Validation of passive microwave snow algorithms

Size: px
Start display at page:

Download "Validation of passive microwave snow algorithms"

Transcription

1 Remote Sensing and Hydrology 2000 (Proceedings of a symposium held at Santa Fe, New Mexico, USA, April 2000). IAHS Publ. no. 267, Validation of passive microwave snow algorithms RICHARD L. ARMSTRONG & MARY J. BRODZIK National Snow and Ice Data Center (NSIDC), CIRES, CB449, University of Colorado, Boulder, Colorado 80309, USA rlax@krvos.colorado.edu Abstract Passive microwave satellite remote sensing can greatly enhance large-scale snow measurements based on visible satellite data alone because of the ability to acquire data through clouds or during darkness as well as to provide a measure of snow depth or water equivalent (SWE). This study develops a validation methodology and provides preliminary results from comparisons of several different passive microwave algorithms, including both mid- and high-frequency channels, vertical and horizontal polarizations and polarization difference approaches. Snow extent derived from passive microwave data is compared with the NOAA Northern Hemisphere snow charts. Results clearly indicate those time periods and geographical regions where the two techniques agree and where they tend to consistently disagree. Validation of SWE derived from passive microwave data is undertaken using measurements from snow course transects in the former Soviet Union. Preliminary results indicate a general tendency for nearly all of the algorithms to underestimate SWE. Key words algorithms; climate change; global; passive microwave; remote sensing; satellite; satellite validation; snow INTRODUCTION Snow cover is an important variable for climate and hydrological models due to its effects on energy and moisture budgets. Seasonal snow, which can cover more than 50% of the Northern Hemisphere land surface during the winter (Frei & Robinson, 1999; Armstrong & Brodzik, 1999), is responsible for the largest annual and interannual differences in land surface albedo. Surface temperature is highly dependent on the presence or absence of snow cover and temperature trends have been shown to be related to changes in snow cover (Groisman et al, 1994). Realistic simulation of snow cover in climate models is essential for correct representation of the surface energy balance, as well as for understanding winter water storage and predicting year-round runoff. The lack of meteorological and snow-cover data to execute, calibrate and validate snowcover models is a major obstacle to improved simulations (King et al, 1999). When snow covers the ground, some of the microwave energy emitted by the underlying soil is scattered by the snow grains. Therefore, when moving from snowfree to snow-covered land surfaces, a sharp decrease in emissivity and associated brightness temperatures (T B ) provides a nearly unambiguous indicator of the presence of dry snow (Matzler, 1994). In addition, theoretical and empirical studies have demonstrated that the amount of scattering can be correlated with snow mass and specific wavelength. From this basic relationship, regional algorithms have been developed which indicate the presence of snow and compute snow water equivalent (SWE).

2 88 Richard L. Armstrong & Mary J. Brodzik BRIGHTNESS TEMPERATURE AND VALIDATION DATA The NOAA/NASA Pathfinder Program was initiated in 1993 to facilitate the application of currently archived satellite data for global change research. With support from this program the National Snow and Ice Data Center (NSIDC) has produced a 22-year, consistently processed, time series of gridded passive microwave data in a common format called the Equal Area Scalable Earth-Grid (EASE-Grid). This dataset was developed using Scanning Multichannel Microwave Radiometer (SMMR) data for the period and Special Sensor Microwave Imager (SSM/I) data for These EASE-Grid T B values provide the standard input to all algorithms being evaluated in this study. For the validation of snow-covered area, we compare microwave snow extent maps with the EASE-Grid version (Armstrong & Brodzik, 1998) of the NOAA Northern Hemisphere weekly snow charts (Robinson et al., 1993). The original NOAA charts were derived from the manual interpretation of Advanced Very High-Resolution Radiometer (AVHRR), Geostationary Operational Environmental Satellite (GOES) and other visible satellite data. With regard to SWE, this study focuses on the robust nature of the larger validation datasets, which can be expected to provide a full range of snow/climate conditions, rather than on smaller datasets, which may only represent a "snapshot" in time and space. Therefore the primary validation dataset in this phase of our study is the Former Soviet Union Hydrological Surveys (FSUHS)(Haggerty & Armstrong, 1996). These data represent a unique and invaluable source for algorithm validation as they include not only SWE values but additional information on snow structure, extent of snow cover within the surrounding terrain, and forest type and percent of forest cover, from a 50 km diameter area surrounding the station. These data are available during both the SMMR and SSM/I periods (through 1990) and comprise the average of measurements along transects of km in length with measurements every m. These surveys were undertaken on the 10th, 20th and last day of the month. METHODS AND RESULTS Digital image comparison techniques are being applied to a multi-year, time series analysis of several different algorithms (Chang et al., 1987; Goodison, 1989; Grody & Basist, 1996; Hiltbrunner, 1996; Nagler, 1991; Tait, 1998; Walker & Goodison, 1993). The ultimate goal of this study is to determine whether the differences between the algorithm output and the validation data are random or systematic. In the case of systematic differences, the patterns are being correlated with the specific effects of land-cover type, atmospheric conditions and snow structure. Because we compare algorithm output with continuous records of station data, we will be able to identify any seasonal or interannual patterns in the accuracy of the algorithms. Snow-covered area This phase of the study evaluates the overall capability of the passive microwave data to map snow-covered area through comparison with the EASE-Grid version of the

3 Validation of passive microwave snow algorithms Fig. 1 Northern Hemisphere snow-covered area (x 10 km") derived from visible (NOAA) and passive microwave (SMMR and SSM/I) satellite data, YeQT Produced ot the Nqtionol Snow and Ice Dale Center, Boulder. CO Fig. 2 Visible-derived (NOAA) snow-covered area (xl0 6 km 2 ) departures from monthly means for the Northern Hemisphere, Year Produced ot the National Snow and Ice Data Center. Boulder, CO Fig. 3 Passive microwave-derived (SMMR and SSM/I) snow-covered area (x 10 6 km 2 ) departures from monthly means for the Northern Hemisphere, NOAA Northern Hemisphere snow extent data. For the period , both passive microwave and visible datasets show a similar pattern of interannual variability and both indicate maximum extents consistently exceeding 40 million km 2 (Fig. 1). The visible data typically show greater variability in the departures from the monthly

4 90 Richard L. Armstrong & Mary J. Brodzik means while the long-term trends based on the departures are similar with each dataset indicating a decrease in Northern Hemisphere snow extent of approximately 0.3% per year. (Figs 2 and 3). In Figs 1-3, the Chang et al. (1987) algorithm has been used to compute snow-covered area for the SMMR period and a modified version of this same algorithm (NSIDC 1) has been used during the SSM/I period. In this example, and throughout this study, only Tb from "cold period" orbits are used. The monthly climatologies produced by the two data sources are compared using the same algorithms as used in Figs 1-3. During the early winter season (October- December) the passive microwave algorithms generally indicate less snow-covered area than is indicated by the visible data (Fig. 4). This same pattern was also observed in a similar study by Basist et al. (1996). The difference is greatest in the region of the southernmost snow extent, for example at the lower elevations across both North America and Eurasia where the snow cover is more likely to be shallow (less than about 5.0 cm) and may often exist at the melting temperature. In both of these situations (shallow and/or wet snow) the microwave algorithms tested thus far are often unable to detect the presence of snow. Preliminary results indicate that the inclusion of the 85 GHz channel, with the associated enhanced scattering response, improves the accuracy of mapping shallow snow. As the snowpack continues to build during January-March, agreement between the two datasets improves (Fig. 4). However, in this example, the microwave data indicate less snow-covered area than the visible data throughout the year with a mean difference for the monthly climatologies of 3.5 x 10 6 km 2, ranging from 8.9 x 10 6 km 2 in November to 0.5 x 10 6 km 2 in August. Fig. 4 Northern Hemisphere mean monthly snow-covered area (x 10 6 km 2 ) derived from visible (NOAA) and passive microwave (SMMR and SSM/I) and the difference between the two (visible minus passive microwave), Snow water equivalent (SWE) In this phase, a topographically consistent subset of the FSUHS data was selected for the validation. This subset (45-60 N, E) has the highest station density (approximately one transect per 100 km grid cell) and is primarily composed of noncomplex terrain (grassland steppe) with maximum elevation differences of less than 500 m.

5 Validation of passive microwave snow algorithms Fig. 5 Average of total study area (FSUHS subset) snow water equivalent vs passive microwave snow water equivalent using horizontally polarized difference algorithm, Stations (19H-37H) (19V-37V) - - (19V-37V.37V-85V) I 60 % 40 in 20 0 Oct Nov- Mar-89 Apr-89 Fig. 6 Average of total study area (FSUHS subset) snow water equivalent vs passive microwave snow water equivalent from three algorithms, We have developed a specific processing environment and output format to compare the various algorithms with the station SWE data. For each station file this involves the combination of the daily T B files for the observation date and for the previous two days to provide complete spatial coverage. Values of SWE for all pixels containing at least one transect measurement are compared with the output from the respective algorithms. Figure 5 shows a time series comparison of station data with a single algorithm (19H - 37H) averaged over the total study area for a 12-year period. Figure 6 shows a single year comparison of three different algorithms. (During 1989, 85V data were not available after 31 January.) Results indicate a general tendency for the algorithms tested thus far to underestimate SWE. Unlike snow extent, differences between the validation data and the microwave algorithms appear to be generally consistent throughout the winter season. Underestimates of SWE increase significantly as the forest-cover density begins to exceed 30-40%. Because of the detailed land-cover data available for this validation study area, we will apply algorithm adjustments as a function of fractional forest cover based on earlier work by Chang et al. (1996). In addition to the time series comparisons shown in Figs 5 and 6, our analysis includes image-subtraction time series comparisons, which allow evaluation of both temporal and spatial differences. Coupled with additional data on topography, vegetation cover, surface air temperature and snow structure, these spatial comparisons (not included here) viewed throughout the winter season will provide valuable insight

6 92 Richard L. Armstrong & Mary J. Brodzik into the actual causes of the observed differences. Future analysis will continue the comprehensive multi-year comparison of at least these seven algorithms with the FSUHS data and other surface station measurements. Acknowledgements This work is supported by NASA Research Grants NAG and NAG REFERENCES Armstrong, R. L. & Brodzik, M. J. (1998) A comparison of Northern Hemisphere snow extent derived from passive microwave and visible remote sensing data. In: Proc. IGARSS-98 (Int. Geoscience and Remote Sensing Symp.), Armstrong, R. L. & Brodzik, M. J. (1999) A twenty year record of global snow cover fluctuations derived from passive microwave remote sensing data. In: Fifth Conf. on Polar Meteorology & Oceanography, Am. Met. Soc, Dallas, Texas, USA. Basist, A., Garrett, D., Ferraro, R., Grody, N. & Mitchell, K. (1996) A comparison between snow cover products derived from visible and microwave satellite observations. J. Appl. Met. 35(2), Chang, A. T. C, Foster, J. L. & Hall, D. K. (1996) Effects of forest on the snow parameters derived from microwave measurements during the BOREAS winter field campaign. Hydrol. Processes 10, Chang, A. T. C, Foster, J. L. & Hall, D. K. (1987) Nimbus-7 SMMR derived global snow cover parameters. Ann. Glaciol. 9, Frei, A. & Robinson, D. A. (1999) Northern hemisphere snow extent: regional variability Int. J. Clim. 19, Goodison, B. E. (1989) Determination of areal snow water equivalent on the Canadian prairies using passive microwave satellite data. In: Proc. IGARSS '89 (Int. Geoscience and Remote Sensing Symp.), vol. 3, Grody, N. C. & Basist, A. (1996) Global identification of snow cover using SSM/I measurements. IEEE Trans. Geosci. Remote Sens. 34(1), Groisman, P. Ya, Karl, T. R. & Knight, R. W. (1994) Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science 263, Haggerty, C. D. & Armstrong, R. L. (1996) Snow trends within the former Soviet Union. EOS, Trans. Am. Geophys. Un. 77(46), F191. Hiltbrunner, D. (1996) Land surface temperature and microwave emissivity from SSM/I data. PhD Thesis, Institute of Applied Physics, University of Bern, Switzerland. King, M. D. (ed.) with Hartmann, D. L., Shimel, D. S. & Schoeberl, M. R. (1999) EOS Science Plan: The State of Science in the EOS Program. NASA/Goddard Space Flight Center, Greenbelt, Maryland, USA. Matzler, C. (1994) Passive microwave signatures of landscapes in winter. Met. Atmos. Phys. 54, Nagler, T. (1991) Verfahren zur Analyse der Schneebedeckung aus Messungen des SSM/I. Diplomarbeit, (Masters Thesis), University of Innsbruck, Austria. Robinson, D. A., Dewey, K. F. & Heim, R. R. (1993) Global snow cover monitoring: an update. Bull. Am. Met. Soc. 74(9), Tait, A. (1998) Estimation of snow water equivalent using passive microwave radiation data. Remote Sens. Environ. 64, Walker, A. & Goodison, B. E. (1993) Discrimination of a wet snow cover using passive microwave satellite data. Ann. Glaciol. 17,

Discritnination of a wet snow cover using passive tnicrowa ve satellite data

Discritnination of a wet snow cover using passive tnicrowa ve satellite data Annals of Glaciology 17 1993 International Glaciological Society Discritnination of a wet snow cover using passive tnicrowa ve satellite data A. E. WALKER AND B. E. GOODISON Canadian Climate Centre, 4905

More information

Studying snow cover in European Russia with the use of remote sensing methods

Studying snow cover in European Russia with the use of remote sensing methods 40 Remote Sensing and GIS for Hydrology and Water Resources (IAHS Publ. 368, 2015) (Proceedings RSHS14 and ICGRHWE14, Guangzhou, China, August 2014). Studying snow cover in European Russia with the use

More information

Description of Snow Depth Retrieval Algorithm for ADEOS II AMSR

Description of Snow Depth Retrieval Algorithm for ADEOS II AMSR 1. Introduction Description of Snow Depth Retrieval Algorithm for ADEOS II AMSR Dr. Alfred Chang and Dr. Richard Kelly NASA/GSFC The development of a snow depth retrieval algorithm for ADEOS II AMSR has

More information

ESA GlobSnow - project overview

ESA GlobSnow - project overview ESA GlobSnow - project overview GCW 1 st Implementation meeting Geneve, 23 Nov. 2011 K. Luojus & J. Pulliainen (FMI) + R. Solberg (NR) Finnish Meteorological Institute 1.12.2011 1 ESA GlobSnow ESA-GlobSnow

More information

Remote Sensing of SWE in Canada

Remote Sensing of SWE in Canada Remote Sensing of SWE in Canada Anne Walker Climate Research Division, Environment Canada Polar Snowfall Hydrology Mission Workshop, June 26-28, 2007 Satellite Remote Sensing Snow Cover Optical -- Snow

More information

1.6 TRENDS AND VARIABILITY OF SNOWFALL AND SNOW COVER ACROSS NORTH AMERICA AND EURASIA. PART 2: WHAT THE DATA SAY

1.6 TRENDS AND VARIABILITY OF SNOWFALL AND SNOW COVER ACROSS NORTH AMERICA AND EURASIA. PART 2: WHAT THE DATA SAY 1.6 TRENDS AND VARIABILITY OF SNOWFALL AND SNOW COVER ACROSS NORTH AMERICA AND EURASIA. PART 2: WHAT THE DATA SAY David A. Robinson* Rutgers University, Department of Geography, Piscataway, New Jersey

More information

A Comparison of A MSR-E/Aqua Snow Products with in situ Observations and M O DIS Snow Cover Products in the Mackenzie River Basin, Canada

A Comparison of A MSR-E/Aqua Snow Products with in situ Observations and M O DIS Snow Cover Products in the Mackenzie River Basin, Canada Remote Sensing 2010, 2, 2313-2322; doi:10.3390/rs2102313 Letter OPE N A C C ESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing A Comparison of A MSR-E/Aqua Snow Products with in situ

More information

Passive Microwave Sea Ice Concentration Climate Data Record

Passive Microwave Sea Ice Concentration Climate Data Record Passive Microwave Sea Ice Concentration Climate Data Record 1. Intent of This Document and POC 1a) This document is intended for users who wish to compare satellite derived observations with climate model

More information

SIMULATION OF SPACEBORNE MICROWAVE RADIOMETER MEASUREMENTS OF SNOW COVER FROM IN-SITU DATA AND EMISSION MODELS

SIMULATION OF SPACEBORNE MICROWAVE RADIOMETER MEASUREMENTS OF SNOW COVER FROM IN-SITU DATA AND EMISSION MODELS SIMULATION OF SPACEBORNE MICROWAVE RADIOMETER MEASUREMENTS OF SNOW COVER FROM IN-SITU DATA AND EMISSION MODELS Anna Kontu 1 and Jouni Pulliainen 1 1. Finnish Meteorological Institute, Arctic Research,

More information

Estimation of snow surface temperature for NW Himalayan regions using passive microwave satellite data

Estimation of snow surface temperature for NW Himalayan regions using passive microwave satellite data Indian Journal of Radio & Space Physics Vol 42, February 2013, pp 27-33 Estimation of snow surface temperature for NW Himalayan regions using passive microwave satellite data K K Singh 1,$,*, V D Mishra

More information

Snow depth derived from passive microwave remote-sensing data in China

Snow depth derived from passive microwave remote-sensing data in China Annals of Glaciology 49 2008 145 Snow depth derived from passive microwave remote-sensing data in China Tao CHE, 1 Xin LI, 1 Rui JIN, 1 Richard ARMSTRONG, 2 Tingjun ZHANG 2 1 Cold and Arid Regions Environmental

More information

A. Windnagel M. Savoie NSIDC

A. Windnagel M. Savoie NSIDC National Snow and Ice Data Center ADVANCING KNOWLEDGE OF EARTH'S FROZEN REGIONS Special Report #18 06 July 2016 A. Windnagel M. Savoie NSIDC W. Meier NASA GSFC i 2 Contents List of Figures... 4 List of

More information

APPLICATION OF SATELLITE MICROWAVE IMAGES IN ESTIMATING SNOW WATER EQUIVALENT 1

APPLICATION OF SATELLITE MICROWAVE IMAGES IN ESTIMATING SNOW WATER EQUIVALENT 1 JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION Vol. 44, No. 6 AMERICAN WATER RESOURCES ASSOCIATION December 2008 APPLICATION OF SATELLITE MICROWAVE IMAGES IN ESTIMATING SNOW WATER EQUIVALENT 1 Amir

More information

Canadian Prairie Snow Cover Variability

Canadian Prairie Snow Cover Variability Canadian Prairie Snow Cover Variability Chris Derksen, Ross Brown, Murray MacKay, Anne Walker Climate Research Division Environment Canada Ongoing Activities: Snow Cover Variability and Links to Atmospheric

More information

SEASONAL SNOW COVER EXTENT FROM MICROWAVE REMOTE SENSING DATA: COMPARISON WITH EXISTING GROUND AND SATELLITE BASED MEASUREMENTS

SEASONAL SNOW COVER EXTENT FROM MICROWAVE REMOTE SENSING DATA: COMPARISON WITH EXISTING GROUND AND SATELLITE BASED MEASUREMENTS EARSeL eproceedings 4, 2/2005 215 SEASONAL SNOW COVER EXTENT FROM MICROWAVE REMOTE SENSING DATA: COMPARISON WITH EXISTING GROUND AND SATELLITE BASED MEASUREMENTS Arnaud Mialon 1,2, Michel Fily 1 and Alain

More information

HeD1ispheric snow cover frod1 satellites

HeD1ispheric snow cover frod1 satellites Annals of Glaciology 17 1993 International Glaciological Society HeD1ispheric snow cover frod1 satellites DA VID A. ROBINSON Department of Geography, Rutgers University, New Brunswick, NJ 08903, U.S.A.

More information

Condensing Massive Satellite Datasets For Rapid Interactive Analysis

Condensing Massive Satellite Datasets For Rapid Interactive Analysis Condensing Massive Satellite Datasets For Rapid Interactive Analysis Glenn Grant University of Colorado, Boulder With: David Gallaher 1,2, Qin Lv 1, G. Campbell 2, Cathy Fowler 2, Qi Liu 1, Chao Chen 1,

More information

The use of microwave radiometer data for characterizing snow storage in western China

The use of microwave radiometer data for characterizing snow storage in western China Annals of Glaciology 16 1992 International Glaciological Society The use of microwave radiometer data for characterizing snow storage in western China A. T. C. CHANG,]. L. FOSTER, D. K. HALL, Hydrological

More information

Validation of satellite derived snow cover data records with surface networks and m ulti-dataset inter-comparisons

Validation of satellite derived snow cover data records with surface networks and m ulti-dataset inter-comparisons Validation of satellite derived snow cover data records with surface networks and m ulti-dataset inter-comparisons Chris Derksen Climate Research Division Environment Canada Thanks to our data providers:

More information

P6.13 GLOBAL AND MONTHLY DIURNAL PRECIPITATION STATISTICS BASED ON PASSIVE MICROWAVE OBSERVATIONS FROM AMSU

P6.13 GLOBAL AND MONTHLY DIURNAL PRECIPITATION STATISTICS BASED ON PASSIVE MICROWAVE OBSERVATIONS FROM AMSU P6.13 GLOBAL AND MONTHLY DIURNAL PRECIPITATION STATISTICS BASED ON PASSIVE MICROWAVE OBSERVATIONS FROM AMSU Frederick W. Chen*, David H. Staelin, and Chinnawat Surussavadee Massachusetts Institute of Technology,

More information

NOAA Snow Map Climate Data Record Generated at Rutgers

NOAA Snow Map Climate Data Record Generated at Rutgers NOAA Snow Map Climate Data Record Generated at Rutgers David A. Robinson Rutgers University Piscataway, NJ Snow Watch 2013 Downsview, Ontario January 29, 2013 December 2012 snow extent departures Motivation

More information

8.1 CHANGES IN CHARACTERISTICS OF UNITED STATES SNOWFALL OVER THE LAST HALF OF THE TWENTIETH CENTURY

8.1 CHANGES IN CHARACTERISTICS OF UNITED STATES SNOWFALL OVER THE LAST HALF OF THE TWENTIETH CENTURY 8.1 CHANGES IN CHARACTERISTICS OF UNITED STATES SNOWFALL OVER THE LAST HALF OF THE TWENTIETH CENTURY Daria Scott Dept. of Earth and Atmospheric Sciences St. Could State University, St. Cloud, MN Dale Kaiser*

More information

A Microwave Snow Emissivity Model

A Microwave Snow Emissivity Model A Microwave Snow Emissivity Model Fuzhong Weng Joint Center for Satellite Data Assimilation NOAA/NESDIS/Office of Research and Applications, Camp Springs, Maryland and Banghua Yan Decision Systems Technologies

More information

Prospects of microwave remote sensing for snow hydrology

Prospects of microwave remote sensing for snow hydrology Hydrologie Applications of Space Technology (Proceedings of the Cocoa Beach Workshop, Florida, August 1985). IAHS Publ. no. 160,1986. Prospects of microwave remote sensing for snow hydrology HELMUT ROTT

More information

Time-series analysis of passive-microwave-derived central North American snow water equivalent imagery

Time-series analysis of passive-microwave-derived central North American snow water equivalent imagery Annals of Glaciology 34 2002 # International Glaciological Society Time-series analysis of passive-microwave-derived central North American snow water equivalent imagery C. Derksen, 1 A.Walker, 2 E. LeDrew,

More information

Algorithm Theoretical Basis Document (ATBD) for the AMSR-E Snow Water Equivalent Algorithm

Algorithm Theoretical Basis Document (ATBD) for the AMSR-E Snow Water Equivalent Algorithm November 30, 2000 VERSION 3.1 Algorithm Theoretical Basis Document (ATBD) for the AMSR-E Snow Water Equivalent Algorithm Alfred T.C. Chang/Code 974 NASA/GSFC Albert Rango/Hydrology Laboratory USDA/ARS

More information

Sea ice concentration off Dronning Maud Land, Antarctica

Sea ice concentration off Dronning Maud Land, Antarctica Rapportserie nr. 117 Olga Pavlova and Jan-Gunnar Winther Sea ice concentration off Dronning Maud Land, Antarctica The Norwegian Polar Institute is Norway s main institution for research, monitoring and

More information

Advancements and validation of the global CryoClim snow cover extent product

Advancements and validation of the global CryoClim snow cover extent product www.nr.no Advancements and validation of the global CryoClim snow cover extent product Rune Solberg1, Øystein Rudjord1, Arnt-Børre Salberg1 and Mari Anne Killie2 1) Norwegian Computing Center (NR), P.O.

More information

Spatial and Temporal Variability of Snow Depth Derived from Passive Microwave Remote Sensing Data in Kazakhstan

Spatial and Temporal Variability of Snow Depth Derived from Passive Microwave Remote Sensing Data in Kazakhstan NO.6 MASHTAYEVA Shamshagul, DAI Liyun, CHE Tao, et al. 1033 Spatial and Temporal Variability of Snow Depth Derived from Passive Microwave Remote Sensing Data in Kazakhstan MASHTAYEVA Shamshagul 1, DAI

More information

Passive Microwave Physics & Basics. Edward Kim NASA/GSFC

Passive Microwave Physics & Basics. Edward Kim NASA/GSFC Passive Microwave Physics & Basics Edward Kim NASA/GSFC ed.kim@nasa.gov NASA Snow Remote Sensing Workshop, Boulder CO, Aug 14 16, 2013 1 Contents How does passive microwave sensing of snow work? What are

More information

Correcting Microwave Precipitation Retrievals for near- Surface Evaporation

Correcting Microwave Precipitation Retrievals for near- Surface Evaporation Correcting Microwave Precipitation Retrievals for near- Surface Evaporation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Effect of snow cover on threshold wind velocity of dust outbreak

Effect of snow cover on threshold wind velocity of dust outbreak GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L03106, doi:10.1029/2003gl018632, 2004 Effect of snow cover on threshold wind velocity of dust outbreak Yasunori Kurosaki 1,2 and Masao Mikami 1 Received 15 September

More information

Modelling runoff from large glacierized basins in the Karakoram Himalaya using remote sensing of the transient snowline

Modelling runoff from large glacierized basins in the Karakoram Himalaya using remote sensing of the transient snowline Remote Sensing and Hydrology 2000 (Proceedings of a symposium held at Santa Fe, New Mexico, USA, April 2000). IAHS Publ. no. 267, 2001. 99 Modelling runoff from large glacierized basins in the Karakoram

More information

ARCTIC SEA ICE ALBEDO VARIABILITY AND TRENDS,

ARCTIC SEA ICE ALBEDO VARIABILITY AND TRENDS, ARCTIC SEA ICE ALBEDO VARIABILITY AND TRENDS, 1982-1998 Vesa Laine Finnish Meteorological Institute (FMI), Helsinki, Finland Abstract Whole-summer and monthly sea ice regional albedo averages, variations

More information

ASimultaneousRadiometricand Gravimetric Framework

ASimultaneousRadiometricand Gravimetric Framework Towards Multisensor Snow Assimilation: ASimultaneousRadiometricand Gravimetric Framework Assistant Professor, University of Maryland Department of Civil and Environmental Engineering September 8 th, 2014

More information

NSIDC/Univ. of Colorado Sea Ice Motion and Age Products

NSIDC/Univ. of Colorado Sea Ice Motion and Age Products NSIDC/Univ. of Colorado Sea Ice Motion and Age Products Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, http://nsidc.org/data/nsidc-0116.html Passive microwave, AVHRR, and buoy motions Individual

More information

Monitoring the frozen duration of Qinghai Lake using satellite passive microwave remote sensing low frequency data

Monitoring the frozen duration of Qinghai Lake using satellite passive microwave remote sensing low frequency data Chinese Science Bulletin 009 SCIENCE IN CHINA PRESS ARTICLES Springer Monitoring the frozen duration of Qinghai Lake using satellite passive microwave remote sensing low frequency data CHE Tao, LI Xin

More information

Analysis of Antarctic Sea Ice Extent based on NIC and AMSR-E data Burcu Cicek and Penelope Wagner

Analysis of Antarctic Sea Ice Extent based on NIC and AMSR-E data Burcu Cicek and Penelope Wagner Analysis of Antarctic Sea Ice Extent based on NIC and AMSR-E data Burcu Cicek and Penelope Wagner 1. Abstract The extent of the Antarctica sea ice is not accurately defined only using low resolution microwave

More information

Land Data Assimilation at NCEP NLDAS Project Overview, ECMWF HEPEX 2004

Land Data Assimilation at NCEP NLDAS Project Overview, ECMWF HEPEX 2004 Dag.Lohmann@noaa.gov, Land Data Assimilation at NCEP NLDAS Project Overview, ECMWF HEPEX 2004 Land Data Assimilation at NCEP: Strategic Lessons Learned from the North American Land Data Assimilation System

More information

ADVANCEMENTS IN SNOW MONITORING

ADVANCEMENTS IN SNOW MONITORING Polar Space Task Group ADVANCEMENTS IN SNOW MONITORING Thomas Nagler, ENVEO IT GmbH, Innsbruck, Austria Outline Towards a pan-european Multi-sensor Snow Product SnowPEx Summary Upcoming activities SEOM

More information

Snow Cover Applications: Major Gaps in Current EO Measurement Capabilities

Snow Cover Applications: Major Gaps in Current EO Measurement Capabilities Snow Cover Applications: Major Gaps in Current EO Measurement Capabilities Thomas NAGLER ENVEO Environmental Earth Observation IT GmbH INNSBRUCK, AUSTRIA Polar and Snow Cover Applications User Requirements

More information

P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES. Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski #

P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES. Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski # P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski # *Cooperative Institute for Meteorological Satellite Studies, University of

More information

Fine-scale climate projections for Utah from statistical downscaling of global climate models

Fine-scale climate projections for Utah from statistical downscaling of global climate models Fine-scale climate projections for Utah from statistical downscaling of global climate models Thomas Reichler Department of Atmospheric Sciences, U. of Utah thomas.reichler@utah.edu Three questions A.

More information

A HIGH RESOLUTION EUROPEAN CLOUD CLIMATOLOGY FROM 15 YEARS OF NOAA/AVHRR DATA

A HIGH RESOLUTION EUROPEAN CLOUD CLIMATOLOGY FROM 15 YEARS OF NOAA/AVHRR DATA A HIGH RESOLUTION EUROPEAN CLOUD CLIMATOLOGY FROM 15 YEARS OF NOAA/AVHRR DATA R. Meerkötter 1, G. Gesell 2, V. Grewe 1, C. König 1, S. Lohmann 1, H. Mannstein 1 Deutsches Zentrum für Luft- und Raumfahrt

More information

A comparison of modeled, remotely sensed, and measured snow water equivalent in the northern Great Plains

A comparison of modeled, remotely sensed, and measured snow water equivalent in the northern Great Plains WATER RESOURCES RESEARCH, VOL. 39, NO. 8, 1209, doi:10.1029/2002wr001782, 2003 A comparison of modeled, remotely sensed, and measured snow water equivalent in the northern Great Plains Thomas L. Mote and

More information

Evaluation of spring snow covered area depletion in the Canadian Arctic from NOAA snow charts

Evaluation of spring snow covered area depletion in the Canadian Arctic from NOAA snow charts Remote Sensing of Environment 95 (2005) 453 463 www.elsevier.com/locate/rse Evaluation of spring snow covered area depletion in the Canadian Arctic from NOAA snow charts Libo Wang a, *, Martin Sharp a,

More information

Research progress of snow cover and its influence on China climate

Research progress of snow cover and its influence on China climate 34 5 Vol. 34 No. 5 2011 10 Transactions of Atmospheric Sciences Oct. 2011. 2011. J. 34 5 627-636. Li Dong-liang Wang Chun-xue. 2011. Research progress of snow cover and its influence on China climate J.

More information

Central Asia Regional Flash Flood Guidance System 4-6 October Hydrologic Research Center A Nonprofit, Public-Benefit Corporation

Central Asia Regional Flash Flood Guidance System 4-6 October Hydrologic Research Center A Nonprofit, Public-Benefit Corporation http://www.hrcwater.org Central Asia Regional Flash Flood Guidance System 4-6 October 2016 Hydrologic Research Center A Nonprofit, Public-Benefit Corporation FFGS Snow Components Snow Accumulation and

More information

The University of Texas at Austin, Jackson School of Geosciences, Austin, Texas 2. The National Center for Atmospheric Research, Boulder, Colorado 3

The University of Texas at Austin, Jackson School of Geosciences, Austin, Texas 2. The National Center for Atmospheric Research, Boulder, Colorado 3 Assimilation of MODIS Snow Cover and GRACE Terrestrial Water Storage Data through DART/CLM4 Yong-Fei Zhang 1, Zong-Liang Yang 1, Tim J. Hoar 2, Hua Su 1, Jeffrey L. Anderson 2, Ally M. Toure 3,4, and Matthew

More information

Remote Sensing of Environment

Remote Sensing of Environment Remote Sensing of Environment 115 (2011) 3517 3529 Contents lists available at SciVerse ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Estimating northern hemisphere

More information

An Annual Cycle of Arctic Cloud Microphysics

An Annual Cycle of Arctic Cloud Microphysics An Annual Cycle of Arctic Cloud Microphysics M. D. Shupe Science and Technology Corporation National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado T. Uttal

More information

ERBE Geographic Scene and Monthly Snow Data

ERBE Geographic Scene and Monthly Snow Data NASA Contractor Report 4773 ERBE Geographic Scene and Monthly Snow Data Lisa H. Coleman, Beth T. Flug, Shalini Gupta, Edward A. Kizer, and John L. Robbins Science Applications International Corporation

More information

THE ROLE OF MICROSTRUCTURE IN FORWARD MODELING AND DATA ASSIMILATION SCHEMES: A CASE STUDY IN THE KERN RIVER, SIERRA NEVADA, USA

THE ROLE OF MICROSTRUCTURE IN FORWARD MODELING AND DATA ASSIMILATION SCHEMES: A CASE STUDY IN THE KERN RIVER, SIERRA NEVADA, USA MICHAEL DURAND (DURAND.8@OSU.EDU), DONGYUE LI, STEVE MARGULIS Photo: Danielle Perrot THE ROLE OF MICROSTRUCTURE IN FORWARD MODELING AND DATA ASSIMILATION SCHEMES: A CASE STUDY IN THE KERN RIVER, SIERRA

More information

SWAMPS. Surface WAter Microwave Product Series Version 2.0

SWAMPS. Surface WAter Microwave Product Series Version 2.0 SWAMPS Surface WAter Microwave Product Series Version 2.0 This dataset is accessible through the Inundated Wetlands Earth System Data Record Project URL: http://wetlands.jpl.nasa.gov Point of Contact:

More information

Actual and insolation-weighted Northern Hemisphere snow cover and sea-ice between

Actual and insolation-weighted Northern Hemisphere snow cover and sea-ice between Climate Dynamics (2004) 22: 591 595 DOI 10.1007/s00382-004-0401-5 R. A. Pielke Sr. Æ G. E. Liston Æ W. L. Chapman D. A. Robinson Actual and insolation-weighted Northern Hemisphere snow cover and sea-ice

More information

Advancing Remote-Sensing Methods for Monitoring Geophysical Parameters

Advancing Remote-Sensing Methods for Monitoring Geophysical Parameters Advancing Remote-Sensing Methods for Monitoring Geophysical Parameters Christian Mätzler (Retired from University of Bern) Now consultant for Gamma Remote Sensing, Switzerland matzler@iap.unibe.ch TERENO

More information

Bias correction of global daily rain gauge measurements

Bias correction of global daily rain gauge measurements Bias correction of global daily rain gauge measurements M. Ungersböck 1,F.Rubel 1,T.Fuchs 2,andB.Rudolf 2 1 Working Group Biometeorology, University of Veterinary Medicine Vienna 2 Global Precipitation

More information

Remote Sensing of Snow GEOG 454 / 654

Remote Sensing of Snow GEOG 454 / 654 Remote Sensing of Snow GEOG 454 / 654 What crysopheric questions can RS help to answer? 2 o Where is snow lying? (Snow-covered area or extent) o How much is there? o How rapidly is it melting? (Area, depth,

More information

Factors affecting remotely sensed snow water equivalent uncertainty

Factors affecting remotely sensed snow water equivalent uncertainty Remote Sensing of Environment 97 (2005) 68 82 www.elsevier.com/locate/rse Factors affecting remotely sensed snow water equivalent uncertainty Jiarui Dong a,b, *, Jeffrey P. Walker c, Paul R. Houser d a

More information

Validation of NOAA Interactive Snow Maps in the North American region with National Climatic Data Center Ground-based Data

Validation of NOAA Interactive Snow Maps in the North American region with National Climatic Data Center Ground-based Data City University of New York (CUNY) CUNY Academic Works Master's Theses City College of New York 2011 Validation of NOAA Interactive Snow Maps in the North American region with National Climatic Data Center

More information

Observing Snow: Conventional Measurements, Satellite and Airborne Remote Sensing. Chris Derksen Climate Research Division, ECCC

Observing Snow: Conventional Measurements, Satellite and Airborne Remote Sensing. Chris Derksen Climate Research Division, ECCC Observing Snow: Conventional Measurements, Satellite and Airborne Remote Sensing Chris Derksen Climate Research Division, ECCC Outline Three Snow Lectures: 1. Why you should care about snow 2. How we measure

More information

HyMet Company. Streamflow and Energy Generation Forecasting Model Columbia River Basin

HyMet Company. Streamflow and Energy Generation Forecasting Model Columbia River Basin HyMet Company Streamflow and Energy Generation Forecasting Model Columbia River Basin HyMet Inc. Courthouse Square 19001 Vashon Hwy SW Suite 201 Vashon Island, WA 98070 Phone: 206-463-1610 Columbia River

More information

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 1, NO. 2, APRIL

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 1, NO. 2, APRIL IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 1, NO. 2, APRIL 2004 57 Delta-K Interferometric SAR Technique for Snow Water Equivalent (SWE) Retrieval Geir Engen, Tore Guneriussen, and Øyvind Overrein

More information

ONE-YEAR EXPERIMENT IN NUMERICAL PREDICTION OF MONTHLY MEAN TEMPERATURE IN THE ATMOSPHERE-OCEAN-CONTINENT SYSTEM

ONE-YEAR EXPERIMENT IN NUMERICAL PREDICTION OF MONTHLY MEAN TEMPERATURE IN THE ATMOSPHERE-OCEAN-CONTINENT SYSTEM 71 4 MONTHLY WEATHER REVIEW Vol. 96, No. 10 ONE-YEAR EXPERIMENT IN NUMERICAL PREDICTION OF MONTHLY MEAN TEMPERATURE IN THE ATMOSPHERE-OCEAN-CONTINENT SYSTEM JULIAN ADEM and WARREN J. JACOB Extended Forecast

More information

Climate Models and Snow: Projections and Predictions, Decades to Days

Climate Models and Snow: Projections and Predictions, Decades to Days Climate Models and Snow: Projections and Predictions, Decades to Days Outline Three Snow Lectures: 1. Why you should care about snow 2. How we measure snow 3. Snow and climate modeling The observational

More information

The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season.

The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season. The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season. Izabela Dyras, Bożena Łapeta, Danuta Serafin-Rek Satellite Research Department, Institute of Meteorology and

More information

The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada

The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada Abstract David Anselmo and Godelieve Deblonde Meteorological Service of Canada, Dorval,

More information

Northern Hemisphere Snow and Ice Data Records

Northern Hemisphere Snow and Ice Data Records Northern Hemisphere Snow and Ice Data Records Making Earth Science Data Records for Use in Research Environments (MEaSUREs) PoDAG XXX Oct 12-13 th, NSIDC MEaSUREs Snow Team David A. Robinson Gina Henderson

More information

Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting

Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting IOP Conference Series: Earth and Environmental Science Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting To cite this article: Ph Stanzel et al

More information

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean C. Marty, R. Storvold, and X. Xiong Geophysical Institute University of Alaska Fairbanks, Alaska K. H. Stamnes Stevens Institute

More information

Intercomparison of Snow Extent Products from Earth Observation Data

Intercomparison of Snow Extent Products from Earth Observation Data Intercomparison of Snow Extent Products from Earth Observation Data, Elisabeth Ripper, Gabriele Bippus, Helmut Rott FMI Richard Fernandes Kari Luojus Sari Metsämäki Dorothy Hall David Robinson Bojan Bojkov

More information

Snow Analyses. 1 Introduction. Matthias Drusch. ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom

Snow Analyses. 1 Introduction. Matthias Drusch. ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom Snow Analyses Matthias Drusch ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom dar@ecmwf.int ABSTRACT Four different snow water equivalent data sets have been compared: (1) The high resolution Snow

More information

Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback

Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L22504, doi:10.1029/2007gl031474, 2007 Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback

More information

NORTH AMERICAN SNOW EXTENT:

NORTH AMERICAN SNOW EXTENT: INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 19: 1517 1534 (1999) NORTH AMERICAN SNOW EXTENT: 1900 1994 ALLAN FREI a, *, DAVID A. ROBINSON b,1 and MARILYN G. HUGHES b,2 a CIRES/NSIDC, Uni ersity

More information

Sea ice outlook 2010

Sea ice outlook 2010 Sea ice outlook 2010 Lars Kaleschke 1, Gunnar Spreen 2 1 Institute for Oceanography, KlimaCampus, University of Hamburg 2 Jet Propulsion Laboratory, California Institute of Technology Contact: lars.kaleschke@zmaw.de,

More information

The importance of long-term Arctic weather station data for setting the research stage for climate change studies

The importance of long-term Arctic weather station data for setting the research stage for climate change studies The importance of long-term Arctic weather station data for setting the research stage for climate change studies Taneil Uttal NOAA/Earth Systems Research Laboratory Boulder, Colorado Things to get out

More information

NESDIS Global Automated Satellite Snow Product: Current Status and Recent Results Peter Romanov

NESDIS Global Automated Satellite Snow Product: Current Status and Recent Results Peter Romanov NESDIS Global Automated Satellite Snow Product: Current Status and Recent Results Peter Romanov NOAA-CREST, City University of New York (CUNY) Center for Satellite Applications and Research (STAR), NOAA/NESDIS

More information

Remote Sensing of Precipitation

Remote Sensing of Precipitation Lecture Notes Prepared by Prof. J. Francis Spring 2003 Remote Sensing of Precipitation Primary reference: Chapter 9 of KVH I. Motivation -- why do we need to measure precipitation with remote sensing instruments?

More information

Changes in seasonal cloud cover over the Arctic seas from satellite and surface observations

Changes in seasonal cloud cover over the Arctic seas from satellite and surface observations GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L12207, doi:10.1029/2004gl020067, 2004 Changes in seasonal cloud cover over the Arctic seas from satellite and surface observations Axel J. Schweiger Applied Physics

More information

ASSESSMENT OF NORTHERN HEMISPHERE SWE DATASETS IN THE ESA SNOWPEX INITIATIVE

ASSESSMENT OF NORTHERN HEMISPHERE SWE DATASETS IN THE ESA SNOWPEX INITIATIVE ASSESSMENT OF NORTHERN HEMISPHERE SWE DATASETS IN THE ESA SNOWPEX INITIATIVE Kari Luojus 1), Jouni Pulliainen 1), Matias Takala 1), Juha Lemmetyinen 1), Chris Derksen 2), Lawrence Mudryk 2), Michael Kern

More information

The indicator can be used for awareness raising, evaluation of occurred droughts, forecasting future drought risks and management purposes.

The indicator can be used for awareness raising, evaluation of occurred droughts, forecasting future drought risks and management purposes. INDICATOR FACT SHEET SSPI: Standardized SnowPack Index Indicator definition The availability of water in rivers, lakes and ground is mainly related to precipitation. However, in the cold climate when precipitation

More information

Using MODIS imagery to validate the spatial representation of snow cover extent obtained from SWAT in a data-scarce Chilean Andean watershed

Using MODIS imagery to validate the spatial representation of snow cover extent obtained from SWAT in a data-scarce Chilean Andean watershed Using MODIS imagery to validate the spatial representation of snow cover extent obtained from SWAT in a data-scarce Chilean Andean watershed Alejandra Stehr 1, Oscar Link 2, Mauricio Aguayo 1 1 Centro

More information

Global SWE Mapping by Combining Passive and Active Microwave Data: The GlobSnow Approach and CoReH 2 O

Global SWE Mapping by Combining Passive and Active Microwave Data: The GlobSnow Approach and CoReH 2 O Global SWE Mapping by Combining Passive and Active Microwave Data: The GlobSnow Approach and CoReH 2 O April 28, 2010 J. Pulliainen, J. Lemmetyinen, A. Kontu, M. Takala, K. Luojus, K. Rautiainen, A.N.

More information

Mapping snow cover in the pan-arctic zone, using multi-year ( ) images from optical VEGETATION sensor

Mapping snow cover in the pan-arctic zone, using multi-year ( ) images from optical VEGETATION sensor RES 105790 INT. J. REMOTE SENSING, 2004, VOL. 25, NO. 00, 1 14 Mapping snow cover in the pan-arctic zone, using multi-year (1998 2001) images from optical VEGETATION sensor X. XIAO*, Q. ZHANG, S. BOLES,

More information

UPPLEMENT A COMPARISON OF THE EARLY TWENTY-FIRST CENTURY DROUGHT IN THE UNITED STATES TO THE 1930S AND 1950S DROUGHT EPISODES

UPPLEMENT A COMPARISON OF THE EARLY TWENTY-FIRST CENTURY DROUGHT IN THE UNITED STATES TO THE 1930S AND 1950S DROUGHT EPISODES UPPLEMENT A COMPARISON OF THE EARLY TWENTY-FIRST CENTURY DROUGHT IN THE UNITED STATES TO THE 1930S AND 1950S DROUGHT EPISODES Richard R. Heim Jr. This document is a supplement to A Comparison of the Early

More information

Remote Sensing of Precipitation on the Tibetan Plateau Using the TRMM Microwave Imager

Remote Sensing of Precipitation on the Tibetan Plateau Using the TRMM Microwave Imager AUGUST 2001 YAO ET AL. 1381 Remote Sensing of Precipitation on the Tibetan Plateau Using the TRMM Microwave Imager ZHANYU YAO Laboratory for Severe Storm Research, Department of Geophysics, Peking University,

More information

Land Surface Temperature Measurements From the Split Window Channels of the NOAA 7 Advanced Very High Resolution Radiometer John C.

Land Surface Temperature Measurements From the Split Window Channels of the NOAA 7 Advanced Very High Resolution Radiometer John C. Land Surface Temperature Measurements From the Split Window Channels of the NOAA 7 Advanced Very High Resolution Radiometer John C. Price Published in the Journal of Geophysical Research, 1984 Presented

More information

SOIL MOISTURE MAPPING THE SOUTHERN U.S. WITH THE TRMM MICROWAVE IMAGER: PATHFINDER STUDY

SOIL MOISTURE MAPPING THE SOUTHERN U.S. WITH THE TRMM MICROWAVE IMAGER: PATHFINDER STUDY SOIL MOISTURE MAPPING THE SOUTHERN U.S. WITH THE TRMM MICROWAVE IMAGER: PATHFINDER STUDY Thomas J. Jackson * USDA Agricultural Research Service, Beltsville, Maryland Rajat Bindlish SSAI, Lanham, Maryland

More information

Assimilation of satellite derived soil moisture for weather forecasting

Assimilation of satellite derived soil moisture for weather forecasting Assimilation of satellite derived soil moisture for weather forecasting www.cawcr.gov.au Imtiaz Dharssi and Peter Steinle February 2011 SMOS/SMAP workshop, Monash University Summary In preparation of the

More information

CLIMATE CHANGE AND REGIONAL HYDROLOGY ACROSS THE NORTHEAST US: Evidence of Changes, Model Projections, and Remote Sensing Approaches

CLIMATE CHANGE AND REGIONAL HYDROLOGY ACROSS THE NORTHEAST US: Evidence of Changes, Model Projections, and Remote Sensing Approaches CLIMATE CHANGE AND REGIONAL HYDROLOGY ACROSS THE NORTHEAST US: Evidence of Changes, Model Projections, and Remote Sensing Approaches Michael A. Rawlins Dept of Geosciences University of Massachusetts OUTLINE

More information

NSIDC Metrics Report. Lisa Booker February 9, 2012

NSIDC Metrics Report. Lisa Booker February 9, 2012 NSIDC Metrics Report Lisa Booker February 9, 2012 ACSI Scores 2011 ACSI survey summary Sent to 5458 users; increased number of users contacted NSIDC response rate was 10%, up 1% from last year. NSIDC Customer

More information

THE INVESTIGATION OF SNOWMELT PATTERNS IN AN ARCTIC UPLAND USING SAR IMAGERY

THE INVESTIGATION OF SNOWMELT PATTERNS IN AN ARCTIC UPLAND USING SAR IMAGERY THE INVESTIGATION OF SNOWMELT PATTERNS IN AN ARCTIC UPLAND USING SAR IMAGERY Johansson, M., Brown, I.A. and Lundén, B. Department of Physical Geography, Stockholm University, S-106 91 Stockholm, Sweden

More information

ELEVATION ANGULAR DEPENDENCE OF WIDEBAND AUTOCORRELATION RADIOMETRIC (WIBAR) REMOTE SENSING OF DRY SNOWPACK AND LAKE ICEPACK

ELEVATION ANGULAR DEPENDENCE OF WIDEBAND AUTOCORRELATION RADIOMETRIC (WIBAR) REMOTE SENSING OF DRY SNOWPACK AND LAKE ICEPACK ELEVATION ANGULAR DEPENDENCE OF WIDEBAND AUTOCORRELATION RADIOMETRIC (WIBAR) REMOTE SENSING OF DRY SNOWPACK AND LAKE ICEPACK Seyedmohammad Mousavi 1, Roger De Roo 2, Kamal Sarabandi 1, and Anthony W. England

More information

APPLICATION OF AN ARCTIC BLOWING SNOW MODEL

APPLICATION OF AN ARCTIC BLOWING SNOW MODEL APPLICATION OF AN ARCTIC BLOWING SNOW MODEL J.W. Pomero l, P. ~arsh' and D.M. Gray2 -Hydrology Research Institute Saskatoon, Saskatchewan, Canada S7N 3H5 '~ivision of Hydrology, University of Saskatchewan

More information

SNOW COVER MAPPING USING METOP/AVHRR AND MSG/SEVIRI

SNOW COVER MAPPING USING METOP/AVHRR AND MSG/SEVIRI SNOW COVER MAPPING USING METOP/AVHRR AND MSG/SEVIRI Niilo Siljamo, Markku Suomalainen, Otto Hyvärinen Finnish Meteorological Institute, P.O.Box 503, FI-00101 Helsinki, Finland Abstract Weather and meteorological

More information

2 RESEARCH OBJECTIVES

2 RESEARCH OBJECTIVES Cold Region Hydrology in a Changing Climate (Proceedings of symposium H02 held during IUGG2011 in Melbourne, Australia, July 2011) (IAHS Publ. 346, 2011). 79 Changes in North American snow packs for 1979

More information

Modelling and Data Assimilation Needs for improving the representation of Cold Processes at ECMWF

Modelling and Data Assimilation Needs for improving the representation of Cold Processes at ECMWF Modelling and Data Assimilation Needs for improving the representation of Cold Processes at ECMWF presented by Gianpaolo Balsamo with contributions from Patricia de Rosnay, Richard Forbes, Anton Beljaars,

More information

Retrieving snow mass from GRACE terrestrial water storage change with a land surface model

Retrieving snow mass from GRACE terrestrial water storage change with a land surface model Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L15704, doi:10.1029/2007gl030413, 2007 Retrieving snow mass from GRACE terrestrial water storage change with a land surface model Guo-Yue

More information

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING Niilo Siljamo, Otto Hyvärinen Finnish Meteorological Institute, Erik Palménin aukio 1, P.O.Box 503, FI-00101 HELSINKI Abstract Hydrological

More information

SNOWFALL RATE RETRIEVAL USING AMSU/MHS PASSIVE MICROWAVE DATA

SNOWFALL RATE RETRIEVAL USING AMSU/MHS PASSIVE MICROWAVE DATA SNOWFALL RATE RETRIEVAL USING AMSU/MHS PASSIVE MICROWAVE DATA Huan Meng 1, Ralph Ferraro 1, Banghua Yan 2 1 NOAA/NESDIS/STAR, 5200 Auth Road Room 701, Camp Spring, MD, USA 20746 2 Perot Systems Government

More information