Fundamentals of PLLs (I)

Similar documents
Control Systems. Mathematical Modeling of Control Systems.

6.302 Feedback Systems Recitation : Phase-locked Loops Prof. Joel L. Dawson

EE 435 Lecture 42. Phased Locked Loops and VCOs

6 December 2013 H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ 1

u(t) Figure 1. Open loop control system

Cooling of a hot metal forging. , dt dt

Chapter 7: Inverse-Response Systems

Laplace Transformation of Linear Time-Varying Systems

2/20/2013. EE 101 Midterm 2 Review

Chapter 6: AC Circuits

Fundamentals of PLLs (III)

Example: MOSFET Amplifier Distortion

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Frequency Response. We now know how to analyze and design ccts via s- domain methods which yield dynamical information

ELEC 201 Electric Circuit Analysis I Lecture 9(a) RLC Circuits: Introduction

CONTROL SYSTEMS. Chapter 10 : State Space Response

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

SSRG International Journal of Thermal Engineering (SSRG-IJTE) Volume 4 Issue 1 January to April 2018

UT Austin, ECE Department VLSI Design 5. CMOS Gate Characteristics

EECE 301 Signals & Systems Prof. Mark Fowler

Chapter 6 DETECTION AND ESTIMATION: Model of digital communication system. Fundamental issues in digital communications are

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

Lecture 040 Digital Phase Lock Loops (DPLLs) (09/01/03) Page 040-1

ECEN620: Network Theory Broadband Circuit Design Fall 2018

Chapter Lagrangian Interpolation

13.1 Circuit Elements in the s Domain Circuit Analysis in the s Domain The Transfer Function and Natural Response 13.

WiH Wei He

Design of Controller for Robot Position Control

Graduate Macroeconomics 2 Problem set 5. - Solutions

A Demand System for Input Factors when there are Technological Changes in Production

A capacitor consists of two conducting plates, separated by an insulator. Conduction plates: e.g., Aluminum foil Insulator: air, mica, ceramic, etc

TSS = SST + SSE An orthogonal partition of the total SS

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function

A Theoretical Model of a Voltage Controlled Oscillator

Implementation of Quantized State Systems in MATLAB/Simulink

Chapter 6. Laplace Transforms

Motion of Wavepackets in Non-Hermitian. Quantum Mechanics

H = d d q 1 d d q N d d p 1 d d p N exp

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t)

Solution in semi infinite diffusion couples (error function analysis)

Methods of Study of Power Converters

High-Speed Serial Interface Circuits and Systems. Lect. 4 Phase-Locked Loop (PLL) Type 1 (Chap. 8 in Razavi)

( ) () we define the interaction representation by the unitary transformation () = ()

Slovak University of Technology in Bratislava Institute of Information Engineering, Automation, and Mathematics PROCEEDINGS

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation

6.8 Laplace Transform: General Formulas

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

CHAPTER 7: SECOND-ORDER CIRCUITS

Chapter 9 - The Laplace Transform

A Nonlinear ILC Schemes for Nonlinear Dynamic Systems To Improve Convergence Speed

Small signal analysis

Charge-Pump Phase-Locked Loops

Chapter 5. Circuit Theorems

Motion in Two Dimensions

Multiple Failures. Diverse Routing for Maximizing Survivability. Maximum Survivability Models. Minimum-Color (SRLG) Diverse Routing

Digital Integrated CircuitDesign

Notes on the stability of dynamic systems and the use of Eigen Values.

Chapters 2 Kinematics. Position, Distance, Displacement

The topology and signature of the regulatory interactions predict the expression pattern of the segment polarity genes in Drosophila m elanogaster

Energy Storage Devices

Let s treat the problem of the response of a system to an applied external force. Again,

Chapter 7 Response of First-order RL and RC Circuits

Small-Signal Model for Buck/Boost Converter

Single Phase Line Frequency Uncontrolled Rectifiers

FTCS Solution to the Heat Equation

Diode rectifier with capacitive DC link

U(t) (t) -U T 1. (t) (t)

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Response of MDOF systems

LAPLACE TRANSFORM AND TRANSFER FUNCTION

CS 268: Packet Scheduling

non-linear oscillators

STUDY PROGRAM: UNIT 1 AND UNIT

Decentralised Sliding Mode Load Frequency Control for an Interconnected Power System with Uncertainties and Nonlinearities

Lesson 2 Transmission Lines Fundamentals

Sklar: Sections (4.4.2 is not covered).

Behavior of Phase-Locked Loops

Comb Filters. Comb Filters

CHAPTER 3 SIGNALS & SYSTEMS. z -transform in the z -plane will be (A) 1 (B) 1 (D) (C) . The unilateral Laplace transform of tf() (A) s (B) + + (D) (C)

Water Level Controlling System Using Pid Controller

Lecture 12. Aperture and Noise. Jaeha Kim Mixed-Signal IC and System Group (MICS) Seoul National University

6.01: Introduction to EECS I Lecture 8 March 29, 2011

THERMODYNAMICS 1. The First Law and Other Basic Concepts (part 2)

Physical Limitations of Logic Gates Week 10a

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours

Network Flows: Introduction & Maximum Flow

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

CHAPTER II AC POWER CALCULATIONS

Chapter 2: Principles of steady-state converter analysis

Lecture 11 SVM cont

Experimental Buck Converter

Chapter 5 Signal-Space Analysis

24.2: Self-Biased, High-Bandwidth, Low-Jitter 1-to-4096 Multiplier Clock Generator PLL

Introduction to Congestion Games

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

EEL 6266 Power System Operation and Control. Chapter 5 Unit Commitment

Normal Random Variable and its discriminant functions

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model

Transcription:

Phae-Locked Loop Fundamenal of PLL (I) Chng-Yuan Yang Naonal Chung-Hng Unvery Deparmen of Elecrcal Engneerng

Why phae-lock? - Jer Supreon - Frequency Synhe T T + 1 - Skew Reducon T + 2 T + 3 PLL fou = 900 ~ 925 MHz ( n 30 Khz ep ) CK CKc Mcro-proceor Dgal IC PLL CK CK CKc - Clock Recovery Experence Clock Skew Fber Recever CPU MEM I/O Daa Recovered clock 1-1 Chng-Yuan Yang / EE, NCHU

Hory of PLL Fr PLL: 1932 by de Belleze, Coheren communcaon Fr PLL IC: 1965, purely analog (Lnear PLL) Fr Dgal PLL: around 1970 (ung Dgal Phae Deecor) All Dgal PLL: Dgal Fler, NCO (Numercally Conrolled Ocllaor), Sofware PLL: Ung DSP 1990: Mo of he PLL Charge Pump PLL 1-2 Chng-Yuan Yang / EE, NCHU

Wha PLL? Reference gnal x() Phae Deecor Loop Fler Synchronzed Ocllaor y() Synchronzed gnal Operae on exce phae of x() and y(). Feedback yem wh PD a an error amplfer. Locked when phae dfference beween npu and oupu conan wh me. 1-3 Chng-Yuan Yang / EE, NCHU

Termnology Lockng When VCO oupu n phae a well a n frequency wh he reference npu gnal Lock Range Inpu frequency range over whch he loop can manan lockng Capure Range Inpu frequency range ono whch he loop can lock Free Runnng Frequency VCO runnng frequency when no npu appled Acquon Tme: Pull-n me + Selng me Tme requred for he PLL o lock elf on o he reference clock Phae Offe or Phae Error (Seady Sae) When PLL locked, he phae dfference beween npu and oupu 1-4 Chng-Yuan Yang / EE, NCHU

Bac feedback nework of PLL v () Vn[()] n() V v () Vco[()] co() V o o o o o o v ()()() K v v where K d m o m K VV n()co() m o o he ranfer conan [1/V] 1 KmVV o n()()() o o o o 2 () n()()() n()()() v K where K K VV c d o o d m o Kd n() e ()() e o [V/rad] 1-5 Chng-Yuan Yang / EE, NCHU

v c () change he free runnng frequency c of he VCO. ()() K v where K degnaed a he ocllaor gan [2Hz/V]. ()()() K v d d e() d o c o c o e c o c K K n() d c o d e K n() where and K K K. e o o d K ndcaed a he gan of he PLL [2Hz]. 1-6 Chng-Yuan Yang / EE, NCHU

Soluon n he cloed form d e() d K n() / K1 d e() d K n() e 2 1 K e 0 an an 2 2 () K K 4 2 e (A) Snce K, an() jx anh() j x, we have 0 K 1 () 2 2 1() /() Kan( / 4 K / 2) e ln 1() /() K an( / 4 K / 2) e 2 2 0 1 K 1 exp()() K e 2an K 2 2 1 exp()() K 2 0 For he eady ae, ha, for, he lh of eq. (A) equal zero wh he reul 1 e n K 1-7 Chng-Yuan Yang / EE, NCHU

Lnearzed oluon The me-dependen phae dfference e () a he oupu of he PD n he cloed PLL mall and prone o he mplfcaon n()() e e (Th aumpon uppored wh he realy ha a lo of PD are lnear or nearly lnear n he workng range.) d e() d K n() e d e() d K () e () e where he negraon conan for 0. K K K e e0 e0 The phae dfference n he eady ae: e K 1-8 Chng-Yuan Yang / EE, NCHU

Soluon n he frequency doman In he locked ae, = o and e << /2. o()()() c Kovc n[()()] o o c Kovc0 Kd Ko o o c Kovc0 () Kn[()()] Laplace ranform: o o ()()() e o ()()() K o o PLL ranfer funcon o () K H () () K ()()() o e 1() H ()() K fr order 1-9 Chng-Yuan Yang / EE, NCHU

Smplfed block dagram of PLL wh ndvdual ranfer funcon v () () () V ()() K d d e Ko Vc ()()() F Vd o()() Vc vo () () () o o PD: we ge a volage v d () proporonal o he phae dfference of he npu. v d () = [ () o ()]K d K d : he phae deecor gan [V/rad] Loop fler: a low-pa fler aenuang carrer wh frequence = o, and deally all undered deband. Noe ha he ueful gnal v c () a lowly varyng DC componen. VCO: v c () = v d () h f () h f (): he me repone of he loop fler c (): he VCO free-runnng frequency ()()() d K v d o o c o c K o : he VCO gan [2Hz/V] In mo cae, K d and K o are volage-dependen. nonlnear model n PLL I lnearzaon, jufed n mall-gnal cae ( eady ae workng mode), provde a good ngh no he problem. 1-10 Chng-Yuan Yang / EE, NCHU

Smplfed block dagram of PLL n a feedback pah Kd Ko F () d o () ()()()() o FM K K F o KF()() FM G() H () KF()() FM 1 1() G Forward loop gan K Kd Ko KF()() F Open loop gan G() M 1-11 Chng-Yuan Yang / EE, NCHU

Order of PLL Kd Ko F () F() = 1 and F M () = 1, H () K K The PLL degnaed a he fr-order loop nce he large power of n he polynomal of he denomnaor of he order one. Order of PLL accordance wh he order of he repecve polynomal n he denomnaor of ranfer funcon. 1-12 Chng-Yuan Yang / EE, NCHU

Type of PLL Kd Ko F () ()()()()()() F and e M o o e 1 e()() 1() G A() Inroducng he gan G(), G(), we ge n B() Laplace lm heorem for he fnal value of e (): KF() n B() ()() A ()() B e n Every PLL conan a lea one negraor, ha, VCO. n 1 (PLL a lea ype 1) Type of PLL: no. of pole ( = 0) n G() no. of negraor n he loop Each negraor conrbue one pole o he TF, o ha (ype no.) (order no.) n1 B() lm() e lm() 0 A n ()() B 1-13 Chng-Yuan Yang / EE, NCHU

Seady ae error n1 B() lm() e lm() 1 n 0 n A()() B Phae ep: () lm() e 1 0 The fnal value zero for PLL. Frequency ep: () 2 B(0) lm() e2 Kv: velocy error conan A(0)(0)(0) KF FM Kv n1 In ype-2 PLL wh wo negraor n he loop, he DC gan F(0) very large, o K v and conequenly he eady ae error neglgble. Frequency ramp: () 2 3 B(0) lm() e3 Ka: acceleraon or dynamc rackng error A(0) K n2 a Type-3 PLL can elmnae even he eady ae error e3 for o zero. Frequency locked loop may be condered a ype-0 PLL. 1-14 Chng-Yuan Yang / EE, NCHU

Block dagram of he fr-order PLL v () () () V ()() K d d e Ko K A o()() Vc vo () () o () o o() Kd KoK A K Open-loop ranfer funcon G() (loop gan) () Syem ranfer funcon Error ranfer funcon H () e o() G() K () 1() G K e() E() 1() H () K 1-15 Chng-Yuan Yang / EE, NCHU

Normalzed ranfer funcon of 1 -order PLL 20log()H jx 20log()E jx j Inroducng jx K K 1 Normalzed loop gan G() Normalzed ranfer funcon 1 H ()() (Low-pa fler) E (Hgh-pa fler) 1 1 1-16 Chng-Yuan Yang / EE, NCHU

Phae deecor Phae Deecor A phae deecor a crcu whoe average oupu,, lnearly proporonal o he phae dfference,, beween wo npu. In he deal cae, he relaonhp beween and lnear, crong he orgn for = 0. The operaon of phae deecor mlar o ha of dfferenal amplfer n ha boh ene he dfference beween he wo npu, generang a proporonal oupu. Gan : he lope of he lne, expreed n. 1-17 Chng-Yuan Yang / EE, NCHU

Phae deecor : Mulpler Phae Deecor ung Analog Mulpler Glber mulpler Oupu volage dependen on he npu gnal amplude Narrow lnear range (Narrow lock range) Canno dcrmnae frequency dfference V d V d V dm /2 /2 e V V dm V o V d V n( ) V dm e offe 1-18 Chng-Yuan Yang / EE, NCHU

Phae deecor : XOR V 1 V 2 V ou V 1 V 2 V ou V K ou PD 2V V0 0 V0 2 ndependen of he npu frequency V 1 V 2 V V 1 2 V ou 0 V o u 2 V ou V 1 V 2 V 1 V 2 2 2 V ou V ou 3 2 1-19 Chng-Yuan Yang / EE, NCHU

Phae deecor : XOR (con d) When locked, he phae dfference 90 degree Oupu volage ndependen on he npu gnal amplude Oupu volage dependen on he npu duy cycle Narrow lnear range (Narrow lock range) /2 Canno dcrmnae frequency dfference Ue for Daa/Clock Recovery PLL: npu noe domnan - Hybrd PLL (Analog PLL + Dgal PLL) No Dead Zone 1-20 Chng-Yuan Yang / EE, NCHU

Concepual operaon of a phae-frequency deecor (PFD) PFD 1-21 Chng-Yuan Yang / EE, NCHU

Phae deecor : PFD hree-ae PD A B A B A A Sae I Sae II Sae III Q A Q A A Q A = 1 Q B = 0 Q A = 0 Q B = 0 Q A = 0 Q B = 1 B Q B Q B B B A A Sae dagram B Q A B Q A Q B Q B Tmng dagram 1-22 Chng-Yuan Yang / EE, NCHU

Implemenaon of PFD Inpu-oupu characerc: PFD followed by low-pa fler: 1-23 Chng-Yuan Yang / EE, NCHU

- Phae deecor : PFD When locked, he phae dfference 0 degree Oupu volage ndependen on he npu gnal amplude Oupu volage ndependen on he npu duy cycle Wde lnear range (Wde lock range) 2 Dcrmnae frequency dfference Ue carefully for Daa/Clock Recovery PLL - Hybrd PLL (Analog PLL + Dgal PLL) Dead Zone problem Due o fne gae delay Inroduce large jer or poor phae noe 1-24 Chng-Yuan Yang / EE, NCHU

- The wdh of he narrow ree pule A Q A Q B B A Q A Q A Q B B Q B E F Q B Ree E, F E F E, F Ree 1-25 Chng-Yuan Yang / EE, NCHU

PFD- Scheme wh NAND A (REF) UP B (VCO) DN 1-26 Chng-Yuan Yang / EE, NCHU

PFD- Dynamc CMOS PFD A (REF) A (REF) Q A (UP) B (VCO) Q A (UP) Q B (DN) A (REF) B (VCO) Q B (DN) B (VCO) Q A (UP) Q B (DN) Km, JSSC, May 1997 1-27 Chng-Yuan Yang / EE, NCHU