Global Seismology Chapter 4

Similar documents
Earthquakes and Seismotectonics Chapter 5

An Earthquake is a rapid vibration or shaking of the Earth s crust created by a release in energy from sudden movement of a part of a plate along a

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating.

1 How and Where Earthquakes Happen

Chapter 7 Plate Tectonics

Earthquakes.

Earthquakes. Earthquakes and Earth s Interior Earth Science, 13e Chapter 8. Elastic rebound. Earthquakes. Earthquakes 11/19/2014.

Multi-station Seismograph Network

Earthquakes. Forces Within Eartth. Faults form when the forces acting on rock exceed the rock s strength.

INTRODUCTION TO EARTHQUAKES

22.5 Earthquakes. The tsunami triggered by the 2004 Sumatra earthquake caused extensive damage to coastal areas in Southeast Asia.

5. What is an earthquake 6. Indicate the approximate radius of the earth, inner core, and outer core.

Chapt pt 15 er EARTHQUAKES! BFRB P 215 ages -226

Dangerous tsunami threat off U.S. West Coast

Slide 1. Earth Science. Chapter 5 Earthquakes

ES Ch 19 Earthquakes 1

Earthquakes How and Where Earthquakes Occur

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College

4 Deforming the Earth s Crust

Earthquakes Chapter 19

Unit 4 Lesson 7 Mountain Building

Elastic rebound theory

Name Date Class. radiate in all directions, carrying some of the. of plate boundaries have different usual patterns of.

Slinky Lab- Simulating the Motion of Earthquake Waves.

EQ Monitoring and Hazards NOTES.notebook. January 07, P-wave. S-wave. surface waves. distance

UNIT - 7 EARTHQUAKES

Earthquakes. Building Earth s Surface, Part 2. Science 330 Summer What is an earthquake?

Module 7: Plate Tectonics and Earth's Structure Topic 4 Content : Earthquakes Presentation Notes. Earthquakes

Prentice Hall EARTH SCIENCE

Moho (Mohorovicic discontinuity) - boundary between crust and mantle

Earthquakes and Earth s Chapter. Interior

21. Earthquakes I (p ; 306)

Science Starter. Describe in your own words what an Earthquake is and what causes it. Answer The MSL

GEOLOGY MEDIA SUITE Chapter 13

Objectives. Vocabulary

Earthquakes Modified

Global geophysics and wave propagation

Internal Layers of the Earth

Forces in the Earth s crust

An entire branch of Earth science, called, is devoted to the study of earthquakes.

Introduction to Engineering Seismology Lecture 6

SEISMOLOGY. - The study of earthquakes waves and how they move through the body and around the surface of the earth.

11/30/16 EARTHQUAKES ELASTIC LIMIT FAULT FORCE AND PLATES WHAT DO YOU NOTICE?

Earthquakes. Photo credit: USGS

on the earthquake's strength. The Richter scale is a rating of an earthquake s magnitude based on the size of the

Unit Topics. Topic 1: Earth s Interior Topic 2: Continental Drift Topic 3: Crustal Activity Topic 4: Crustal Boundaries Topic 5: Earthquakes

Chapter 18 Amazing Ice: Glaciers and Ice Ages

9 June 15. Horst Rademacher. Lect 4: Seismic Waves. Summer Session 2015

ERTH2020 Introduction to Geophysics The Seismic Method. 1. Basic Concepts in Seismology. 1.1 Seismic Wave Types

Tracing rays through the Earth

Chapter 4 Earthquakes and Tsunamis

Chapter 4 Earthquakes and Tsunamis. Geology of the Hawaiian Islands. Any Questions? Class March Mean = 78.

Earthquakes Earth, 9th edition, Chapter 11 Key Concepts What is an earthquake? Earthquake focus and epicenter What is an earthquake?

they help tell Earth s story! Regents Earth Science With Ms. Connery

CHAPTER 1 BASIC SEISMOLOGY AND EARTHQUAKE TERMINOLGY. Earth Formation Plate Tectonics Sources of Earthquakes...

AIM: What are the features of Earthquakes and where are they located? Do Now: What are some words that are associated with earthquakes?

LECTURE 5 - Wave Equation Hrvoje Tkalčić " 2 # & 2 #

LAB 6: Earthquakes & Faults

Standard 2, Objective 1: Evaluate the source of Earth s internal heat and the evidence of Earth s internal structure.

7.2.1 Seismic waves. Waves in a mass- spring system

The Interior of the Earth. The Interior of the Earth. Chapter 30. Merry Christmas. Quick Quiz

Earthquakes and Earth s Interior

What is an Earthquake?

LECTURE #5: Plate Tectonics: Boundaries & Earthquake Science

UGRC 144 Science and Technology in Our Lives/Geohazards

Earthquakes. Earthquakes are caused by a sudden release of energy

Chapter 15. Earthquakes and Plate Tectonics. what s the connection? At the boundaries friction causes plates to stick together.

Topic 5: The Dynamic Crust (workbook p ) Evidence that Earth s crust has shifted and changed in both the past and the present is shown by:

Chapter Review USING KEY TERMS. asthenosphere uplift continental drift. known as. tectonic plates move. object. UNDERSTANDING KEY IDEAS

Earthquake Lab Introduction: Purpose: Method: Equipment needed: Fundamental Concepts and Key Terms:

CONTENT. A. Changes in the Crust Facts Changes Construction and Destruction. B. Continental Drift What is it? Evidence

10/18/2011. Chapter 8. Elastic Rebound Theory. Introduction. Earthquakes. and the Earth s Interior. Introduction. Introduction.

C) 10:20:40 A) the difference between the arrival times of the P -wave and the S -wave

Lecture notes Bill Engstrom: Instructor Earth s Interior GLG 101 Physical Geology

Earthquakes. Pt Reyes Station 1906

Exploring Inside the Earth. What Seismic Waves Tell Us About Earth s Interior

Earthquakes. Chapter Test A. Multiple Choice. Write the letter of the correct answer on the line at the left.

Tectonic Plates Test Study Guide Answers

Physics and Chemistry of the Earth and Terrestrial Planets

Earthquake. What is it? Can we predict it?

2.1 Introduction to waves

Earthquakes = shaking of Earth because of a rapid release of energy

(1) Identify 5 major principles of relative dating? For each principle, describe how you tell what is younger and what is older.

What causes an earthquake? Giant snakes, turtles, catfish, and spiders?

Seismic Waves NOTES.notebook. January 05, lithosphere. limit. elastic. fault. movement. Fault. fault. all. Seismic waves focus. interior.

Forces in Earth s Crust

Name Class Date. 1. What is the outermost layer of the Earth called?. a. core b. lithosphere c. asthenosphere d. mesosphere

Mineral Element Compound Atom Crystal. Silicate Nonsilicate Inorganic Luster Streak. Cleavage Fracture Hardness Density Reclamation

Chapter 12 Lecture. Earth: An Introduction to Physical Geology. Eleventh Edition. Earth s Interior. Tarbuck and Lutgens Pearson Education, Inc.

RESTLESS EARTH - CHAPTER 4

Earthquakes. Earthquakes and Plate Tectonics. Earthquakes and Plate Tectonics. Chapter 6 Modern Earth Science. Modern Earth Science. Section 6.

I. What are Earthquakes?

Earthquakes & Volcanoes

Elastic Rebound Theory

FORCES ON EARTH UNIT 3.2. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth.

Instructor: Ms. Terry J. Boroughs Geology 305 Restless/Dynamic EARTH: Geologic Structures (Folds & faults); Earthquakes; and the Earth s Interior

Whole Earth Geophysics. Robert J. Lillie

Read & Learn Earthquakes & Faults

An Earthquake in Your Community

Transcription:

Global Seismology Chapter 4 Earthquake: an event of ground shaking usually caused by the rupturing of a fault within the Earth. Who studies Earthquakes? Seismologists waves Geophysicists Mechanics Geodesy Geologists Structures Paleoseismology Faults: Red

Why Do Earthquakes Occur? Earthquakes can occur due to: Sudden formation of a new fault (fracture on which sliding occurs) Sudden slip on an existing fault Movement of magma in a volcano / Explosion of a volcano Giant landslides (technically involves a fault) Meteorite impact Underground nuclear bomb tests

Earthquake Terminology Hypocenter (Focus): actual location of the earthquake at depth Epicenter: location on the surface of the Earth above the hypocenter Hanging Wall: top block of a fault (where a light would hang from) Footwall: bottom block of a fault (where you would stand)

Types of Faults In general, faults come in three different types: Normal, Reverse, and Strike-Slip Shallow angle (< 30 ) reverse faults are called thrust faults Faults that have a mix of slip styles are called oblique slip faults Fault animations

Why are there different types of faults? Normal Faults: from stretching of or extending rock; points on opposite sides of a fault are father apart after an earthquake Reverse Faults: from contracting or squishing rock; points on opposite sides of the fault are closer together after an earthquake Strike-Slip: can form in either areas of stretching or squishing, material slides laterally past each side of the fault. Described by sense of motion: Right-lateral (Dextral) Left-lateral (Sinistral)

Quantifying Deformation: Stress & Strain A simplistic view Stress = force/area So both force and area of contact are important Stress [=] Pascals [=] Kg m -1 s -2 Types: tension, compression, shear Strain = Δl/l 0 Measures change in size/shape (i.e. deformation) Dimensionless (i.e. it is a percent). Some may say, e.g., 2.5 μstrains or 3.1 nstrains Types: extension/dilatation, contraction, shear Most scientists agree that stress causes strain Chicken and egg argument

Normal Stress / Normal Strain A normal stress acts perpendicular to the applied surface. A normal strain results from a normal stress Deforms a square into a rectangle Angles between sides remain unchanged

Shear Stress / Normal Strain A shear stress acts parallel to the applied surface. A normal strain results from a normal stress Deforms a square into a lozenge. Angles between sides change.

Pressure Pressure is a special state of stress where the stresses are equal in all directions i.e. all normal stresses Zero shear stress Occurs in fluids (liquids/gasses) E.g. air pressure Causes only volumetric changes

Basic Wave Types Radiated energy that passes through the Earth during and after an earthquake are called seismic waves. In physics, there are two basic ways to classify waves Both are required to completely describe the wave type 1 st Way: Based on what the wave is traveling through / along Body wave: Motion through the interior of Earth Surface wave: Motion is along the surface Mini-Earth

Basic Wave Types 2 nd Way: Based on how particles are moved by the wave / how the wave causes the material it is traveling through to deform Compressional (Transverse) waves motion of particles is in the direction of the wave causes material to contract and extend Shear (Longitudinal) waves motion is perpendicular to wave direction causes material to shear

Basic Wave Types 2 nd Way: Based on how particles are moved by the wave / how the wave causes the material it is traveling through to deform Compressional (Transverse) waves motion of particles is in the direction of the wave causes material to contract and extend Shear (Longitudinal) waves motion is perpendicular to wave direction causes material to shear (Animation of wave types)

Types of Seismic Waves Earthquakes produce four main types of waves Body Waves: P-waves - compressional body waves Think primary or push-pull waves S-waves - shear body waves Think secondary or shear or shake waves Surface Waves: R-waves (Rayleigh, named for a physicist) surface shear waves that make the ground move up and down in a retrograde elliptical pattern. L-waves (Love, named for a seismologist) surface shear waves that cause the ground to move horizontally back and forth (like a snake). There are no surface compressional waves

L-waves vs. R-waves L-waves horizontal motion R-waves retrograde elliptical motion in the vertical plane Surface waves do most of the damage in earthquakes How do we measure ground motion?

Measuring Seismic Waves Seismologists use seismographs or geophones to measure the ground accelerations of the Earth. Seismographs work because the Earth moves but the bob doesn t The record that the seismograph writes to is called a seismogram, which records the arrival times of seismic waves To minimize oscillations, a dampening fluid (e.g. oil) is used. Seismograph Animation

Seismogram On a seismogram (the record created by a seismograph), we see the arrival times of the various seismic waves. P-waves, first, S-waves next, possibly aftershocks A digital seismogram

Seismograph in Action As the ground moves down, the seismogram records a positive slope. Large magnitude earthquakes are hard to measure with stations near the epicenter, because motions are so large that the needle essentially goes off the paper (e.g. the M w 9.1 great Sumatra earthquake)

Use the same principles but use a coil of wire inside a magnet Motions induce a current that is measured by a computer Modern seismographs can measure motions of a millionth of a millimeter ~10x diameter of a typical atom Detect a person walking at 1 km distance The global seismic network is calibrated so that all devices generate compatible data Modern Seismographs

Seismic Pulses How does seismic energy move? A simple way to understand this is to consider a pulse. Pulse: A very short series of waves But the Earth is 3D!

Seismic Wave Fronts Seismic sources radiate pulses of energy in all directions (spherically) from a source point. E.g. pebble into water explosion Wave front: The boundary between the energy pulse and the material that has not yet received the energy If we are only interested in what happens in one direction We can just study part of the wave front :: Seismic ray

Seismic Rays Ray: The path of a tiny portion of the wave front Perpendicular to wave front Easier to understand Most of seismology involves rays, although we understand that wave fronts are what is really occurring.

Using Earthquakes to See Inside the Earth Using what we have learned (and will learn now) about seismic waves, we can now look at how the various layers of the Earth were discovered and some of their properties.

A Layered Earth We live on the thin outer skin of Earth. Early perceptions about Earth s interior were wrong. Open caverns filled with magma, water, and air. Furnaces and flames. We now know that Earth is comprised of layers. The Crust. The Mantle. The Core. Outer Core. Inner Core. Some basic rules of physics give some clues From Milton s Paradise Lost

Earth s Density Earth s Density gives us clues about its internal structure Density = Mass/Volume Measures how much mass is in a given volume. Expressed in units of mass/volume e.g. g/cm 3 Ice floats why? Estimates of earth s mass and volume give a whole earth density of ~5.5 g/cm 3 Typical rocks at the surface of the Earth have a density of 2.0-2.5 g/cm 3 What does this require of the density of material in the Earth s interior?

Earth s Density Earth s shape as a clue to the internal structure of the Earth If density increased gradually and uniformly towards the center, a significant portion of Earth s mass would be near the outer edges. Then centrifugal force (not centripetal) would cause the planet to flatten into a disk. This has (obviously) not happened But Earth does slightly bulge at the equator (~0.033 %)

Earth s Layers Earth s shape as a clue to the layering of the earth If the Earth consisted of a thin solid shell over a thick liquid center, then the surface would rise and fall with tides like the ocean This does not happen; only the oceans rise and fall. Thus, the Crust does not float over a liquid interior

Is Earth s Interior Spherically Symmetrical? To test this question: Look at arrival times from stations at equal distances from each other A A Seismologists commonly measure distance by epicentral angle, Δ, the angle subtended at Earth s center Measurements like this show that for any given epicentral angle, travel times are ~constant regardless of starting location. C Δ Δ Δ B So, this means that Earth must be spherically layered. C B Mini-Earth

Do Seismic Velocities Vary with Depth? To test this question: Look at arrival times from stations at varying distances from each other If velocity is uniform with depth Distance will be linearly related to time; waves will be traveling in straight lines Global measurements show Travel times are not linearly related to distance Velocity is not uniform with depth; waves do not travel in straight lines Velocity must increase with depth A B C D E F Travel Time Δ G Distance Mini-Earth

What Controls Seismic Velocities? A typical seismic wave: Wavelength, λ = 200 m Freqency, f = 10 Hz (s -1 ) v = f λ Velocity, v = 2 km/s Velocities of P- and S-waves are different μ = Shear Modulus K = Bulk Modulus ρ (rho) = Density Which is faster? What are moduli? Given that seismic velocities in sandstone are ~3.5 km/s and ~8 km/s in peridotite, how can this make sense? P-wave velocity v p v s = = 4 K + µ 3 ρ S-wave velocity µ ρ

Elastic Moduli Elastic Moduli measure a material s constitutive properties i.e. the mathematical relationship between stress and strain. For elastic materials, only two are needed to completely define behavior. Bulk Modulus, K: resistance to volumetric strain or compressibility K = P V V New Volume volume of of rock, VδV Shear Modulus, μ (sometimes, G): resistance to shear strain or the resistance to shape change τ µ = = δθ shearstress shearstrain δθ Because liquids have no shear resistance, their μ = 0

Seismic Velocities and Moduli Given the equations for seismic velocity Why does v s depend on μ? Why does v p depend on μ and K? What is v s in a liquid? Why? What is v p in a liquid? Why? In a partial melt: What happens to v? Which wave will be slowed the most? Why? P-wave velocity v p v s = = 4 K + µ 3 ρ S-wave velocity µ ρ

Finding Ray Paths :: Refraction Just like light, seismic rays refract, or bend, when they encounter a medium of different seismic velocity Refraction is quantified by Snell s Law sin i1 sin i = v v I = angle of incidence Measured normal to interface v = seismic velocity of material At some value of i, i crit, the wave is completely reflected 1 2 2 i 1 Curse you Snell s law!! An orangutan spear fishing i 2 v 1 v 2 v 1 < v 2

Refraction Through Multiple Layers Snell s law can be applied to multiple layers sin i v 1 1 sin i2 sin = Snell s law also applies to reflected rays v 2 = v we ll cover this later 3 i 3

Refraction Through Curved Layers When dealing with large epicentral distances Must account for the Earth being spherical Snell s Law can be derived for spherical layers r1 sin i1 r2 sin i2 r3 sin i = = v v v 1 P = is the ray parameter 2 Has the same value along the entire path of any given ray assuming: v, i, and r are measured at the same place 3 3 = p

Reflection, Conversion, and Snell s Law Snell s Law applies to reflected rays Conversion: when a ray meets an interface, new rays are typically created A P-wave can generate reflected P- waves, and S-waves as well as refracted P-waves and S-waves Same is true for S-waves Snell s law also applies to converted rays that are: Reflected sin i1 P sin i1 S = v v 1P 1S v 2P < v 1P v 2S < v 2P i 1P i 2S i 2S i 1P i2p v 1P v 1S < v 1P Refracted sin i v 1P = 1P sin v i 2S 2S

Wave Phases On the global scale, waves converted from reflection or refraction with the major layers of the Earth are called phases. PS S c P i begins as P-wave reflected off of the surface converted to S-wave Begins as S-wave reflected off outer core Converted to P-wave Reflected off the outer core/inner core boundary K P-wave in the outer core I P-Wave in the inner core J S-Wave in the inner core Test: What is SKJKP? Why is PSKIKP not possible?

The S-wave Shadow Zone If velocity gradually increased with depth waves would be recorded at all stations globally Seismic waves are not recorded at all seismic stations world wide Called shadow zones S-waves only reach stations that are within epicentral angles of < 103 of the epicenter. Earth s core is made of an iron alloy based on meteorites The S-wave shadow zone is a direct consequence of the liquid outer core. Seismologists have since discovered that P-waves reflect off of a discontinuity within the core suggesting a two-layer core.

The P-Wave Shadow Zone P-waves also do not reach all stations globally P-wave shadow zone is between 103 and 143 This can be easily explained by a large seismic velocity discontinuity at depth The core-mantle boundary This means that seismic velocities in the core must be slower on average than the lower mantle.

How Long Does it Take? Seismic waves can travel through Earth in a matter of minutes! Teleseismic: Rays that arrive at > 18 o away from their source. Spend little time in the crust Useful for investigating the deep Earth

6 5 4 3 2 1 Attenuation Wave amplitudes generally decrease away from their source Energy is spread over larger volume as the wave front expands Attenuation: the gradual loss of intensity (amplitude) of a wave as it travels through a medium Causes of attenuation in seismic waves: Encountering liquids or partial melts E.g. the low velocity zone Encountering unconsolidated (or non-elastic) material E.g. Sand 0 1 2 4 6 8 10

Refraction, Velocity and Arrival Times = Moho Discovery Seismic waves travel faster through the mantle than the crust In 1909, Andrija Mohorovičić discovered that waves first arriving at seismic stations within 200 km of an epicenter had an average velocity of 6 km/s Stations > 200 km away average wave speed 8 km/s To explain this nearby stations received waves that only went through the crust far away stations received waves that travel through the mantle. The crust mantle boundary is now called the Moho, in honor of this discovery

Velocity of P-Waves at Depth Mantle rock = Peridotite Ultramafic rock, mostly olivine In general, seismic velocity increases with depth. In oceanic crust low-velocity zone at ~100-200 km depth. At this depth (pressure) and temperature peridotite partially melts < 2% This zone permits the movement of oceanic plates. Below the LVZ velocities increase until the core mantle boundary

Seismic Velocity vs. Depth for the Whole Earth Over the past hundred years, seismologists have created a pretty robust picture of seismic velocities at various depths within the Earth.