40 45 2θ (degrees) MgO 250W Intensity (arb. units) l-8.77 l-2.56 0 50 100 150 200 250 300 350 Φ (degrees)

ρ(μω m) 5 4 3 2 1 2-NbN-30 2-NbN-25 NbN films on MgO (100) Correlation between ρ n and T c 1-NbN-40W 1-NbN-80W 1-NbN-100W 1-NbN-150W 1-NbN-200W 0 6 8 10 12 14 16 18 20 T (K) ρ n (μω μω-m) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 10 11 12 13 14 15 16 17 Tc (K) Inverse correlation between normal state resistivity and T c Dirty films have lower T c : Anderson Theorem??? m ρ 2 = n or τ? ne τ

Hall Effect (20K) H(T) 0 2 4 6 8 10 12 xy (μωm) ρ x -4.0x10-4 -8.0x10-4 -1.2x10-3 -1.6x10-3 l 7.47 8.38 6.78 4.51 3.33 2.14 1.54 T c ~16.4K n~2.39x10 29 T c ~8.13K n~4.77x10 28 Carrier density varies by a factor of 5 from 4.77*10 28 electrons/m 3 to 2.39*10 29 electrons/m 3

(Electronic) Carrier density Nb 4d band Matheiss, PRB 5, 315 (1969) Nb atoms contribute to the carriers 5 electrons per Nb atom Face Centered Cubic structure has 4 Nb atoms per unit cell20 electrons/unit cell Lattice parameter of the unit cell: a=4.413å 20 Electronic Carrier density= 10 ( 4.413 10 ) 3 = 2.33 10 29 el / m 3

Stoichiometric NbN Tc (K) 16 15 14 13 12 11 10 9 Nb 2 N Nb 1-x N 40 80 120 160 200 240 280 Sputtering Power (W) n exp =2.39X10 29 el/m 3 n theo =2.33X10 29 el/m 3 18 15 The carrier density changes by 1 order of magnitude: 2.11x10 28 el/m 3 to 2.39x10 29 el/m 3 T c (K) 12 9 6 8.0 16.0 24.0 n (X10 28 electrons m -3 )

Carrier density and T c σ n (Ω -1 m -1 ) T c (K) 18 15 12 9 1.6x10 6 1.2x10 6 8.0x10 5 4.0x10 5 6 8.0 16.0 24.0 n (X10 28 electrons m -3 ) 0 8 16 24 n (X10 28 electrons m -3 ) T c is likely to be primarily governed by carrier density rather than disorder scattering. σ n n σ n = 2 ne τ m No significant change in carrier mobility. Theoretical value of n for the stoichiometric compound: n~2.34*10 29 electrons/m 3

Sample Name Parameters extracted from free electron theory k f (m -1 ) v f (m/s) l (Å) B c2 (0) (T) GL (0) (nm) N(0) (states/m 3 -ev) 1-NbN-200 1.80*10 10 2.09*10 6 3.96 14.80 4.72 2.38*10 28 7.15 1.50 1-NbN-150 1.68*10 10 1.95*10 6 2.91 17.82 4.30 2.23*10 28 4.90 1.40 1-NbN-100 1.40*10 10 1.62*10 6 3.28 17.58 4.33 1.86*10 28 4.60 1.16 1-NbN-80 1.37*10 10 1.59*10 6 3.34 16.65 4.45 1.82*10 28 4.58 1.14 1-NbN-40 1.33*10 10 1.54*10 6 3.04 15.12 4.67 1.77*10 28 4.05 1.11 2-NbN-25 1.31*10 10 1.52*10 6 2.28 14.79 4.72 1.74*10 28 2.98 1.09 2-NbN-30 1.24*10 10 1.44*10 6 2.07 13.08 5.02 1.65*10 28 2.56 1.03 a N(0)=0.511 states/nbn-ev APW calculations: 0.54 states/nbn-ev Matheiss (1969) Specific heat: 0.50 states/nbn-ev Geballe (1966) Ioffe-Regel disorder parameter: k F l = λ π de Broglie l l 2 Measure of mean free path as a function of de-broglie wavelength at Fermi level

McMillan theory for strong coupling superconductor T c = Θ 1.45 exp 1.04(1 * λ μ + λ) ( ) 1+ 0.62λ λ = 2 g N 0 = 2 M ω ( ) KN ( 0) λelectron phonon interaction constant μ electron-electron repulsive interaction μ =0.13 K depends primarily on lattice properties ln ( T ) Θ = ln c * 1.45 KN + 1.04( 1+ KN ( 0) ) ( 0) μ ( 1 0.62KN ( 0) )

3.0 Fit to McMillan theory ln ( T Θ ) = ln c * 1.45 KN + 1.04( 1+ KN ( 0) ) ( 0) μ ( 1 0.62KN ( 0) ) 2.8 ln(t c ) 2.6 2.4 2.2 ln(θ D /1.49)=4.54 Θ=14020Κ λ=1.02 2.28 2.0 1.8 K=<g 2 >/(M<ω 2 >) =9.06*10-29 ev m3 1.4x10 28 2.1x10 28 2.8x10 28 N(0) (states ev -1 m -3 )

Electron Phonon coupling λ=1.02 2.28 T c ~16.11K Obtained from McMillan Rowell inversion of tunneling data Τ c ~14K λ 1.45 Kihlstrom et al. (1985)

Studies on disorder

Measure of disorder: l The Ioffe-Regel parameter is calculated from the ρ n and R H, using free electron approximation n = = 1 R e H ( ) 3π 2 n 1/ 3 ρ = m = 2 ne τ k ne F n 2 l Ioffe-Regel (at 17K) parameter varies from 1.36-8.77

Evolution of T c and ρ n with l T c (K) 16 14 12 10 8 (a) c (K) T 1 2 3 4 5 6 7 8 9 18 15 12 9 6 8.0 16.0 24.0 l n (X10 28 electrons m -3 ) ρ n (μω m) 12 10 8 6 4 2 (b) l~1.38-8.77 σ n (Ω -1 m -1 ) 1.6x10 6 1.2x10 6 8.0x10 5 4.0x10 5 80x10 8.0x10 28 16x10 1.6x10 29 24x10 2.4x10 29 n (electrons m -3 ) 0 1 2 3 4 5 6 7 8 9 T c decreases and ρ n increases with increase in disorder l

Why does the carrier density change with disorder? n (X10 28 electrons m -3 ) 25 20 15 10 5 0 0 1 2 3 4 5 6 7 8 9 l n varies with disorder by a factor of 10 Not accounted for by chemical effects alone Localization effects?

Evolution of Normal State with disorder (μω m) ρ 8 7 6 5 4 3 2 1 l 1.54 2.14 3.33 4.51 6.78 7.47 8.38 0 0 50 100 150 200 250 300 T (K) Does not follow Mott Variable range Hopping: T ρ ~ exp T Anderson Insulator or unusual metal? 0 1/ 4

Hall measurement ρ xy X10-10 (Ω m) 0 2 4 6 8 10 12 0-0.50-1.00-1.50-2.00-2.50-3.00 20K 40K 70K 105K 145K 180K 232K 285K B (T) l = 8.38 ρ xy x10-10 (Ω m) B (T) 0 0 2 4 6 8 10 12-1 -2-3 -4-5 -6 285K 250K 200K 150K 100K 75K 50K 30K 17K l = 4.51 ρ xy X10-10 (Ω m) -2-4 -6-8 -10-12 -14-16 0 2 4 6 8 10 12 0 12K 25K 50K 75K 100K 150K 195K 240K 285K B (T) l~1.54

f(e) Anderson Localization E c E c <E F Small Disorder: Metal E c E c ~E F E c >E F Moderate Disorder: Fermi Glass Large Disorder: Insulator E F E c For an Anderson insulator electrical transport takes place through carriers excited over the mobility edge.

Resistivity for an Anderson insulator f(e) L Friedman, J Non-Cryst Solids 6, 329 (1971) σ xx E c -E F >>k B T σ xx E F E c >E F Insulator E c E c E F N( Ec ) exp ( ) 3 Ec EF σ xy N( Ec ) exp kt B kt B ( ) 2 E c -E F >k B T 1 ( N( E )) 2 F f( E) de T E c 1 σ xy RH ( T) = ρ T 2 H ( σ ) xx σ xy 1 ( N( E )) 3 F f( E) de T ( ) E c

f(e) Anderson Localization E c ~E F Fermi Glass R H x10-10 (V m 3 /A Wb) E c ~E F 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 σ σ xx xy l 8.38 E c ( N( E )) 2 F ( N ( E ) ) 3 0 0 50 100 150 200 250 300 T (K) F Both temperature independent ρ (μω m) 0.8 0.6 0.4 0.2 0 50 100 150 200 250 300 T (K)

Electron phonon scattering? 1 τ ( T ) = τ 1 impurity + 1 τ phonon ( T) 0.750 0.8 0.6 0.745 ρ(μω m m) 0.4 l=8.38 ρ(μω m m) 0.740 Δρ phonon =02 μω m 0.2 0 50 100 150 200 250 300 T (K) 0.735 150 200 250 300 T (K) 02 0.7 = 3 3% The effect of phonons is overshadowed by impurity scattering

Temperature dependence of the Hall resistance R H x10-10 (V m 3 /A Wb) 12 l 10 8 6 4 1.54 3.33 4.51 6.78 7.47 2 0 50 100 150 200 250 300 R H T (K) = V t H IB ρ(μω m) 8 6 4 2 l = 1.54 12 10 8 6 4 0 2 0 50 100 150 200 250 300 T (K) R H x10-11 (V m 3 /A Wb)

R H x10-10 (V m 3 /A Wb) 1.2 1.0 0.8 0.6 0.4 l = 2.14 l =1.54 2 3 4 5 6 7 8 ρ(μω m) R H x10-11 (V m 3 /A Wb) 8 7 6 5 l = 4.51 l = 3.33 1.5 2.0 2.5 3.0 ρ(μω m) R H x10-11 (V m 3 /A Wb) 3.6 3.4 3.2 3.0 2.8 2.6 l = 6.78 l = 7.47 0.7 0.8 0.9 1.0 ρ(μω m) ( ) ( ) R T = Aρ T H ( ) = + ( ) R T R Aρ T H H0 R H0 ~1.0-2.0 10-11 V m 3 /A Wb

2x10-2 2x10-2 l~3.33 Δρ (μωm) ρ(μω m) 1x10-2 5x10-3 0-5x10-3 2.68 2.64 2.60 ρ =2.66μΩ m 0 14K 15K 15.75K 16.5K 17.25K 18K 18.75K 20K 0 2 4 6 8 10 12 H(T) 0T 12T 2.56 5 10 15 20 25 T(K) l 3.33 γ=4.35

Phenomenological Phase Diagram T (K) 21 18 15 12 T9 6 Anderson Insulator T c Superconductor Fermi Glass Regime 3 0 1 2 3 4 5 6 7 8 9 l (at 17K) No intrinsic meaning

Tunneling measurement I NbN/Oxide layer I-V characteristics of the (300X300 μm 2 ) tunnel junction 1.0 0.8 2.17K V di/dv (Ω -1 ) 0.6 0.4 0.2-6 -4-2 0 2 4 6 V (mv) Ag Counter electrode Tunnel junctions with resistance varying between 1-10Ω: Good for tunneling spectroscopy in the Superconducting state.

Fitting the tunneling spectra di/dv (Ω -1 ) 1.0 0.8 0.6 0.4 0.2 2.17K -6-4 -2 0 2 4 6 V (mv) N s ( E) E Γ i = Re 2 1/2 2 ( E Γ i ) Δ Δ di d G ( V ) N ( ) ( ){ ( ) ( )} = = s E Nn E ev f E f E ev de dv V dv R. C. Dynes, V. Narayanamurti, and J. P. Garno, Phys. Rev. Lett. 41, 1509 (1978).

Resistance measurement NbN/Oxide layer Resistance measurement of the NbN layer I V 100 80 R (Ω) 60 40 Ag Counter electrode 20 0 10 12 14 16 18 20 T(K)

Tunneling spectra T c ~14.9K l~6 T c ~9.5K l~2.3 T c ~7.7K l~1.4 di/dv (Ω -1 ) 1.0 0.8 0.6 0.4 0.2 (a) 2.17K 3.5K 4.5K 7.0K 10.35K 12.35K 14.0K 14.6K -15-10 -5 0 5 10 15 V (mv) di/dv (Ω 1 ) 0.30 0.25 0.20 0.15 0.10 005 5 (b) 2.23K 2.91K 4.30K 5.05K 6.70K 7.35K 8.00K 9.00K 0-15 -10-5 0 5 10 15 V (mv) di/dv (Ω 1 ) 0.20 0.15 0.10 5 (c) 2.17K 3.35K 4.3K 4.9K 5.5K 6.4K 7.0K 7.4K 0-15 -10-5 0 5 10 15 V (mv) Low bias: Relevant region for superconductivity

T c ~15.6K l~6.5 di/dv (Ω 1 ) 1.5 1.2 0.9 0.6 0.3 2.5K 4K 5.5K 8.5K 10 K 11.5K 12.9K 14.4K 15K -6-4 -2 0 2 4 6 V (mv) Small increase in Γ due to ph induced recombination of el and hole like quasiparticles: R. C. Dynes, V. Narayanamurti, and J. P. Garno, Phys. Rev. Lett. 41, 1509 (1978). Δ (mev) 2.8 2.4 2.0 1.6 1.2 0.8 0.4 Δ 0 2 4 6 8 10 12 14 16 T(K) Γ 1.0 0.8 0.6 0.4 0.2 R(T)/R(20K)

T c ~14.9K l~6 di/dv (Ω -1 ) 1.0 0.8 0.6 0.4 0.2 2.17K 3.50K 4.50K 7.0K 10.35K 12.35K 14.0K 14.6K -6-4 -2 0 2 4 6 V( (mv) Δ, Γ (mev) 2.5 Δ 2.0 1.5 1.0 0.5 Γ 2 4 6 8 10 12 14 16 T(K) 16 1.6 1.2 0.8 0.4 ρ (μω m)

T c ~7.7K l~1.4 0.18 di/dv (Ω -1 ) 0.12 6 2.17K 3.35K 4.30K 4.90K 5.50K 6.40K 7.00K 7.40K 0-4 -3-2 -1 0 1 2 3 4 V (mv) TT c Δ 0 Δ Γ Δ, Γ (mev) Δ reduces to 60% of its low temperature value at T c. 16 1.6 1.2 0.8 0.4 Δ 0 2 3 4 5 6 7 8 9 T(K) Γ 6 4 2 ρ (μω m)

Temperature dependence of Δ and Γ di/dv Δ, Γ (mev) 1.0 0.8 0.6 0.4 0.2 2.5 2.0 1.5 1.0 0.5 Least disorder T c =14.9K 2Δ/k B T c =4.36 l~6-6 -4-2 0 2 4 6 Δ V (mev) Γ 2 4 6 8 10 12 14 16 18 T(K) 1.0 0.8 0.6 0.4 0.2 R/R(10K) di/dv (Ω 1 ) Δ, Γ (mev) Intermediate disorder T c =9.5K 2Δ/k B T c =3.91 l~2.3 0.30 0.25 0.20 0.15 0.10 005 5 0 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2-4 -2 0 2 4 Δ V (mv) 2 3 4 5 6 7 8 9 10 11 T(K) Γ 1.1 0.9 0.7 0.4 0.2 R/R(10K) di/dv Δ, Γ (mev) 0.21 0.18 0.15 0.12 9 6 3 Large disorder T c =7.7K 2Δ/k B T c =4.43 l=1.4 0-4 -3-2 -1 0 1 2 3 4 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 V (mev) Δ Γ 2 3 4 5 6 7 8 9 T(K) B 1.0 0.8 0.6 0.4 0.2 R/R(10K) Pseudogap state above T c?

2Δ/k B T c Measure of electron-phonon coupling strength within mean field theories of superconductivity. 3.0 2.8 N(0) is expected to decrease for films ln(t c ) 2.6 2.4 2.2 2.0 1.8 1.4x10 28 2.1x10 28 2.8x10 28 N(0) (states ev -1 m -3 ) with lower T c Electron-phonon coupling strength λ Ν(0)V is expected to reduce. Measure of electronphonon coupling strength: 2Δ/k B T c

4.4 Δ 0 /k B T c 2Δ 4.2 4.0 3.8 Δ 0 (mev V) 2.7 24 2.4 2.1 1.8 1.5 1 2 3 4 5 6 l 8 10 12 14 16 T c (K) T Temp at which pairs form T c Zero resistance state T * Pseudogap state Insulator/ Metal Disorder

Γ (mev) Δ, 1.6 1.2 0.8 04 0.4 Pseudogap state? Δ(T)0 a T c Γ Δ 6 4 2 0 2 3 4 5 6 7 8 9 T(K) T (K) (μω m) ρ 21 18 15 12 9 6 3 0 Anderson Insulator T c NbN Superconductor Fermi Glass 1 2 3 4 5 6 7 8 9 l (at 17K) Γ (mev) Δ, 3.0 2.5 2.0 1.5 1.0 0.5 Δ(T) vanishes at T c Δ 0 3 6 9 12 15 T(K) Γ 1.5 1.2 0.9 0.6 0.3 (μω m) ρ Δ, Γ (mev) 1.6 1.2 0.8 0.4 Δ Γ 2 4 6 8 10 T(K) 5 4 3 2 1 0 ρ (μω m) Δ, Γ (mev) 2.4 2.0 1.6 1.2 0.8 0.4 Δ Γ 0.5 2 4 6 8 10 12 14 16 T(K) 2.5 2.0 1.5 1.0 ρ (μω ) Δ, Γ (mev) 2.5 2.0 1.5 1.0 0.5 Δ Γ 2 4 6 8 10 12 14 16 T(K) 1.6 1.2 0.8 0.4 ρ (μω m)

NbN Pseudogap state? Δ(T)0 a T c T (K) 21 Fermi 18 Anderson Insulator Glass 15 12 T c 9 6 Superconductor 3 0 1 2 3 4 5 6 7 8 9 l (at 17K) Δ(T) vanishes at T c Δ, Γ (mev) 1.6 1.2 Δ 0.8 0.4 Γ 1.0 0.8 0.6 0.4 0.2 2 3 4 5 6 7 8 9 T(K) R/R(10K) Δ, Γ (mev) 2.5 Δ 2.0 1.5 1.0 1.0 0.8 0.6 0.4 0.5 Γ 0.2 2 4 6 8 1012141618 T(K) R/R(10K)

Connection with BEC All visible matter consists of Fermions T Pair Formation Temperature Thermal Bosonic Particles T c Superfluid Attractive Interaction BCS BEC Preformed Pairs Disorder