COMPUTER SESSION 3: ESTIMATION AND FORECASTING.

Size: px
Start display at page:

Download "COMPUTER SESSION 3: ESTIMATION AND FORECASTING."

Transcription

1 UPPSALA UNIVERSITY Department of Mathematics JR Analysis of Time Series 1MS014 Spring 2010 COMPUTER SESSION 3: ESTIMATION AND FORECASTING. 1 Introduction The purpose of this exercise is two-fold: (i) By studying simulated data, hopefully a better understanding of notions and methodology may be gained from the student s perspective of the course; (ii) By examining real data, you practice on some of the important tools for an analyst working with time-series data after the course. However, model building is a difficult issue; experience and knowledge of the particular field of application is important. 2 Estimation in ARIMA models 2.1 The AR(1)-process Simulate 100 observations of an AR(1) process with φ = 0.8. The method-of-moment estimate can be found as follows: x <- arima.sim(n=100,list(ar=0.8)); acf(x)$acf[1] We may also, since we deal specifically with an AR process, use the function ar for estimation: ar(x) We now turn to ML estimation for the AR(1) process. The routine arima is useful for estimation of AR, MA, ARMA and ARIMA process. In this case, estmod <- arima(x,order=c(1,0,0),method= ML ) phi <- estmod$coef[1] You do not need to save the estimated model, as we did in the object estmod, but may access the parameter estimate directly by arima(x,order=c(1,0,0),method= ML )$coef[1] Now, study the sampling distribution of the parameter φ by simulating 1000 time series, each of 100 observations. The distribution is visualized in a histogram (by hist). 1

2 a <- 0 for (k in 1:1000) { x <- arima.sim(n=100,list(ar=0.8)); a[k] <- arima(x,order=c(1,0,0),method= ML )$coef[1] } hist(a); grid() Would you claim that the distribution seems normal? Let us check unbiasedness by comparing the true value (φ = 0.8) to the value obtained by mean(a). Also, compare the estimate from data, sd(a), with the large-sample result: V[ ˆφ] 1 = ˆφ 2 n Conclusion? 2.2 The AR(2) process Now, consider an AR(2) process. Experiment with parameters from various regions (cf. the figure from computer session 2). Estimation is performed by Yule Walker or Maximum Likelihood. Compare the results! x <- arima.sim(n=100,list(ar=c(0.6,0.3))) mest.yw <- ar(x,order.max=2,method= yw ) mest.ml <- ar(x,order.max=2,method= mle ) 2.3 MA, ARMA and ARIMA processes Use of arima for estimation in the more complex models is straight-forward; here are some examples: x1 <- arima.sim(n=200,list(ar=0.7,ma=-0.4)) # An ARMA(1,1) mest.ml <- arima(x1,order=c(1,0,1),method= ML ) x2 <- arima.sim(n=200,list(order=c(0,1,1),ma=0.1)) mest.ml <- arima(x2,order=c(0,1,1),method= ML ) # An IMA(1,1) 2.4 Model choice In all situations treated so far, we knew what type of process to fit (the input parameter order in the call of arima). In reality, however, the sample ACF and PACF can give us hints what model to fit. When in doubt and comparing several models, measures like AIC (returned by arima) might be helpful, as well as checking the variance of the estimated residuals. Consider the following sequence of commands: x1 <- arima.sim(n=200,list(ar=0.7,ma=-0.4)) m1 <- arima(x1,order=c(1,0,0),method= ML ) m2 <- arima(x1,order=c(0,0,1),method= ML ) m3 <- arima(x1,order=c(1,0,1),method= ML ) m1$aic; m2$aic; m3$aic m1$sigma^2; m2$sigma^2; m3$sigma^3 # An ARMA(1,1) 2

3 Repeat the simulations several times. The lowest ˆσ 2 and AIC is to prefer; in most cases, this should occur for fitted model m3. Experiment with the influence of sample size, for instance n = 20, n = Forecasting In this section, we first perform forecasting on simulated data, whereafter analysis of real datasets is made. Actually, the routine arima is the basis also for forecasting. We illustrate with a simulated AR(2) process (with a mean µ = 100). In all, 52 values are simulated, but the last 12 values are set aside to compare forecast to the actual values. library(tsa) x <- arima.sim(n=52,list(ar=c(1.5,-0.75)))+100 actual <- window(x,start=41) xdat <- window(x,end=40) model <- arima(xdat,order=c(2,0,0),method= ML ); model Forecasting, 12 time steps ahead: result=plot(model,n.ahead=12,ylab= Series & Forecasts,col=NULL,pch=19) abline(h=coef(model)[names(coef(model))== intercept ]) Note how the forecasts mimic the pseudo-periodic nature of the series but also decay toward the series mean µ as they go further into the future. We now compare the forecasts to the values set aside: forecast=result$pred; cbind(actual,forecast) Finally, we plot the forecasts together with 95% forecast limits. Do the actual values fall within the forecast limits? plot(model,n1=25,n.ahead=12,ylab= Series, Forecasts, Actuals & Limits, pch=19) points(x=(41:52),y=actual,pch=3) # Future actual values as + signs abline(h=coef(model)[names(coef(model))== intercept ]) 4 Case study: Quarterly earnings of Johnson and Johnson 4.1 Initial studies. Stationarity, transformation The quarterly earnings per share for of the U.S. company Johnson & Johnson are saved in the file JJ. We first plot the time series as well as the logarithm of the series. Do log transformation seem to be advantageous in this case? data(jj); win.graph(width=7,height=3,pointsize=8); oldpar=par; par(mfrow=c(1,2)) plot(jj,ylab= Earnings,type= o ); plot(log(jj),ylab= Log(Earnings),type= o ) par=oldpar 3

4 In the plot at the left, note that at the higher values of the series there is also much more variation. The plot of the logs, at the right, shows much more equal variation at all levels of the series. Hence, use logs for all of the remaining modelling. The series is clearly not stationary. Let us take first differences and plot that series. Does stationarity now seem reasonable? plot(diff(log(jj)),ylab= Difference of Log(Earnings),type= o ) We do not expect stationary series to have less variability in the middle of the series as this one does, but we might assume a stationary model and see where this leads us. 4.2 Modelling seasonality Calculate and graph the sample ACF of the first differences. Interpret the results. acf(diff(log(as.vector(jj))),ci.type= ma ) In this quarterly series, the strongest autocorrelations are at the seasonal lags of 4, 8, 12, and 16. Clearly, we need to address the seasonality in this series. Display the plot of seasonal differences and the first differences. Interpret the plot. (Recall that for quarterly data, a season is of length 4.) series=diff(diff(log(jj),lag=4)) plot(series,ylab= Seasonal & First Difference,type= l ) points(y=series,x=time(series),pch=as.vector(season(series))) The various quarters seem to be quite randomly distributed among high, middle, and low values, so that most of the seasonality is accounted for in the seasonal difference. Graph and interpret the sample ACF of seasonal differences with the first differences: acf(as.vector(series),ci.type= ma ) The only significant autocorrelations are at lags 1 and 7. Lag 4 (the quarterly lag) is nearly significant. Fit the model ARIMA(0,1,1) (0,1,1) 4, and assess the significance of the estimated coefficients. model=arima(log(jj),order=c(0,1,1),seasonal=list(order=c(0,1,1),period=4)); 4.3 Diagnostics We know perform diagnostic tests on the residuals, e.g. by using tsdiag: win.graph(width=5,height=5) tsdiag(model) These diagnostic plots do not show any inadequacies with the model. No outliers are detected and there is little autocorrelation in the residuals. Check of normality, by simple visual checks or Shapiro Wilk test: hist(residuals(model),xlab= Residuals ) qqnorm(residuals(model)); qqline(residuals(model)); shapiro.test(residuals(model)) Do normality of the error terms seems reasonable? 4

5 4.4 Forecasting Calculate and plot forecasts for the next two years of the series. Be sure to include forecast limits. win.graph(width=7,height=3,pointsize=8) plot(model,n1=c(1978,1),n.ahead=8,pch=19,ylab= Log(Earnings) ) The forecasts follow the general pattern of seasonality and trend in the earnings series and the forecast limits give a good indication of the confidence in these forecasts. Lastly, we display the forecasts in orginal terms. plot(model,n1=c(1978,1),n.ahead=8,pch=19,ylab= Earnings,transform=exp) In original terms, the uncertainty in the forecasts is easier to understand. 5

COMPUTER SESSION: ARMA PROCESSES

COMPUTER SESSION: ARMA PROCESSES UPPSALA UNIVERSITY Department of Mathematics Jesper Rydén Stationary Stochastic Processes 1MS025 Autumn 2010 COMPUTER SESSION: ARMA PROCESSES 1 Introduction In this computer session, we work within the

More information

STAT 520 FORECASTING AND TIME SERIES 2013 FALL Homework 05

STAT 520 FORECASTING AND TIME SERIES 2013 FALL Homework 05 STAT 520 FORECASTING AND TIME SERIES 2013 FALL Homework 05 1. ibm data: The random walk model of first differences is chosen to be the suggest model of ibm data. That is (1 B)Y t = e t where e t is a mean

More information

MAT3379 (Winter 2016)

MAT3379 (Winter 2016) MAT3379 (Winter 2016) Assignment 4 - SOLUTIONS The following questions will be marked: 1a), 2, 4, 6, 7a Total number of points for Assignment 4: 20 Q1. (Theoretical Question, 2 points). Yule-Walker estimation

More information

Scenario 5: Internet Usage Solution. θ j

Scenario 5: Internet Usage Solution. θ j Scenario : Internet Usage Solution Some more information would be interesting about the study in order to know if we can generalize possible findings. For example: Does each data point consist of the total

More information

The log transformation produces a time series whose variance can be treated as constant over time.

The log transformation produces a time series whose variance can be treated as constant over time. TAT 520 Homework 6 Fall 2017 Note: Problem 5 is mandatory for graduate students and extra credit for undergraduates. 1) The quarterly earnings per share for 1960-1980 are in the object in the TA package.

More information

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each)

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) GROUND RULES: This exam contains two parts: Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) The maximum number of points on this exam is

More information

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis Model diagnostics is concerned with testing the goodness of fit of a model and, if the fit is poor, suggesting appropriate modifications. We shall present two complementary approaches: analysis of residuals

More information

Firstly, the dataset is cleaned and the years and months are separated to provide better distinction (sample below).

Firstly, the dataset is cleaned and the years and months are separated to provide better distinction (sample below). Project: Forecasting Sales Step 1: Plan Your Analysis Answer the following questions to help you plan out your analysis: 1. Does the dataset meet the criteria of a time series dataset? Make sure to explore

More information

2. An Introduction to Moving Average Models and ARMA Models

2. An Introduction to Moving Average Models and ARMA Models . An Introduction to Moving Average Models and ARMA Models.1 White Noise. The MA(1) model.3 The MA(q) model..4 Estimation and forecasting of MA models..5 ARMA(p,q) models. The Moving Average (MA) models

More information

Final Examination 7/6/2011

Final Examination 7/6/2011 The Islamic University of Gaza Faculty of Commerce Department of Economics & Applied Statistics Time Series Analysis - Dr. Samir Safi Spring Semester 211 Final Examination 7/6/211 Name: ID: INSTRUCTIONS:

More information

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.4 Non-seasonal ARIMA models Forecasting using R 1 Outline 1 Autoregressive models 2 Moving average models 3 Non-seasonal ARIMA models 4 Partial autocorrelations 5 Estimation

More information

Introduction to Time Series Analysis. Lecture 11.

Introduction to Time Series Analysis. Lecture 11. Introduction to Time Series Analysis. Lecture 11. Peter Bartlett 1. Review: Time series modelling and forecasting 2. Parameter estimation 3. Maximum likelihood estimator 4. Yule-Walker estimation 5. Yule-Walker

More information

Chapter 8: Model Diagnostics

Chapter 8: Model Diagnostics Chapter 8: Model Diagnostics Model diagnostics involve checking how well the model fits. If the model fits poorly, we consider changing the specification of the model. A major tool of model diagnostics

More information

STAT 436 / Lecture 16: Key

STAT 436 / Lecture 16: Key STAT 436 / 536 - Lecture 16: Key Modeling Non-Stationary Time Series Many time series models are non-stationary. Recall a time series is stationary if the mean and variance are constant in time and the

More information

Homework 4. 1 Data analysis problems

Homework 4. 1 Data analysis problems Homework 4 1 Data analysis problems This week we will be analyzing a number of data sets. We are going to build ARIMA models using the steps outlined in class. It is also a good idea to read section 3.8

More information

Lecture 5: Estimation of time series

Lecture 5: Estimation of time series Lecture 5, page 1 Lecture 5: Estimation of time series Outline of lesson 5 (chapter 4) (Extended version of the book): a.) Model formulation Explorative analyses Model formulation b.) Model estimation

More information

Lab: Box-Jenkins Methodology - US Wholesale Price Indicator

Lab: Box-Jenkins Methodology - US Wholesale Price Indicator Lab: Box-Jenkins Methodology - US Wholesale Price Indicator In this lab we explore the Box-Jenkins methodology by applying it to a time-series data set comprising quarterly observations of the US Wholesale

More information

Minitab Project Report - Assignment 6

Minitab Project Report - Assignment 6 .. Sunspot data Minitab Project Report - Assignment Time Series Plot of y Time Series Plot of X y X 7 9 7 9 The data have a wavy pattern. However, they do not show any seasonality. There seem to be an

More information

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo Vol.4, No.2, pp.2-27, April 216 MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo ABSTRACT: This study

More information

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9)

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline 1 Building ARIMA Models 2 SARIMA 3 Homework 4c Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 2/ 34 Outline 1 Building ARIMA Models

More information

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline. Return Rate. US Gross National Product

STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline. Return Rate. US Gross National Product STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) Outline 1 Building ARIMA Models 2 SARIMA 3 Homework 4c Arthur Berg STA 6857 ARIMA and SARIMA Models ( 3.8 and 3.9) 2/ 34 Return Rate Suppose x t is the value

More information

Suan Sunandha Rajabhat University

Suan Sunandha Rajabhat University Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis Kunya Bowornchockchai Suan Sunandha Rajabhat University INTRODUCTION The objective of this research is to forecast

More information

MAT 3379 (Winter 2016) FINAL EXAM (PRACTICE)

MAT 3379 (Winter 2016) FINAL EXAM (PRACTICE) MAT 3379 (Winter 2016) FINAL EXAM (PRACTICE) 15 April 2016 (180 minutes) Professor: R. Kulik Student Number: Name: This is closed book exam. You are allowed to use one double-sided A4 sheet of notes. Only

More information

CHAPTER 8 MODEL DIAGNOSTICS. 8.1 Residual Analysis

CHAPTER 8 MODEL DIAGNOSTICS. 8.1 Residual Analysis CHAPTER 8 MODEL DIAGNOSTICS We have now discussed methods for specifying models and for efficiently estimating the parameters in those models. Model diagnostics, or model criticism, is concerned with testing

More information

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation University of Oxford Statistical Methods Autocorrelation Identification and Estimation Dr. Órlaith Burke Michaelmas Term, 2011 Department of Statistics, 1 South Parks Road, Oxford OX1 3TG Contents 1 Model

More information

Some Time-Series Models

Some Time-Series Models Some Time-Series Models Outline 1. Stochastic processes and their properties 2. Stationary processes 3. Some properties of the autocorrelation function 4. Some useful models Purely random processes, random

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 4 - Estimation in the time Domain Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 46 Agenda 1 Introduction 2 Moment Estimates 3 Autoregressive Models (AR

More information

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M.

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M. TIME SERIES ANALYSIS Forecasting and Control Fifth Edition GEORGE E. P. BOX GWILYM M. JENKINS GREGORY C. REINSEL GRETA M. LJUNG Wiley CONTENTS PREFACE TO THE FIFTH EDITION PREFACE TO THE FOURTH EDITION

More information

Economics 618B: Time Series Analysis Department of Economics State University of New York at Binghamton

Economics 618B: Time Series Analysis Department of Economics State University of New York at Binghamton Problem Set #1 1. Generate n =500random numbers from both the uniform 1 (U [0, 1], uniformbetween zero and one) and exponential λ exp ( λx) (set λ =2and let x U [0, 1]) b a distributions. Plot the histograms

More information

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design Marcel Dettling Institute for Data Analysis and Process Design Zurich University of Applied Sciences marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling ETH Zürich, March 18, 2013 1 Basics of Modeling

More information

Analysis of Violent Crime in Los Angeles County

Analysis of Violent Crime in Los Angeles County Analysis of Violent Crime in Los Angeles County Xiaohong Huang UID: 004693375 March 20, 2017 Abstract Violent crime can have a negative impact to the victims and the neighborhoods. It can affect people

More information

Computer Exercise 1 Estimation and Model Validation

Computer Exercise 1 Estimation and Model Validation Lund University Time Series Analysis Mathematical Statistics Fall 2018 Centre for Mathematical Sciences Computer Exercise 1 Estimation and Model Validation This computer exercise treats identification,

More information

Ch 6. Model Specification. Time Series Analysis

Ch 6. Model Specification. Time Series Analysis We start to build ARIMA(p,d,q) models. The subjects include: 1 how to determine p, d, q for a given series (Chapter 6); 2 how to estimate the parameters (φ s and θ s) of a specific ARIMA(p,d,q) model (Chapter

More information

Elements of Multivariate Time Series Analysis

Elements of Multivariate Time Series Analysis Gregory C. Reinsel Elements of Multivariate Time Series Analysis Second Edition With 14 Figures Springer Contents Preface to the Second Edition Preface to the First Edition vii ix 1. Vector Time Series

More information

Part 1. Multiple Choice (40 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 6 points each)

Part 1. Multiple Choice (40 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 6 points each) GROUND RULES: This exam contains two parts: Part 1. Multiple Choice (40 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 6 points each) The maximum number of points on this exam is

More information

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Moving average processes Autoregressive

More information

TMA4285 December 2015 Time series models, solution.

TMA4285 December 2015 Time series models, solution. Norwegian University of Science and Technology Department of Mathematical Sciences Page of 5 TMA4285 December 205 Time series models, solution. Problem a) (i) The slow decay of the ACF of z t suggest that

More information

MCMC analysis of classical time series algorithms.

MCMC analysis of classical time series algorithms. MCMC analysis of classical time series algorithms. mbalawata@yahoo.com Lappeenranta University of Technology Lappeenranta, 19.03.2009 Outline Introduction 1 Introduction 2 3 Series generation Box-Jenkins

More information

Exercises - Time series analysis

Exercises - Time series analysis Descriptive analysis of a time series (1) Estimate the trend of the series of gasoline consumption in Spain using a straight line in the period from 1945 to 1995 and generate forecasts for 24 months. Compare

More information

Lecture 19 Box-Jenkins Seasonal Models

Lecture 19 Box-Jenkins Seasonal Models Lecture 19 Box-Jenkins Seasonal Models If the time series is nonstationary with respect to its variance, then we can stabilize the variance of the time series by using a pre-differencing transformation.

More information

MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS)

MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS) MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS) 15 April 2016 (180 minutes) Professor: R. Kulik Student Number: Name: This is closed book exam. You are allowed to use one double-sided A4 sheet of notes.

More information

ECON/FIN 250: Forecasting in Finance and Economics: Section 8: Forecast Examples: Part 1

ECON/FIN 250: Forecasting in Finance and Economics: Section 8: Forecast Examples: Part 1 ECON/FIN 250: Forecasting in Finance and Economics: Section 8: Forecast Examples: Part 1 Patrick Herb Brandeis University Spring 2016 Patrick Herb (Brandeis University) Forecast Examples: Part 1 ECON/FIN

More information

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong STAT 443 Final Exam Review L A TEXer: W Kong 1 Basic Definitions Definition 11 The time series {X t } with E[X 2 t ] < is said to be weakly stationary if: 1 µ X (t) = E[X t ] is independent of t 2 γ X

More information

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA CHAPTER 6 TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA 6.1. Introduction A time series is a sequence of observations ordered in time. A basic assumption in the time series analysis

More information

Forecast for next 10 values:

Forecast for next 10 values: STAT 520 Homework 5 Fall 2017 Note: Problem 3 is mandatory for graduate students and extra credit for undergraduates. 1) A data set of 57 consecutive measurements from a machine tool are in the deere3

More information

Parameter estimation: ACVF of AR processes

Parameter estimation: ACVF of AR processes Parameter estimation: ACVF of AR processes Yule-Walker s for AR processes: a method of moments, i.e. µ = x and choose parameters so that γ(h) = ˆγ(h) (for h small ). 12 novembre 2013 1 / 8 Parameter estimation:

More information

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL B. N. MANDAL Abstract: Yearly sugarcane production data for the period of - to - of India were analyzed by time-series methods. Autocorrelation

More information

Chapter 6: Model Specification for Time Series

Chapter 6: Model Specification for Time Series Chapter 6: Model Specification for Time Series The ARIMA(p, d, q) class of models as a broad class can describe many real time series. Model specification for ARIMA(p, d, q) models involves 1. Choosing

More information

AR(p) + I(d) + MA(q) = ARIMA(p, d, q)

AR(p) + I(d) + MA(q) = ARIMA(p, d, q) AR(p) + I(d) + MA(q) = ARIMA(p, d, q) Outline 1 4.1: Nonstationarity in the Mean 2 ARIMA Arthur Berg AR(p) + I(d)+ MA(q) = ARIMA(p, d, q) 2/ 19 Deterministic Trend Models Polynomial Trend Consider the

More information

477/577 In-class Exercise 5 : Fitting Wine Sales

477/577 In-class Exercise 5 : Fitting Wine Sales 477/577 In-class Exercise 5 : Fitting Wine Sales (due Fri 4/06/2017) Name: Use this file as a template for your report. Submit your code and comments together with (selected) output from R console. Your

More information

A Beginner s Introduction. Box-Jenkins Models

A Beginner s Introduction. Box-Jenkins Models A Beginner s Introduction To Box-Jenkins Models I. Introduction In their seminal work, Time Series Analysis: Forecasting and Control (1970, Holden Day), Professors Box and Jenkins introduced a set of time

More information

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1 Forecasting using R Rob J Hyndman 3.2 Dynamic regression Forecasting using R 1 Outline 1 Regression with ARIMA errors 2 Stochastic and deterministic trends 3 Periodic seasonality 4 Lab session 14 5 Dynamic

More information

Circle the single best answer for each multiple choice question. Your choice should be made clearly.

Circle the single best answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 6, 2017 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 32 multiple choice

More information

Estimating AR/MA models

Estimating AR/MA models September 17, 2009 Goals The likelihood estimation of AR/MA models AR(1) MA(1) Inference Model specification for a given dataset Why MLE? Traditional linear statistics is one methodology of estimating

More information

Autoregressive Moving Average (ARMA) Models and their Practical Applications

Autoregressive Moving Average (ARMA) Models and their Practical Applications Autoregressive Moving Average (ARMA) Models and their Practical Applications Massimo Guidolin February 2018 1 Essential Concepts in Time Series Analysis 1.1 Time Series and Their Properties Time series:

More information

Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models

Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models Facoltà di Economia Università dell Aquila umberto.triacca@gmail.com Introduction In this lesson we present a method to construct an ARMA(p,

More information

Problems from Chapter 3 of Shumway and Stoffer s Book

Problems from Chapter 3 of Shumway and Stoffer s Book UNIVERSITY OF UTAH GUIDED READING TIME SERIES Problems from Chapter 3 of Shumway and Stoffer s Book Author: Curtis MILLER Supervisor: Prof. Lajos HORVATH November 10, 2015 UNIVERSITY OF UTAH DEPARTMENT

More information

Lesson 15: Building ARMA models. Examples

Lesson 15: Building ARMA models. Examples Lesson 15: Building ARMA models. Examples Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Examples In this lesson, in order to illustrate

More information

Analysis. Components of a Time Series

Analysis. Components of a Time Series Module 8: Time Series Analysis 8.2 Components of a Time Series, Detection of Change Points and Trends, Time Series Models Components of a Time Series There can be several things happening simultaneously

More information

Midterm Suggested Solutions

Midterm Suggested Solutions CUHK Dept. of Economics Spring 2011 ECON 4120 Sung Y. Park Midterm Suggested Solutions Q1 (a) In time series, autocorrelation measures the correlation between y t and its lag y t τ. It is defined as. ρ(τ)

More information

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting)

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) (overshort example) White noise H 0 : Let Z t be the stationary

More information

The ARIMA Procedure: The ARIMA Procedure

The ARIMA Procedure: The ARIMA Procedure Page 1 of 120 Overview: ARIMA Procedure Getting Started: ARIMA Procedure The Three Stages of ARIMA Modeling Identification Stage Estimation and Diagnostic Checking Stage Forecasting Stage Using ARIMA Procedure

More information

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before.

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before. ACF and PACF of an AR(p) We will only present the general ideas on how to obtain the ACF and PACF of an AR(p) model since the details follow closely the AR(1) and AR(2) cases presented before. Recall that

More information

ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models

ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models Patrick Herb Brandeis University Spring 2016 Patrick Herb (Brandeis University) Standard Univariate Models ECON/FIN

More information

ITSM-R Reference Manual

ITSM-R Reference Manual ITSM-R Reference Manual George Weigt February 11, 2018 1 Contents 1 Introduction 3 1.1 Time series analysis in a nutshell............................... 3 1.2 White Noise Variance.....................................

More information

Modelling using ARMA processes

Modelling using ARMA processes Modelling using ARMA processes Step 1. ARMA model identification; Step 2. ARMA parameter estimation Step 3. ARMA model selection ; Step 4. ARMA model checking; Step 5. forecasting from ARMA models. 33

More information

Lecture Notes of Bus (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay

Lecture Notes of Bus (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay Lecture Notes of Bus 41202 (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay Simple AR models: (Regression with lagged variables.) Motivating example: The growth rate of U.S. quarterly real

More information

Modeling and forecasting global mean temperature time series

Modeling and forecasting global mean temperature time series Modeling and forecasting global mean temperature time series April 22, 2018 Abstract: An ARIMA time series model was developed to analyze the yearly records of the change in global annual mean surface

More information

Ch3. TRENDS. Time Series Analysis

Ch3. TRENDS. Time Series Analysis 3.1 Deterministic Versus Stochastic Trends The simulated random walk in Exhibit 2.1 shows a upward trend. However, it is caused by a strong correlation between the series at nearby time points. The true

More information

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis Chapter 12: An introduction to Time Series Analysis Introduction In this chapter, we will discuss forecasting with single-series (univariate) Box-Jenkins models. The common name of the models is Auto-Regressive

More information

Univariate ARIMA Models

Univariate ARIMA Models Univariate ARIMA Models ARIMA Model Building Steps: Identification: Using graphs, statistics, ACFs and PACFs, transformations, etc. to achieve stationary and tentatively identify patterns and model components.

More information

Forecasting. Simon Shaw 2005/06 Semester II

Forecasting. Simon Shaw 2005/06 Semester II Forecasting Simon Shaw s.c.shaw@maths.bath.ac.uk 2005/06 Semester II 1 Introduction A critical aspect of managing any business is planning for the future. events is called forecasting. Predicting future

More information

Univariate Time Series Analysis; ARIMA Models

Univariate Time Series Analysis; ARIMA Models Econometrics 2 Fall 24 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing

More information

A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA

A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA www.arpapress.com/volumes/vol14issue3/ijrras_14_3_14.pdf A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA Ette Harrison Etuk Department of Mathematics/Computer Science, Rivers State University

More information

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn }

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn } Stochastic processes Time series are an example of a stochastic or random process Models for time series A stochastic process is 'a statistical phenomenon that evolves in time according to probabilistic

More information

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Moving average processes Autoregressive

More information

Basics: Definitions and Notation. Stationarity. A More Formal Definition

Basics: Definitions and Notation. Stationarity. A More Formal Definition Basics: Definitions and Notation A Univariate is a sequence of measurements of the same variable collected over (usually regular intervals of) time. Usual assumption in many time series techniques is that

More information

AR, MA and ARMA models

AR, MA and ARMA models AR, MA and AR by Hedibert Lopes P Based on Tsay s Analysis of Financial Time Series (3rd edition) P 1 Stationarity 2 3 4 5 6 7 P 8 9 10 11 Outline P Linear Time Series Analysis and Its Applications For

More information

Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book; you are not tested on them.

Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book; you are not tested on them. TS Module 1 Time series overview (The attached PDF file has better formatting.)! Model building! Time series plots Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book;

More information

Circle a single answer for each multiple choice question. Your choice should be made clearly.

Circle a single answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 4, 215 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 31 questions. Circle

More information

ARIMA Models. Jamie Monogan. January 25, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 25, / 38

ARIMA Models. Jamie Monogan. January 25, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 25, / 38 ARIMA Models Jamie Monogan University of Georgia January 25, 2012 Jamie Monogan (UGA) ARIMA Models January 25, 2012 1 / 38 Objectives By the end of this meeting, participants should be able to: Describe

More information

Time Series Modeling. Shouvik Mani April 5, /688: Practical Data Science Carnegie Mellon University

Time Series Modeling. Shouvik Mani April 5, /688: Practical Data Science Carnegie Mellon University Time Series Modeling Shouvik Mani April 5, 2018 15-388/688: Practical Data Science Carnegie Mellon University Goals After this lecture, you will be able to: Explain key properties of time series data Describe,

More information

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models Module 3 Descriptive Time Series Statistics and Introduction to Time Series Models Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W Q Meeker November 11, 2015

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

Forecasting Bangladesh's Inflation through Econometric Models

Forecasting Bangladesh's Inflation through Econometric Models American Journal of Economics and Business Administration Original Research Paper Forecasting Bangladesh's Inflation through Econometric Models 1,2 Nazmul Islam 1 Department of Humanities, Bangladesh University

More information

Ch 4. Models For Stationary Time Series. Time Series Analysis

Ch 4. Models For Stationary Time Series. Time Series Analysis This chapter discusses the basic concept of a broad class of stationary parametric time series models the autoregressive moving average (ARMA) models. Let {Y t } denote the observed time series, and {e

More information

Lecture 6a: Unit Root and ARIMA Models

Lecture 6a: Unit Root and ARIMA Models Lecture 6a: Unit Root and ARIMA Models 1 2 Big Picture A time series is non-stationary if it contains a unit root unit root nonstationary The reverse is not true. For example, y t = cos(t) + u t has no

More information

Problem Set 2: Box-Jenkins methodology

Problem Set 2: Box-Jenkins methodology Problem Set : Box-Jenkins methodology 1) For an AR1) process we have: γ0) = σ ε 1 φ σ ε γ0) = 1 φ Hence, For a MA1) process, p lim R = φ γ0) = 1 + θ )σ ε σ ε 1 = γ0) 1 + θ Therefore, p lim R = 1 1 1 +

More information

Regression of Time Series

Regression of Time Series Mahlerʼs Guide to Regression of Time Series CAS Exam S prepared by Howard C. Mahler, FCAS Copyright 2016 by Howard C. Mahler. Study Aid 2016F-S-9Supplement Howard Mahler hmahler@mac.com www.howardmahler.com/teaching

More information

Lecture 7: Model Building Bus 41910, Time Series Analysis, Mr. R. Tsay

Lecture 7: Model Building Bus 41910, Time Series Analysis, Mr. R. Tsay Lecture 7: Model Building Bus 41910, Time Series Analysis, Mr R Tsay An effective procedure for building empirical time series models is the Box-Jenkins approach, which consists of three stages: model

More information

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends Reliability and Risk Analysis Stochastic process The sequence of random variables {Y t, t = 0, ±1, ±2 } is called the stochastic process The mean function of a stochastic process {Y t} is the function

More information

Prashant Pant 1, Achal Garg 2 1,2 Engineer, Keppel Offshore and Marine Engineering India Pvt. Ltd, Mumbai. IJRASET 2013: All Rights are Reserved 356

Prashant Pant 1, Achal Garg 2 1,2 Engineer, Keppel Offshore and Marine Engineering India Pvt. Ltd, Mumbai. IJRASET 2013: All Rights are Reserved 356 Forecasting Of Short Term Wind Power Using ARIMA Method Prashant Pant 1, Achal Garg 2 1,2 Engineer, Keppel Offshore and Marine Engineering India Pvt. Ltd, Mumbai Abstract- Wind power, i.e., electrical

More information

Review Session: Econometrics - CLEFIN (20192)

Review Session: Econometrics - CLEFIN (20192) Review Session: Econometrics - CLEFIN (20192) Part II: Univariate time series analysis Daniele Bianchi March 20, 2013 Fundamentals Stationarity A time series is a sequence of random variables x t, t =

More information

Case Study: Modelling Industrial Dryer Temperature Arun K. Tangirala 11/19/2016

Case Study: Modelling Industrial Dryer Temperature Arun K. Tangirala 11/19/2016 Case Study: Modelling Industrial Dryer Temperature Arun K. Tangirala 11/19/2016 Background This is a case study concerning time-series modelling of the temperature of an industrial dryer. Data set contains

More information

The data was collected from the website and then converted to a time-series indexed from 1 to 86.

The data was collected from the website  and then converted to a time-series indexed from 1 to 86. Introduction For our group project, we analyzed the S&P 500s futures from 30 November, 2015 till 28 March, 2016. The S&P 500 futures give a reasonable estimate of the changes in the market in the short

More information

ECONOMETRIA II. CURSO 2009/2010 LAB # 3

ECONOMETRIA II. CURSO 2009/2010 LAB # 3 ECONOMETRIA II. CURSO 2009/2010 LAB # 3 BOX-JENKINS METHODOLOGY The Box Jenkins approach combines the moving average and the autorregresive models. Although both models were already known, the contribution

More information

ibm: daily closing IBM stock prices (dates not given) internet: number of users logged on to an Internet server each minute (dates/times not given)

ibm: daily closing IBM stock prices (dates not given) internet: number of users logged on to an Internet server each minute (dates/times not given) Remark: Problem 1 is the most important problem on this assignment (it will prepare you for your project). Problem 2 was taken largely from last year s final exam. Problem 3 consists of a bunch of rambling

More information

TIME SERIES DATA PREDICTION OF NATURAL GAS CONSUMPTION USING ARIMA MODEL

TIME SERIES DATA PREDICTION OF NATURAL GAS CONSUMPTION USING ARIMA MODEL International Journal of Information Technology & Management Information System (IJITMIS) Volume 7, Issue 3, Sep-Dec-2016, pp. 01 07, Article ID: IJITMIS_07_03_001 Available online at http://www.iaeme.com/ijitmis/issues.asp?jtype=ijitmis&vtype=7&itype=3

More information

Forecasting using R. Rob J Hyndman. 2.5 Seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.5 Seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.5 Seasonal ARIMA models Forecasting using R 1 Outline 1 Backshift notation reviewed 2 Seasonal ARIMA models 3 ARIMA vs ETS 4 Lab session 12 Forecasting using R Backshift

More information