Stable Boundary Layer and Its Impact on Tropical Cyclone Structure in a Coupled Atmosphere Ocean Model

Size: px
Start display at page:

Download "Stable Boundary Layer and Its Impact on Tropical Cyclone Structure in a Coupled Atmosphere Ocean Model"

Transcription

1 MAY 2014 L E E A N D C H E N 1927 Stable Boundary Layer and Its Impact on Tropical Cyclone Structure in a Coupled Atmosphere Ocean Model CHIA-YING LEE AND SHUYI S. CHEN Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida (Manuscript received 7 April 2013, in final form 27 December 2013) ABSTRACT The atmospheric boundary layer (BL) in tropical cyclones (TCs) connects deep convection within rainbands and the eyewall to the air sea interface. Although the importance of the BL in TCs has been widely recognized in recent studies, how physical processes affect TC structure and intensity are still not well understood. This study focuses on a particular physical mechanism through which a TC-induced upper-ocean cooling within the core circulation of the TC can affect the BL and TC structure. A coupled atmosphere ocean model forecast of Typhoon Choi-Wan (2009) is used to better understand the physical processes of air sea interaction in TCs. A persistent stable boundary layer (SBL) is found to form over the cold wake within the TC s right-rear quadrant, which influences TC structure by suppressing convection in rainbands downstream of the cold wake and enhancing the BL inflow into the inner core by increasing inflow angles over strong SST and pressure gradients. Tracer and trajectory analyses show that the air in the SBL stays in the BL longer and gains extra energy from surface heat and moisture fluxes. The enhanced inflow helps transport air in the SBL into the eyewall. In contrast, in the absence of a TC-induced cold wake and an SBL in an uncoupled atmosphere model forecast, the air in the right-rear quadrant within the BL tends to rise into local rainbands. The SBL formed over the cold wake in the coupled model seems to be a key feature that enhances the transport of high energy air into the TC inner core and may increase the storm efficiency. 1. Introduction The atmospheric boundary layer (BL) is a layer that directly links the deep convection in tropical cyclones (TCs) to the underlying sea surface. As the surface enthalpy fluxes from the ocean to the atmosphere are the main energy source for TCs (Emanuel 1986; Rotunno and Emanuel 1987), it is of a particular interest to understand how air sea coupling affects the BL structure and, ultimately, the evolution of storm structure and intensity. A majority of previous studies regarding air sea interaction in TCs focused on the negative impact of the TC-induced ocean cooling on TC intensity. Downward momentum fluxes cause vertical mixing and upwelling that led to the cooling of SST and the upper ocean. The ocean cooling reduces the degree of thermal disequilibrium across the air sea interface and weakens the storm intensity by reducing the upward enthalpy fluxes (e.g., Schade and Emanuel 1999; Davis et al. 2008). This negative Corresponding author address: Dr. Chia-Ying Lee, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL clee@rsmas.miami.edu impact has been included as one of the predictors in the operational Statistical Hurricane Intensity Prediction Scheme (SHIPS; DeMaria et al. 2005). In contrast, there are very few studies focusing on the impact of air sea coupling on the BL and the corresponding TC structure and intensity. Most recently, Chen et al. (2013) show the importance of coupling of surface waves and ocean circulation on the structure and intensity of Hurricane Frances (2004) in a fully coupled atmosphere wave ocean model. By using an axisymmetric hurricane model coupled to an idealized ocean model, Anthes and Chang (1978) documented that storm-induced SST cooling results in reduced mean temperature and moisture in the BL. The cooling is especially significant at the large radii where the BL thermodynamic properties are mainly controlled by the ocean temperature. Using a three-dimensional (3D) ocean model, Price (1981) showed that the TCinduced cooling is strongest in the right-rear quadrant of the storm, which indicates that its impact on BL may be asymmetric. Many observational studies have shown that the TC-induced cold wake is maximized in the rightrear quadrant, including both from ship-based (e.g., Leipper 1967) and satellite observations (e.g., Lin et al. DOI: /MWR-D Ó 2014 American Meteorological Society

2 1928 M O N T H L Y W E A T H E R R E V I E W VOLUME ). This persistent cold wake within TCs can result in a shallower BL (atmospheric mixed layer), as well as lower equivalent and virtual potential temperatures in the right-rear quadrant, as shown recently in coupled atmosphere wave ocean model simulations and in situ observations (Lee and Chen 2012; Chen et al. 2013). The changes in BL moisture and temperature might change TC vortex structure (Van Sang et al. 2008). One of the interesting features in the TC BL associated with air sea interaction is the development of a stable boundary layer (SBL), which has been documented by Black and Holland (1995), in which they observed a SBL near the TC-induced cold wake within TC Kerry (1979). Reports of fog over the cold wake in earlier studies by Ramage (1972) could be seen as an indication of the SBL in a TC. Warm air over cooler SST in a TC can result in formation of a SBL, which is consistent with one of the mechanisms described in Stull (1988). A review of the SBL over SST fronts in the midlatitudes by Small et al. (2008) concluded that the response of the flow in the atmospheric BL to the cold SST front is a weakening of the surface winds. Such a wind reduction results in momentum imbalance and the wind turning toward the background pressure gradient. These changes include the following: 1) the development of an internal SBL that is usually shallower than the surrounding BL, 2) a decrease in the downward momentum fluxes from the top of the BL due to the increased thermal and moisture stratification and the suppressed turbulent activity in the BL, 3) a reduction in surface fluxes due to the SST cooling, and 4) the formation of hydrostatic pressure anomalies (Wallace et al. 1998; Small et al. 2008). Among all the factors, the decrease of the turbulent mixing and the downward momentum fluxes over the cold SST front is thought to be the primary causes of wind reduction under the moderate to high wind regime. The changes in surface fluxes and hydrostatic pressure gradient due to cold SST play minor roles because of the smaller adjustment period. In an idealized atmospheric modeling experiment of a TC with a specified SST patch, Chen et al. (2010) showed that the near-surface wind responds to the specified cold wake in a manner similar to that of the midlatitude cold SST front. Lin et al. (2003) showed a modulation of surface winds by the poststorm cold wake using satellite data. The question of how the SBL affects TC convection and structure remains unresolved. In this study, we focus on examining the impact of the cold-wake-induced SBL within the TC core circulation on the physical properties of the TC BL, and on convection that may affect the TC structure and intensity. A highresolution, coupled atmosphere ocean model forecast of Typhoon Choi-Wan (2009) will be used to investigate the physical mechanism(s) responsible for the formation of the SBL and its influence on the TC structure, especially the eyewall and rainbands. A detailed description of the coupled model and numerical experiments will be given in section 2. To follow the evolution of the BL airflow in the model forecast, we developed tracer and trajectory analyses in the atmospheric model, which will be described in section 3. Section 4 presents comparisons of the model forecasts and some limited observations of Choi-Wan. In sections 5 and 6, the coupled atmosphere ocean model forecast will be compared with the uncoupled atmosphere model forecast to isolate the effects of the air sea coupling on the formation of the cold wake and the SBL as well as their impact on the TC structure and intensity. Finally, conclusions will be given in section Coupled model and configurations a. UMCM-WP The University of Miami coupled atmosphere wave ocean modeling system (UMCM) includes three model components: the atmospheric, surface wave, and ocean circulation models (Chen et al. 2007, 2013). UMCM can be configured using various component models. In this study, UMCM consists of the Weather Research and Forecasting Model (WRF; Skamarock et al. 2008) and the three-dimensional Price Weller Pinkel (3DPWP) upper-ocean circulation model (Price 1981; Price et al. 1994), which will be referred to as UMCM-WP. In UMCM-WP, 3DPWP is designed to share the same horizontal grids as WRF, including the nesting domains, and there is no interpolation required when these two components exchange information. The time steps of WRF and 3DPWP models can be specified according to the desired coupling interval. In this study, the time steps of the outermost domain of WRF and 3DPWP, as well as the coupling interval are set to be 1 min. WRF is configured with triply nested grids with 12-, 4-, and 1.3-km resolutions, respectively. The inner two nests are storm-following moving grids (Tenerelli and Chen 2001) while the outermost domain is fixed. The number of grid points in the 12-, 4-, and 1.3-km domains are , , and , respectively. There are 36 vertical levels with 10 levels in the lowest 1 km. The microphysical scheme used is the WRF singlemoment 5-class microphysics scheme (WSM5; Hong et al. 2004) and the boundary layer scheme is the Yonsei University (YSU; Hong et al. 2006) for all three nested grids. On the 12-km outer domain, the Kain Fritsch cumulus parameterization scheme (Kain and Fritsch 1993) is used in addition to WSM5. The surface roughness and heat and moisture exchange coefficients are based on Donelan et al. (2004) and Garratt (1992).

3 MAY 2014 L E E A N D C H E N 1929 FIG. 1. (a) The JMA and JTWC best track (black) and the forecast tracks from the AO (red) and UA (blue) model for Typhoon Choi-Wan from 0000 UTC 13 Sep to 0000 UTC 17 Sep The black dots denote the storm center location at 0000 UTC each day. (b) As in (a), but for the maximum wind speed (MWS). The black dashed and solid lines are the MWS from JTWC and JMA, respectively. The 3DPWP model is configured with nested 12- and 4-km domains matching that of WRF. The ocean fields on the 1.3-km domain are linearly interpolated from the 4-km domain. 3DPWP is a full-physics 3D ocean circulation model with the exception of bathymetry (Price et al. 1994). There are 30 layers in 3DPWP with vertical resolution varying from 5 m in the mixed layer to 20 m below down to 390-m depth. The computational time of the 3D ocean model is usually a small fraction of that of WRF. To isolate the physical processes leading to the formation of the SBL due to the storm-induced SST cooling and its impact on the storm structure, we conduct an uncoupled atmosphere (UA) WRF forecast and a coupled atmosphere ocean (AO) WRF-3DPWP forecast of Supertyphoon Choi-Wan (2009). The WRF configuration is the same for both the coupled and uncoupled forecasts. b. Initial and lateral boundary conditions The models are initialized at 0000 UTC 13 September A 96-h forecast is made over a period of time when Choi-Wan intensified from a tropical storm to a supertyphoon and then reached a relatively steady-state stage. The two inner domains start at 0600 UTC after a short spinup period with the outermost 12-km domain. The Global Forecast System (GFS) forecast fields are used as the initial and lateral boundary conditions for WRF. The 3DPWP is initialized with the global Hybrid Coordinate Ocean Model (HYCOM) real-time forecast fields and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager/Advanced Microwave Scanning Radiometer for Earth Observing System (TMI/AMSR-E) SST data from the Remote Sensing Systems ( on 12 September. A blended satellite observed SST with HYCOM subsurface temperature is used in 3DPWP, which provides the best initial ocean field for UMCM-WP. 3. Analysis of BL and airflow in TCs a. Stable boundary layer Historically, several stability parameters have been used to characterize the BL properties. In this study we define the surface stability S as the Monin Obukhov stability index: S 5 z L 5 2kzg(w0 u 0 ) sfc u y u 3 * where the Obukhov length is given by, (1) L 5 2uu3 * kg(w 0 u 0 ) sfc. (2) In Eq. (1), k is the Von Karman constant, w is the vertical velocity, g is the gravity, and u * is the frictional velocity. All of the fields can be separated into mean (overbar) and perturbation (prime) components. The positive and negative values of S represent stable and unstable surface layer, respectively. The Monin Obukhov stability index is calculated in WRF. The static stability parameter is defined as the vertical gradient of u y as in Stull (1988, 1991): du. 0 stable BL, dz du 5 0 neutral BL, dz du dz, 0 unstable BL. (3)

4 1930 M O N T H L Y W E A T H E R R E V I E W VOLUME 142 FIG. 2. (a) The initial SST (8C) field. (b) The initial T100 (8C) field [calculated based on Price (2009) from HYCOM analysis field]. (c) TMI/AMSR-E SST (8C) swath from 13 to 17 Sep, which represents the minimum SST during the whole period. (d) As in (c), but for the forecast from AO. The solid black line is the JTWC best track, and the dashed line is the forecast storm track in AO. Black dots denote the storm center at 0000 UTC each day during the simulation period. Because the ocean does not change in UA, the SST swath in UA is the same as the initial SST. Here the BL is defined as the well-mixed layer (e.g., Lee and Chen 2012). The BL height is where u y is 0.5 K higher than its value at the surface. The static stability of the BL is computed at each grid point. An SBL is defined as a BL within which every model level is statically stable. b. Forward Lagrangian trajectory and tracer analysis To quantify the source of airflow originating in the BL that may go into the convection in TC rainbands and/or the eyewall, we use both the Lagrangian trajectory and tracer analyses. A Lagrangian trajectory is an undiluted air parcel that is advected by flow resolved by the model, which can be integrated forward with time: x i,t11 5 x i,t 1 dx i,t dx i,t 5 U i,t 3 dt, (4) where x i,t represents the location of the trajectory in the i direction at time t, and dx i,t is the displacement of the trajectory advected by U i,t over a period dt. This approach works well in the free atmosphere and strongly forced convection. However, it cannot represent the mixing processes in the BL, as shown in Romps and Kuang (2010), which are important in this study. Here we use a tracer analysis to represent air parcels that are subjected not only to advection but also mixing and diffusion: dc dt 5 y 2 c c 2 (u0 c 0 ) 1 S x c, (5) i x 2 i where c is the concentration of a passive tracer, x i is again the location in the i direction, u is the wind in the i

5 MAY 2014 L E E A N D C H E N 1931 time step t, U i,t is linearly interpolated onto the trajectory position from eight surrounding grid points. The advantage of this new trajectory calculation described here is the improved accuracy. It avoids the potential error when using a relatively infrequent model output to calculate trajectories as pointed out by Dahl et al. (2011). However, one drawback is that backward trajectories cannot be computed using this method. FIG. 3. Time series of the depth-averaged temperature T100 computed from the HYCOM analysis field along the JMA best track (black) and the AO-forecast track (red). direction, and y c is the molecular diffusivity. The total fields can be separated into mean (overbar) and perturbation (prime) components. The terms on the righthand side are the mean molecular diffusion, the divergence of turbulent tracer flux, and a source/sink term, which is set to be 0 in this study. The tracer calculation uses the same scalar variables as in WRF-chem with the turbulent mixing processes added in the YSU PBL scheme. Special care is given in both tracer and trajectory calculations related to the moving nested grids, particularly when the air parcels travel across between nested domains. The acrossdomain entrainment/detrainment of a tracer is handled by the WRF numerical schemes. For trajectories, we calculate each new location, x i,t11, in all nested grids at every model time step, but save the one from the finest model resolution grid. In UMCM-WP, x i,t11 is not limited to be an integer (i.e., the location of each trajectory is not constrained to be at the model grid point). At each 4. Supertyphoon Choi-Wan (2009) a. Synopsis Choi-Wan (2009) was a supertyphoon with a maximum wind speed (MWS).100 kt (1 kt m s 21 ) in the western North Pacific based on the Joint Typhoon Warning Center (JTWC) best track estimates. It formed on 11 September as a tropical depression and quickly intensified to a tropical storm on 12 September. Choi- Wan tracked westward along the southern edge of a strong subtropical high pressure system over the warm ocean in the west Pacific (Fig. 1a). Choi-Wan became a category-4 supertyphoon on 14 September (Fig. 1b) and was still steered by the subtropical ridge toward the northwestward. The storm reached its maximum intensity later on 15 September as a category-5 supertyphoon. The environmental vertical wind shear was lower than 4 m s 21, based on the Statistical Typhoon Intensity Prediction Scheme (STIPS; Knaff et al. 2005). The upper-ocean condition can be characterized by a depth-averaged temperature T100 (Price 2009). In this study T100 is computed from the initial HYCOM analysis field along the storm track (Fig. 2b). T100 was above 288C when Choi-Wan reached its peak intensity (Fig. 3). FIG. 4. The BL depth (m) from (a) AO and (b) UA model forecasts averaged over 12 h from 0000 to 1200 UTC 16 Sep. The black contours are the SST isotherms. The black arrows indicate the directions of storm motion.

6 1932 M O N T H L Y W E A T H E R R E V I E W VOLUME 142 FIG. 5. The SBL (black) and stable surface layer (gray) in (a) AO and (b) UA at 1200 UTC 16 Sep. The red contours are SST isotherms with an interval of 0.58C, and the thick red line is the 308C SST isotherm. The black arrows indicate the storm motion. With the help of favorable atmospheric environment and ocean conditions, Choi-Wan remained near its peak intensity, 140 kt, until late on 16 September. The official best track data provided by the Japan Meteorological Agency (JMA) had Choi-Wan as a category-3 supertyphoon. The difference between the JTWC and JMA best track data is due in part to the different definitions of the maximum surface wind they used (Harper 2010; Nakazawa and Hoshino 2009). JMA uses a 10-min sustained wind speed, whereas JTWC a 1-min sustained wind. In general, the FIG. 6. Virtual potential temperature (u y ) profiles in the lowest 1 km from (a) AO and (b) UA model forecasts at 1200 UTC 16 Sep. Profiles are grouped based on SST from,288 to.298c from left to right as labeled at top of each column. A subset of profiles with an unstable layer near the surface (gray, randomly chosen to avoid the clutter) and stable layer (red) are shown. The thick black line is the mean profile of each group. All profiles are from an annulus within an annular area between 150- and 400-km radii. The x axis ranges from 304 to 306 K for each panel.

7 MAY 2014 L E E A N D C H E N 1933 FIG. 7. Radar reflectivity at 80 m at 0000 UTC 16 Sep overlaid with the initial location of the tracers (blue contours) and trajectories (blue and green dots) from (a) AO and (b) UA model forecasts. In AO, the tracers are released in the locations marked by blue contours, which cover areas of the cold wake, 908 downstream from the cold wake (north), and 908 upstream from the cold wake (south). All the tracers and trajectories are released at the 80-m level. In UA, tracers and trajectories are released based on the same storm-relative locations as in AO. The cold-wake area of SST, 28.58C isotherm is highlighted in red. The green dotted line between A B marked the initial location of trajectories shown in Fig. 13. storm intensity issued by JTWC is about 10% stronger than that of JMA (Lander 2008). However, for Choi- Wan, the peak intensity estimated by JTWC is 40% higher than that of JMA. This uncertainty should be considered when comparing model forecast to these best track data. We include both best track intensity estimates in Fig. 1b. With the strong surface wind and slow storm translation speed (2 4 m s 21 ), Choi-Wan induced a relatively strong SST cooling of more than 38C during September (Fig. 3c). b. Model forecasts of Choi-Wan The UA and AO model forecast tracks and intensities are compared with the best track data from JMA and JTWC (Fig. 1). The model forecast tracks in both AO and UA have a southward bias. By comparing the 500-hPa geopotential height field in these two forecasts to that in the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis field (not shown), we found that such a southward bias is due to an overpredicted ridge northeast of the storm in the models. The track error may affect the model forecasted storms as they experience slightly different upper-ocean conditions than those of Typhoon Choi-Wan (Figs. 2a,b and 3). Both UA and AO forecasts capture the intensification of Choi-Wan from 13 to 16 September (Fig. 1b). The environmental vertical wind shear in the model forecasts varies from 2 to 6 m s 21 during this period. Although the large-scale environment is about the same for both UA and AO, the storm intensity in UA and AO starts to evolve differently late on 14 September. UA intensifies more rapidly than that of AO. They both reach a quasi steady state early on 16 September and start to weaken late on the same day. Given that the main focus of this study is to investigate the physical processes associated with the storminduced ocean cooling and its impact on the BL and storm structure, we will analyze the UA and AO model forecasts and contrast their distinct features due to the air sea coupling in the model. The strong ocean cooling in AO developed after the initial intensification period will be the focus of the analysis. Unfortunately, there is no in situ collocated atmospheric and ocean observations in Choi-Wan during September. Nevertheless, the differences between the UA and AO model forecasts can provide some physical insight into the effects of air sea coupling on the TC structure and intensity. 5. Stable boundary layer in Typhoon Choi-Wan One of the most robust features that coupled models and observations have consistently shown is a relatively shallow BL over the storm-induced cold wake in the right-rear quadrant of TCs (e.g., Lee and Chen 2012). This feature is also presented in the coupled AO model forecast in Choi-Wan, which is located outside of the eyewall extending out to about 350-km radius (Fig. 4a). It is absent in UA where there is no storm-induced SST

8 1934 M O N T H L Y W E A T H E R R E V I E W VOLUME 142 FIG. 8. 3D isosurface of tracer concentration (0.05, gray) from the tracer released at 0000 UTC 16 Sep (top) over the cold wake in AO and (bottom) equivalent storm-relative region in UA at t tracer 5 0, 20, 60, and 120 min. The color shading shows SST. cooling (Fig. 4b). The stability analysis based on Eqs. (1) and (3) shows that the surface layer and BL are stable over this region in AO (Fig. 5a). The area of the stable surface layer is larger than that of the SBL. The formation of a stable surface layer and an SBL is likely the result of warm air being advected over the cold water from upstream of the cold wake in the coupled model. In contrast, there is no SBL or stable surface layer in UA (Fig. 5b). Although there is no direct observation of an SBL in Typhoon Choi-Wan, observations using the GPS dropsondes collected in three Atlantic hurricanes by Barnes (2008) showed that 10% of the dropsonde data have a stable thermal profile. Whether these stable profiles were over cold SST is unknown because there was no collocated ocean measurement. Barnes (2008) found that the stable profiles mostly had a surface wind speed less than 30 m s 21, which is consistent with the fact that the SBL is away from the center of the storm in Choi-Wan (Fig. 5a), where the wind speeds are less than 25 m s 21 (not shown). To further examine the vertical structure of the BL in and out of the region of the SBL, we divide the vertical profiles of u y into four groups based on the corresponding SST values in both AO and UA (Fig. 6). The profiles are sampled outside of the eyewall/inner-core region and rainbands to ensure that they are not in convection. Because the SST is kept constant in time in UA forecast, profiles in UA represent a BL without storm-induced cooling with SST ranging from to 29.58C (Fig. 6b). Profiles with SST below 28.58C from AO are likely affected by the storm-induced ocean cooling in the coupled model (Fig. 6a). In addition, some profiles with SST values from to 29.08C inao may also be cooled from higher SST values at the model initial time. The SBL profiles are found in three of the four groups in AO with SST, 298C (red profiles in Fig. 6a). They are mostly from the cold-wake region in AO (Fig. 5a). Although there is a large variability within each SST group, the main characteristics of u y in the BL are distinct between different groups. When SST. 298C

9 MAY 2014 L E E A N D C H E N 1935 FIG. 9. The azimuthally integrated tracer concentration (color shading) of the cold-wake tracer (left) from 0300 to 0600 UTC 16 Sep in AO and (right) the equivalent in UA. The black line shows the azimuthally averaged BL height, and the black dots indicate the RMW at each model level. (in both UA and AO), the mean profile (thick black line) can be separated into three layers from the surface upward: an unstable layer in which u y decreases with height, a well-mixed layer right above the unstable layer with u y almost constant with height, and another stable layer with u y increases with height. As SST decreases, some profiles display a stable layer near the surface and in the BL in AO (red lines in Fig. 6a). For the group with 28.58,SST, 29.08C, the mean profile in UA is more unstable than AO near the surface. The unstable layer disappears in some profiles in AO. 6. Impact of SBL on near-surface airflow An SBL may affect both thermodynamic and dynamic properties of the flow near the surface and/or throughout

10 1936 M O N T H L Y W E A T H E R R E V I E W VOLUME 142 FIG. 10. (a) (d) Radar reflectivity at 1-km altitude from (left) the AO and (right) UA model forecasts at 0000 and 0600 UTC 16 Sep. The black arrows indicate the storm motion. The number of convective/rain points within the red wedged box in each panel is shown at the top. (e) Satellite observed 85-GHz brightness temperature from the Special Sensor Microwave Imager (SSM/I) at 0600 UTC 16 Sep where the red wedged box indicates the downwind area from the cold wake.

11 MAY 2014 L E E A N D C H E N 1937 FIG. 11. The 10-m wind vectors from the AO (red) and UA (blue) model forecasts at 0000 UTC 16 Sep. The gray shading shows the area of 18C SST cooling. The black arrow indicates the direction of the storm motion. The panel at right is a zoomed-in subsection of the cold wake. the BL. To understand the impact of the SBL on the airflow and convection in Choi-Wan, we conduct trajectory and tracer analyses as described in section 3b. Both trajectories and tracers are released at 0000 UTC 16 September in AO and UA forecasts. We track the trajectories and tracers over the next 6 h when the model forecast storms are in a relatively steady state in term of intensity (Fig. 1b). The total amount of tracer is conserved during this 6-h period when the air parcels have sufficient time going into either the inner core or the outer regions in the TC. In AO, the tracers are released between the 150- and 350-km radii away from the storm center in three locations: 1) the SBL over the cold wake, 2) the region 908 upstream of the cold wake, and 3) the region 908 downstream of the cold wake (Fig. 7a). For convenience, we refer to the tracers released from the three areas as cold-wake tracer, upstream tracer, and downstream tracer. The size and shape of these three areas are the same. All tracers are released at the 80-m level that is the first model layer above the surface layer in WRF. Within each area, the tracer concentration is set to 1, while everywhere else is set to 0. Note that the tracers from different areas do not interact/mix with each other. We also release 86 trajectories in the SBL over the cold-wake region at the 80-m level as indicated by the blue dots in Fig. 7a. For comparison, the tracers and trajectories are also released in the same storm relative locations in UA as in AO (Fig. 7b). a. Enhanced near-surface airflow into the inner core The cold-wake tracers in the right-rear quadrant in AO evolved in a rather distinct manner compared to that in UA. Figure 8 shows the 0.05 isosurface of the cold-wake tracer at various times after the tracers are released, t tracer 5 0, 20, 60, and 120 min. The tracers are well mixed in the BL within 20 min due mostly to the turbulent mixing. At t tracer min, the difference between cold-wake tracers in AO and that equivalent location in UA becomes apparent. There is less vertical transport and faster inward spiraling airflow from the cold-wake area in AO compared to that in UA. More tracers in AO are transported into the eyewall than in UA. The tracers in UA mostly go upward into the rainband convection (Fig. 8). The azimuthally integrated tracer concentration from t tracer h is shown in Fig. 9. The concentration in the BL in AO is higher than in UA, especially at t tracer h. Unlike tracers being transported into local rainbands in UA, the cold-wake tracers in AO are transported horizontally into the inner core and carried upward with the convective updraft in the eyewall. The cold-wake tracer concentration in the eyewall in AO is much higher than that in UA at t tracer 5 6 h. Identical analyses for the upstream and downstream tracers are conducted (not shown). There is no major difference between AO and UA in the upstream and downstream locations. The upstream tracers are strongly affected by the primary rainbands in both cases. They are entrained quickly into the rainband convection with little entering the eyewall. b. Effects on TC convection To understand the effects of the SBL on the convection in TCs, we compare the convective organization

12 1938 M O N T H L Y W E A T H E R R E V I E W VOLUME 142 FIG. 12. The mean 10-m inflow angle and radial wind speed from the (a),(d) the AO and (b),(e) UA model forecasts. (c),(f) The difference fields between AO and UA. The fields are averaged over a 6-h period from 0000 to 0600 UTC 16 Sep. The black contours in (a),(b), (d),(e) are the and 298C SST isotherm, and the 18C isotherm of SST cooling in (c) and (f). The black arrows indicate the storm motion. between UA and AO forecasts. Figure 10 shows the model-simulated radar reflectivity from AO and UA at the 1-km level for the same time period as the tracer and trajectory analysis at 0000 and 0600 UTC 16 September. Although the main convective features in UA and AO are similar, including the size and shape of the eyewalls, the locations of the primary rainbands in the south side, and the persistent outer rainbands southeast of the storm center, there are a few important differences. The overall rainbands are slightly less and more confined in AO than those in UA, which is similar to the result in Chen et al. (2010). The main difference in convection between UA and AO seems to be in the northeastern quadrant, downstream of the cold wake in AO, as highlighted in the wedged boxes in Fig. 10. There are less rainbands in AO downstream of the cold wake with the SBL compared to the same storm-relative location in UA where there is no cold wake and the BL is mostly unstable or neutral. This result indicates that the SBL in AO suppresses the convective activities downstream of the cold wake. Previous studies have shown that convection/rainfall asymmetry in TCs may be affected by other factors such as environmental vertical wind shear and storm motion (e.g., Black et al. 2002; Rogers et al. 2003; Chen et al. 2006). We compute the vertical wind shear in both the UA and AO model forecasts using a similar method as in Chen et al. (2006) (i.e., the difference between 200 and 850-hPa winds). The shear in UA and AO is very similar (Figs. 10a d). Furthermore, the storm translation speeds in both forecasts are almost identical as shown in Fig. 1a. These analyses confirm that the difference in rainbands downstream of the cold wake in the right-rear quadrants in UA and AO cannot be attributed to the environmental shear or storm motion. To further quantify this result, we compute the number of grid points that are convective in nature within the rainbands downstream of the cold-wake region. We use a similar method from Rogers (2010). Briefly, it defines a convective cell that satisfies two conditions: 1) the mean vertical velocity within the layer from the 1 2-km level is greater than 0.5 m s 21 at a grid point, and 2) reflectivity.40 dbz at the 3-km level within a 10-km radius of the grid point. This analysis shows that the rainband convection downstream of the cold wake in AO is 40% 50% less than that in the similar region in UA (highlighted in the red wedge in Fig. 10). For the overall rainband convection outside of the eyewall, AO is about 20% 25% less than UA. The reduction in the

13 MAY 2014 L E E A N D C H E N 1939 FIG. 13. The equivalent potential temperature u e (a) from a subset of trajectories released along the lines over the cold wake in AO and (b) at equivalent storm-relative location in UA, as marked as green dots in Fig. 7. convective rainbands downstream of the cold wake is twice of the storm overall value. Furthermore, a satelliteobserved microwave image of Choi-Wan at about 0600 UTC 16 September shows a similar suppressed convective region in the right quadrants downwind of the cold wake (Fig. 10e) as in the coupled model simulation from AO (Figs. 10a,c). The thermodynamic forcing of the SBL in AO seems to have two main effects on the near-surface flow and convection in TCs: 1) suppresses convection over and downstream of the cold wake (Fig. 10); and 2) constrains the air within the BL, which increases the amount of near-surface air from the cold-wake region entering the eyewall/inner core (Figs. 8 and 9). c. Dynamic enhancement of near-surface inflow The tracer analysis shown in Fig. 8 indicates that the airflow from the cold-wake region in AO wraps around farther inward than that in UA from the same stormrelative location, which resulted in a larger radial flux of tracer into the eyewall in AO. This phenomenon may be associated with changes in wind speed across the SBL, as shown in Small et al. (2008) and Spall (2007) for midlatitude SST front and Chen et al. (2010) in an idealized TC simulation. The wind speed is usually reduced when the air goes from a neutral/unstable BL to SBL because of the decrease in turbulent mixing from the top of the BL (Spall 2007). In a TC, if the wind speed decreases at a distance from the center of the storm, the gradient wind imbalance would result in further inward turning, and therefore a larger inflow angle. This feature can be seen clearly in a comparison of the 10-m wind vectors in AO (red) and UA (blue) in Fig. 11. Because storm intensityinuais5 10ktstrongerthanthatinAOatthis time, the overall inflow angles around the storm are expected to be stronger in UA than AO. We computed the inflow angles using tangential and radial winds in the earth-relative coordinate. The mean inflow angle over the whole domain is in UA and in AO. Over and near the cold wake (shaded gray in Fig. 11), there is an apparent further inward turning of 10-m wind in AO than UA (cf. the red and blue arrows). The area-averaged inflow angle over the cold wake is 21.68, whichis2.68 larger than the mean inflow angle over the entire storm in AO. There is no such difference in the same relative region in UA. The composited horizontal maps of inflow angle and velocity from 0000 to 0600 UTC 16 September show the strong inflow in the inner core/eyewall is located in the front (west-northwest) of the storm (Fig. 11), which is consistent with previous idealized modeling study of Shapiro (1983) and observational studies (Powell 1982; Barnes and Dolling 2013). Outside of the inner-core region, the larger inflow angles are found in the left and left rear (south) of the storm center in Choi-Wan. Note that various factors can influence inflow angles in a TC, including environmental mean flow, wind shear, storm motion, intensity, and so on. The horizontal pattern of inflow angles can vary from storm to storm. Such variability is especially significant for a slow-moving storm like Choi-Wan. Using Earth-relative data (same framework as used in our modeling analysis), Powell (1982) showed that the larger inflow angles in Hurricane Frederic (1979) are in the rear and rear left. In a fully coupled atmosphere wave ocean modeling study by Chen et al.

14 1940 M O N T H L Y W E A T H E R R E V I E W VOLUME 142 FIG. 14. The equivalent potential temperature u e profiles along the trajectories from (a) AO and (b) UA model forecasts. Red shows those being initiated from the cold wake and going into the eyewall, and blue for those going into the rainbands. The thick lines show the mean profiles and the numbers indicate the number of profiles in each group. The dots show the mean value of each group at the lowest model level. (2013), they showed that one of the effects of wind wave coupling on surface stress patterns is to shift the larger inflow angles toward rear and rear-left region of Hurricane Frances (2004), which may in part explain the location of large inflow angles in the left could be farther to the rear if coupling to the surface waves were included in the model. To address the impact of the cold wake and SBL due to the coupling to the ocean on the inflow angle of Choi- Wan in AO, we computed the difference fields between AO and UA. The differences in both the inflow angle (Fig. 12c) and wind speed (Fig. 12f) between AO and UA show the enhanced inflow angle and speed downstream of the cold-wake region. d. Thermodynamic enhancement of near-surface air into the eyewall To better understand the impact of the SBL on the energetic of TCs, thermodynamic properties of the near-surface air parcels in the SBL in AO are compared with those from the same storm-relative region in UA but with the unstable/neutral BL. We compute the equivalent potential temperature based on Bolton (1980) along all the trajectories 1 from the cold wake in AO and the equivalent region in UA shown in Fig. 7. Figure 13 provides a 3D view of the trajectories with color-coded u e valuesusingasubsetofthetrajectories. The trajectories are divided into two groups: trajectories going into the eyewall/inner core and trajectories in the rainbands/outer regions. The former tends to stay near the ocean surface longer than the latter before entering the eyewall/inner core, which allows them to gain extra energy from the warm ocean downstream away from the 1 Equivalent potential temperature is not strictly conserved in a full physics numerical model as explained in Bryan (2008).

15 MAY 2014 L E E A N D C H E N 1941 cold wake in AO with higher u e values on its way to the eyewall/inner core (Fig. 13a). In contrast, trajectories that go into the outer rainbands lose the initial high energy while being transported upward. Although the air parcels have higher values initially in UA, because of the higher SST than in AO (Fig. 5), more trajectories initialized in SBL over the cold wake go into the eyewall/inner core in AO than in UA at the equivalent region (Fig. 13). This result is confirmed using all 86 trajectories from the SBL or equivalent regions in each of the model forecasts over the same6-hperiodinaoandua(fig. 14). There are 22 trajectories entering the eyewall/inner core in AO (Fig. 14a) whilethereareonly15inua(fig. 13b). It is also important to note that the initial average u e value near the surface for trajectories went into the eyewall/inner core from the SBL over the cold wake in AO is about 358 K, ;2 K lower than that in UA (red thick lines in Fig. 14). This relatively low u e air in AO increases its value to.365 K quickly before rising in the eyewall/inner core (Fig. 14a). This result is consistent with the 3D trajectories shown in Fig. 13a. A possible explanation for this increase of u e along the trajectories near the surface is due to the enhanced air sea enthalpy flux when the relative cooler air over the cold wake advected over the warmer water downstream. Another important difference between AO and UA is that the average u e value in the lowest 2 km from trajectories went into the eyewall/inner in AO is higher than that in UA (Fig. 14), which shows the impact of the air sea coupling on the lower-tropospheric property in TCs. There are some extreme high u e trajectories in UA due to the unrealistic high SST without storm-induced ocean cooling. Although there is no direct observation in Typhoon Choi-Wan, the extreme high value of K in the eyewall in UA is higher than in situ observations from TCs with similar intensity (e.g., Lee and Chen 2012). Another interesting difference between AO and UA is in the outer rainband region. Aside from more trajectories go into the outer rainbands in UA than AO, the rainband convection in UA is as deep as the eyewall convection as shown by the heights of trajectories reached (blue lines in Fig. 14b). In contrast, the rainband convection in AO is shallower than the eyewall convection (Fig. 14a), which is consistent with observations described in Didlake and Houze (2009). They showed that the convection in the rainbands is capped vertically by the outflow from the eyewall, which limit the vertical extend of convection in the rainbands. In other words, the convection in UA is unrealistically strong due to the lack of storm-induced ocean cooling in the uncoupled model without the air sea coupling. There are more trajectories in the rainbands with lower u e values in the lower troposphere in UA than AO, which may be a result of stronger convective downdraft in UA than AO over these regions. e. Energetic efficiency in TCs A TC can be viewed as a heat engine converting heat energy extracted from the ocean into the kinetic energy (KE) through the diabatic heating in the moist convection in the eyewall (Emanuel 1986). From an energetic point of view, the intensity of the TC in AO should be weaker than UA because of the storm-induced ocean cooling and the reduced overall enthalpy fluxes from the ocean surface in AO. However, the TC-induced cold wake and SBL in the right-rear quadrant in AO can increase the amount of high air near the surface entering the eyewall as shown in the previous sections. This mechanism may increase the efficiency of the storm in AO, and help offset the negative impact from SST cooling. Here we define the term efficiency as a ratio between the change of mass-weighted KE and the mass-weighted surface enthalpy fluxes within a control volume (a cylinder with a radius of 350 km). 2 KE is calculated based on the difference of the kinetic energy per mass between 0000 and 0600 UTC 16 September, the same time period as the tracer and trajectory analyses. The surface enthalpy flux is computed by averaging the 10-min instantaneous surface enthalpy fluxes per mass over the same period. The mass-weighted calculation takes into account the change of the total mass associated with the storm intensity changes. We have done the same analysis by varying the radius from 300 to 700 km, which does not change the outcome. The results are shown in Table 1. The TC efficiency is 2.95% and 3.44% in UA and AO, respectively. So AO is about 20% more efficient than UA in converting additional enthalpy flux to kinetic energy. The higher efficiency in AO can also be shown by the larger inward moist-static energy fluxes at the outer edge of the eyewall within the BL in AO than UA (Table 1). However, a comprehensive study is needed to better understand this complex problem related to TC energetics. The generality of the simple calculation presented here remains an open question for future studies. 7. Conclusions A fully coupled atmosphere ocean model forecast of Typhoon Choi-Wan (2009) has been used to better 2 The radial advection of moist static energy is close to zero beyond the 300-km radius. Thus, we use 350 km as the radius of the cylinder to be consistent with the tracer analysis.

16 1942 M O N T H L Y W E A T H E R R E V I E W VOLUME 142 TABLE 1. (from left to right) The first three columns are the changes in mass-weighted kinetic energy and surface enthalpy fluxes, and the efficiency of converting heat energy to kinetic energy within a control volume (a cylinder with a radius of 350 km). The last column is the inward moist static energy fluxes in the BL at the outer edge of the eyewall (;70-km radii). Model Mass-weighted DKE (J s 21 kg 21 ) Mass-weighted enthalpy flux (J s 21 kg 21 ) Efficiency Inward MSE flux ( Js 21 ) at outer edge of the eyewall UA AO understand the physical processes of air sea coupling in TCs. Comparisons of the coupled atmosphere ocean (AO) model with the uncoupled atmospheric (UA) model forecasts have provided new physical insights into how air sea coupling affects the TC structure and intensity. While the TC-induced ocean cooling in AO reduces overall TC intensity than using an unrealistic constant SST with time in UA, the storm-inducedcoldwakeinaoleadstotheformation of a stable surface layer (SBL) that contributes to the transport of high-energy air near the surface into the eyewall. Two main effects of the SBL can be summarized here in Fig. 15. First, the tracer and trajectory analyses show that the thermodynamic effect of the SBL is to suppress the convection and prevent the air in the SBL from going into the rainbands over and downstream of the cold wake. At the same time, the SBL keeps the air in the BL longer to gain extra energy from the enhanced enthalpy flux from the ocean. Second, the dynamic effect of the SBL is to enhance the inward turning of the BL air due to the momentum imbalance caused by the suddenly reduced wind speed over the SBL. The enhanced inflow helps transport air in the SBL into the eyewall. In contrast, in the absence of the TC-induced cold wake and the corresponding SBL in the UA model forecast, the air in the right-rear quadrant in the BL tends to rise into the local rainbands. The SBL formed over the TC-induced cold-wake region in AO seems to be a key feature that enhances high energy air into the TC inner core. In summary, this study shows that, while the TCinduced ocean cooling reduces the overall storm intensity that is usually overpredicted by uncoupled atmospheric models with unrealistic constant SST with time, the storminduced cold wake and the SBL in the right-rear quadrant within the TC core circulation can offset some of the overall negative impact on the storm intensity through the enhanced inflow with high energy air into the TC inner core. This mechanism may increase the efficiency in TC intensification. To represent these important physical processes for TC intensity prediction, numerical models need to be able resolve the TC eyewall and TCincluded cold wake/sbl with a high grid resolution (1 2 km) and full coupling to the ocean. However, as expected, the relative importance of this mechanism may vary from storm to storm because of the variability of other environmental and internal factors affecting TC intensity. More comprehensive observational and modeling studies are needed. FIG. 15. Schematic diagram of the airflow from the right-rear quadrant in (a) a coupled atmosphere ocean (AO) model and (b) an uncoupled atmosphere (UA) model. The center of the storm and radii are marked by a hurricane symbol and dashed lines. The storm motion is toward the left. The gray shading represents the tracer concentration and the solid line indicates the Lagrangian trajectories. In AO, the air is stabilized by the storm-induced cold wake and stays in the SBL before spiraling inward into the inner core of the storm. In contrast, the air in UA is unstable and mostly ends up in the rainbands.

17 MAY 2014 L E E A N D C H E N 1943 Acknowledgments. We thank Drs. Brandon Kerns of UM and Jimy Dudhia of NCAR for their assistance during the course of this study. Comments from three anonymous reviewers helped improve the manuscript. This research was supported by research grants from the Office of Naval Research under Impact of Typhoon on Ocean in the Pacific (ITOP) N , the National Ocean Partnership Program (NOPP) N , and the Gulf of Mexico Research Initiative (GoMRI) SA1207GOMRI1005. REFERENCES Anthes, R. A., and C. W. Chang, 1978: Response of hurricane boundary layer to changes of sea surface temperature in a numerical model. J. Atmos. Sci., 35, , doi: / (1978)035,1240:ROTHBL.2.0.CO;2. Barnes, G. M., 2008: A typical thermodynamic profiles in hurricanes. Mon. Wea. Rev., 136, , doi: /2007mwr , and K. P. Dolling, 2013: The inflow to Tropical Cyclone Humberto (2001) as viewed with azimuth height surfaces over three days. Mon. Wea. Rev., 141, , doi: / MWR-D Black, M. L., J. F. Gamache, F. D. Marks Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, , doi: / (2002)130,2291:ephjoa.2.0.co;2. Black, P. G., and G. J. Holland, 1995: The boundary layer in Tropical Cyclone Kerry (1979). Mon. Wea. Rev., 123, , doi: / (1995)123,2007:tblotc.2.0.co;2. Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, , doi: / (1980)108,1046:TCOEPT.2.0.CO;2. Bryan, G. H., 2008: On the computation of pseudoadiabatic entropy and equivalent potential temperature. Mon. Wea. Rev., 136, , doi: /2008mwr Chen, S., T. J. Campbell, H. Jin, S. Gabersek, R. M. Hodur, and P. Martin, 2010: Effect of two-way air sea coupling in high and low wind speed regimes. Mon. Wea. Rev., 138, , doi: /2009mwr Chen, S. S., J. Knaff, and F. D. Marks, 2006: Effect of vertical wind shear and storm motion on tropical cyclone rainfall asymmetry deduced from TRMM. Mon. Wea. Rev., 134, , doi: /mwr , W. Zhao, M. A. Donelan, J. F. Price, and E. J. Walsh, 2007: The CBLAST-Hurricane program and the next-generation fully coupled atmosphere wave ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc., 88, , doi: /bams ,,, and H. L. Tolman, 2013: Directional wind wave coupling in fully coupled atmosphere wave ocean models: Results from CBLAST-Hurricane. J. Atmos. Sci., 70, , doi: /jas-d Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2011: On the development of large surface vorticity in high-resolution supercell simulations. Preprints, 14th Conf. on Mesoscale Processes, Los Angeles, CA, Amer. Meteor. Soc., 7.4. [Available online at Paper html.] Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon. Wea. Rev., 136, , doi: /2007mwr DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, , doi: /waf Didlake, A. C., Jr., and R. A. Houze Jr., 2009: Convective-scale downdrafts in the principal rainband of Hurricane Katrina (2005). Mon. Wea. Rev., 137, , doi: / 2009MWR Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi: /2004gl Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, , doi: / (1986)043,0585: AASITF.2.0.CO;2. Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 334 pp. Harper, B. A., J. D. Kepert, and J. D. Ginger, 2010: Guidelines for converting between various wind averaging periods in tropical cyclone conditions. World Meteorological Organization Tech. Rep. WMO/TD-1555, 60 pp. Hong, S.-Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, , doi: / (2004)132,0103:aratim.2.0.co;2., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, , doi: /mwr Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecasting, 20, , doi: /waf Lander, M. A., 2008: A comparison of typhoon best-track data in the western North Pacific: Irreconcilable differences. Preprints, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 4B.2. [Available online at Lee, C.-Y., and S. S. Chen, 2012: Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere wave ocean models and observations. J. Atmos. Sci., 69, , doi: /jas-d Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda (1964). J. Atmos. Sci., 24, , doi: / (1967)024,0182:OOCAHH.2.0.CO;2. Lin, I. I., W. T. Liu, C. C. Wu, J. C. H. Chiang, and C. H. Sui, 2003: Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys. Res. Lett., 30, 1131, doi: /2002gl Nakazawa, T., and S. Hoshino, 2009: Intercomparison of Dvorak parameters in the tropical cyclone datasets over the western North Pacific. SOLA, 5, 33 36, doi: /sola Powell, M. D., 1982: The transition of the Hurricane Frederic boundary-layer wind field from the open Gulf of Mexico to landfall. Mon. Wea. Rev., 110, , doi: / (1982)110,1912:TTOTHF.2.0.CO;2.

Mélicie Desflots* RSMAS, University of Miami, Miami, Florida

Mélicie Desflots* RSMAS, University of Miami, Miami, Florida 15B.6 RAPID INTENSITY CHANGE IN HURRICANE LILI (2002) Mélicie Desflots* RSMAS, University of Miami, Miami, Florida 1. INTRODUCTION Rapid intensity change in tropical cyclones is one of the most difficult

More information

Symmetric and Asymmetric Structures of Hurricane Boundary Layer in Coupled Atmosphere Wave Ocean Models and Observations

Symmetric and Asymmetric Structures of Hurricane Boundary Layer in Coupled Atmosphere Wave Ocean Models and Observations 3576 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 69 Symmetric and Asymmetric Structures of Hurricane Boundary Layer in Coupled Atmosphere Wave Ocean Models and Observations CHIA-YING

More information

Improving Air-Sea Coupling Parameterizations in High-Wind Regimes

Improving Air-Sea Coupling Parameterizations in High-Wind Regimes Improving Air-Sea Coupling Parameterizations in High-Wind Regimes PI: Dr. Shuyi S. Chen Co-PI: Dr. Mark A. Donelan Rosenstiel School of Marine and Atmospheric Science, University of Miami 4600 Rickenbacker

More information

Improved Tropical Cyclone Boundary Layer Wind Retrievals. From Airborne Doppler Radar

Improved Tropical Cyclone Boundary Layer Wind Retrievals. From Airborne Doppler Radar Improved Tropical Cyclone Boundary Layer Wind Retrievals From Airborne Doppler Radar Shannon L. McElhinney and Michael M. Bell University of Hawaii at Manoa Recent studies have highlighted the importance

More information

Precipitation Structure and Processes of Typhoon Nari (2001): A Modeling Propsective

Precipitation Structure and Processes of Typhoon Nari (2001): A Modeling Propsective Precipitation Structure and Processes of Typhoon Nari (2001): A Modeling Propsective Ming-Jen Yang Institute of Hydrological Sciences, National Central University 1. Introduction Typhoon Nari (2001) struck

More information

18A.2 PREDICTION OF ATLANTIC TROPICAL CYCLONES WITH THE ADVANCED HURRICANE WRF (AHW) MODEL

18A.2 PREDICTION OF ATLANTIC TROPICAL CYCLONES WITH THE ADVANCED HURRICANE WRF (AHW) MODEL 18A.2 PREDICTION OF ATLANTIC TROPICAL CYCLONES WITH THE ADVANCED HURRICANE WRF (AHW) MODEL Jimy Dudhia *, James Done, Wei Wang, Yongsheng Chen, Qingnong Xiao, Christopher Davis, Greg Holland, Richard Rotunno,

More information

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water.

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water. Hurricanes: Observations and Dynamics Houze Section 10.1. Holton Section 9.7. Emanuel, K. A., 1988: Toward a general theory of hurricanes. American Scientist, 76, 371-379 (web link). http://ww2010.atmos.uiuc.edu/(gh)/guides/mtr/hurr/home.rxml

More information

Inner core dynamics: Eyewall Replacement and hot towers

Inner core dynamics: Eyewall Replacement and hot towers Inner core dynamics: Eyewall Replacement and hot towers FIU Undergraduate Hurricane Internship Lecture 4 8/13/2012 Why inner core dynamics is important? Current TC intensity and structure forecasts contain

More information

PUBLICATIONS. Journal of Geophysical Research: Atmospheres

PUBLICATIONS. Journal of Geophysical Research: Atmospheres PUBLICATIONS Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Key Points: Ocean response to Megi is relatively accurately simulated by the atmosphere-ocean coupled model Use of the coupled

More information

28th Conference on Hurricanes and Tropical Meteorology, 28 April 2 May 2008, Orlando, Florida.

28th Conference on Hurricanes and Tropical Meteorology, 28 April 2 May 2008, Orlando, Florida. P2B. TROPICAL INTENSITY FORECASTING USING A SATELLITE-BASED TOTAL PRECIPITABLE WATER PRODUCT Mark DeMaria* NOAA/NESDIS/StAR, Fort Collins, CO Jeffery D. Hawkins Naval Research Laboratory, Monterey, CA

More information

The CBLAST-Hurricane Program and the Next-Generation Fully Coupled Atmosphere- Wave-Ocean Models for Hurricane Research and Prediction

The CBLAST-Hurricane Program and the Next-Generation Fully Coupled Atmosphere- Wave-Ocean Models for Hurricane Research and Prediction The CBLAST-Hurricane Program and the Next-Generation Fully Coupled Atmosphere- Wave-Ocean Models for Hurricane Research and Prediction Shuyi S. Chen 1*, James F. Price 2, Wei Zhao 1, Mark A. Donelan 1,

More information

1. Introduction. In following sections, a more detailed description of the methodology is provided, along with an overview of initial results.

1. Introduction. In following sections, a more detailed description of the methodology is provided, along with an overview of initial results. 7B.2 MODEL SIMULATED CHANGES IN TC INTENSITY DUE TO GLOBAL WARMING Kevin A. Hill*, Gary M. Lackmann, and A. Aiyyer North Carolina State University, Raleigh, North Carolina 1. Introduction The impact of

More information

PUBLICATIONS. Journal of Advances in Modeling Earth Systems

PUBLICATIONS. Journal of Advances in Modeling Earth Systems PUBLICATIONS Journal of Advances in Modeling Earth Systems RESEARCH ARTICLE 10.1002/2016MS000709 Key Points: Eye excess energy results predominantly from surface entropy flux in the eye region of a TC

More information

A Tropical Cyclone with a Very Large Eye

A Tropical Cyclone with a Very Large Eye JANUARY 1999 PICTURES OF THE MONTH 137 A Tropical Cyclone with a Very Large Eye MARK A. LANDER University of Guam, Mangilao, Guam 9 September 1997 and 2 March 1998 1. Introduction The well-defined eye

More information

The record-setting 2005 hurricane season has

The record-setting 2005 hurricane season has The CBLAST-Hurricane Program and the Next- Generation Fully Coupled Atmosphere Wave Ocean Models for Hurricane Research and Prediction BY SHUYI S. CHEN, JAMES F. PRICE, WEI ZHAO, MARK A. DONELAN, AND EDWARD

More information

Observed Structure and Environment of Developing and Nondeveloping Tropical Cyclones in the Western North Pacific using Satellite Data

Observed Structure and Environment of Developing and Nondeveloping Tropical Cyclones in the Western North Pacific using Satellite Data DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Observed Structure and Environment of Developing and Nondeveloping Tropical Cyclones in the Western North Pacific using

More information

The Effect of Sea Spray on Tropical Cyclone Intensity

The Effect of Sea Spray on Tropical Cyclone Intensity The Effect of Sea Spray on Tropical Cyclone Intensity Jeffrey S. Gall, Young Kwon, and William Frank The Pennsylvania State University University Park, Pennsylvania 16802 1. Introduction Under high-wind

More information

1. INTRODUCTION: 2. DATA AND METHODOLOGY:

1. INTRODUCTION: 2. DATA AND METHODOLOGY: 27th Conference on Hurricanes and Tropical Meteorology, 24-28 April 2006, Monterey, CA 3A.4 SUPERTYPHOON DALE (1996): A REMARKABLE STORM FROM BIRTH THROUGH EXTRATROPICAL TRANSITION TO EXPLOSIVE REINTENSIFICATION

More information

How Do Outer Spiral Rainbands Affect Tropical Cyclone Structure and Intensity?*

How Do Outer Spiral Rainbands Affect Tropical Cyclone Structure and Intensity?* 1250 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 66 How Do Outer Spiral Rainbands Affect Tropical Cyclone Structure and Intensity?* YUQING WANG International Pacific Research Center,

More information

The Energetics of the Rapid Intensification of Hurricane Earl (2010) Daniel Nielsen

The Energetics of the Rapid Intensification of Hurricane Earl (2010) Daniel Nielsen The Energetics of the Rapid Intensification of Hurricane Earl (2010) Daniel Nielsen A scholarly paper in partial fulfillment of the requirements for the degree of Master of Science August 2016 Department

More information

8B.2 MULTISCALE OBSERVATIONS OF TROPICAL CYCLONE STRUCTURE USING AIRBORNE DOPPLER COMPOSITES. Miami, FL. Miami, FL

8B.2 MULTISCALE OBSERVATIONS OF TROPICAL CYCLONE STRUCTURE USING AIRBORNE DOPPLER COMPOSITES. Miami, FL. Miami, FL 8B.2 MULTISCALE OBSERVATIONS OF TROPICAL CYCLONE STRUCTURE USING AIRBORNE DOPPLER COMPOSITES Robert Rogers 1, Sylvie Lorsolo 2, Paul Reasor 1, John Gamache 1, Frank Marks 1 1 NOAA/AOML Hurricane Research

More information

Robert Rogers, Sylvie Lorsolo, Paul Reasor, John Gamache, and Frank Marks Monthly Weather Review January 2012

Robert Rogers, Sylvie Lorsolo, Paul Reasor, John Gamache, and Frank Marks Monthly Weather Review January 2012 Introduction Data & Methodology Results Robert Rogers, Sylvie Lorsolo, Paul Reasor, John Gamache, and Frank Marks Monthly Weather Review January 2012 SARAH DITCHEK ATM 741 02.01.16 Introduction Data &

More information

Post Processing of Hurricane Model Forecasts

Post Processing of Hurricane Model Forecasts Post Processing of Hurricane Model Forecasts T. N. Krishnamurti Florida State University Tallahassee, FL Collaborators: Anu Simon, Mrinal Biswas, Andrew Martin, Christopher Davis, Aarolyn Hayes, Naomi

More information

P1.6 Simulation of the impact of new aircraft and satellite-based ocean surface wind measurements on H*Wind analyses

P1.6 Simulation of the impact of new aircraft and satellite-based ocean surface wind measurements on H*Wind analyses P1.6 Simulation of the impact of new aircraft and satellite-based ocean surface wind measurements on H*Wind analyses Timothy L. Miller 1, R. Atlas 2, P. G. Black 3, J. L. Case 4, S. S. Chen 5, R. E. Hood

More information

Effect of the Initial Vortex Structure on Intensification of a Numerically Simulated Tropical Cyclone

Effect of the Initial Vortex Structure on Intensification of a Numerically Simulated Tropical Cyclone April Journal 2018 of the Meteorological Society of Japan, Vol. J. 96, XU No. and 2, Y. pp. WANG 111 126, 2018 111 DOI:10.2151/jmsj.2018-014 Effect of the Initial Vortex Structure on Intensification of

More information

Typhoon-Ocean Interaction: The Ocean Response to Typhoons, and Its Feedback to Typhoon Intensity Synergy of Observations and Model Simulations

Typhoon-Ocean Interaction: The Ocean Response to Typhoons, and Its Feedback to Typhoon Intensity Synergy of Observations and Model Simulations DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Typhoon-Ocean Interaction: The Ocean Response to Typhoons, and Its Feedback to Typhoon Intensity Synergy of Observations

More information

Structure and Formation of an Annular Hurricane Simulated in a Fully Compressible, Nonhydrostatic Model TCM4*

Structure and Formation of an Annular Hurricane Simulated in a Fully Compressible, Nonhydrostatic Model TCM4* MAY 2008 W A N G 1505 Structure and Formation of an Annular Hurricane Simulated in a Fully Compressible, Nonhydrostatic Model TCM4* YUQING WANG International Pacific Research Center, and Department of

More information

Lectures on Tropical Cyclones

Lectures on Tropical Cyclones Lectures on Tropical Cyclones Chapter 1 Observations of Tropical Cyclones Outline of course Introduction, Observed Structure Dynamics of Mature Tropical Cyclones Equations of motion Primary circulation

More information

A Numerical Study of the Impact of Vertical Shear on the Distribution of Rainfall in Hurricane Bonnie (1998)

A Numerical Study of the Impact of Vertical Shear on the Distribution of Rainfall in Hurricane Bonnie (1998) AUGUST 2003 ROGERS ET AL. 1577 A Numerical Study of the Impact of Vertical Shear on the Distribution of Rainfall in Hurricane Bonnie (1998) ROBERT ROGERS Cooperative Institute for Marine and Atmospheric

More information

Thermodynamic and Flux Observations of the Tropical Cyclone Surface Layer

Thermodynamic and Flux Observations of the Tropical Cyclone Surface Layer Thermodynamic and Flux Observations of the Tropical Cyclone Surface Layer 1. INTRODUCTION Alex M. Kowaleski and Jenni L. Evans 1 The Pennsylvania State University, University Park, PA Understanding tropical

More information

Final Examination, MEA 443 Fall 2008, Lackmann

Final Examination, MEA 443 Fall 2008, Lackmann Place an X here to count it double! Name: Final Examination, MEA 443 Fall 2008, Lackmann If you wish to have the final exam count double and replace your midterm score, place an X in the box above. As

More information

Impacts of Turbulence on Hurricane Intensity

Impacts of Turbulence on Hurricane Intensity Impacts of Turbulence on Hurricane Intensity Yongsheng Chen Department of Earth and Space Science and Engineering York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3 Phone: (416) 736-2100 ext.40124

More information

The Impact of air-sea interaction on the extratropical transition of tropical cyclones

The Impact of air-sea interaction on the extratropical transition of tropical cyclones The Impact of air-sea interaction on the extratropical transition of tropical cyclones Sarah Jones Institut für Meteorologie und Klimaforschung Universität Karlsruhe / Forschungszentrum Karlsruhe 1. Introduction

More information

Tropical Cyclones. Objectives

Tropical Cyclones. Objectives Tropical Cyclones FIU Undergraduate Hurricane Internship Lecture 2 8/8/2012 Objectives From this lecture you should understand: Global tracks of TCs and the seasons when they are most common General circulation

More information

8C.6 Idealized simulations of the impact of dry Saharan air on Atlantic hurricanes

8C.6 Idealized simulations of the impact of dry Saharan air on Atlantic hurricanes 8C.6 Idealized simulations of the impact of dry Saharan air on Atlantic hurricanes Scott A. Braun #, Jason Sippel #, and David Nolan* #Laboratory for Atmospheres, NASA/Goddard Space Flight Center, Greenbelt,

More information

Impact of Turbulence on the Intensity of Hurricanes in Numerical Models* Richard Rotunno NCAR

Impact of Turbulence on the Intensity of Hurricanes in Numerical Models* Richard Rotunno NCAR Impact of Turbulence on the Intensity of Hurricanes in Numerical Models* Richard Rotunno NCAR *Based on: Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical

More information

Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall. Measuring Mission (TRMM) Microwave Imager: A Global Perspective

Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall. Measuring Mission (TRMM) Microwave Imager: A Global Perspective Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A Global Perspective Manuel Lonfat 1, Frank D. Marks, Jr. 2, and Shuyi S. Chen 1*

More information

Advanced Hurricane WRF (AHW) Physics

Advanced Hurricane WRF (AHW) Physics Advanced Hurricane WRF (AHW) Physics Jimy Dudhia MMM Division, NCAR 1D Ocean Mixed-Layer Model 1d model based on Pollard, Rhines and Thompson (1973) was added for hurricane forecasts Purpose is to represent

More information

Improving Surface Flux Parameterizations in the NRL Coupled Ocean/Atmosphere Mesoscale Prediction System

Improving Surface Flux Parameterizations in the NRL Coupled Ocean/Atmosphere Mesoscale Prediction System Improving Surface Flux Parameterizations in the NRL Coupled Ocean/Atmosphere Mesoscale Prediction System LONG-TERM GOAL Shouping Wang Naval Research Laboratory Monterey, CA 93943 Phone: (831) 656-4719

More information

Significant cyclone activity occurs in the Mediterranean

Significant cyclone activity occurs in the Mediterranean TRMM and Lightning Observations of a Low-Pressure System over the Eastern Mediterranean BY K. LAGOUVARDOS AND V. KOTRONI Significant cyclone activity occurs in the Mediterranean area, mainly during the

More information

A Numerical Study on Tropical Cyclone Intensification. Part I: Beta Effect and Mean Flow Effect

A Numerical Study on Tropical Cyclone Intensification. Part I: Beta Effect and Mean Flow Effect 1404 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 56 A Numerical Study on Tropical Cyclone Intensification. Part I: Beta Effect and Mean Flow Effect MELINDA S. PENG Naval Research Laboratory, Monterey, California

More information

Western North Pacific Typhoons with Concentric Eyewalls

Western North Pacific Typhoons with Concentric Eyewalls 3758 M O N T H L Y W E A T H E R R E V I E W VOLUME 137 Western North Pacific Typhoons with Concentric Eyewalls HUNG-CHI KUO Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

More information

Chapter 24 Tropical Cyclones

Chapter 24 Tropical Cyclones Chapter 24 Tropical Cyclones Tropical Weather Systems Tropical disturbance a cluster of thunderstorms about 250 to 600 km in diameter, originating in the tropics or sub-tropics Tropical depression a cluster

More information

Lower-Tropospheric Height Tendencies Associated with the Shearwise and Transverse Components of Quasigeostrophic Vertical Motion

Lower-Tropospheric Height Tendencies Associated with the Shearwise and Transverse Components of Quasigeostrophic Vertical Motion JULY 2007 N O T E S A N D C O R R E S P O N D E N C E 2803 Lower-Tropospheric Height Tendencies Associated with the Shearwise and Transverse Components of Quasigeostrophic Vertical Motion JONATHAN E. MARTIN

More information

Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated Tropical Cyclone*

Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated Tropical Cyclone* JANUARY 2010 W A N G A N D X U 97 Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated Tropical Cyclone* YUQING WANG AND JING XU International Pacific Research Center,

More information

11A.3 The Impact on Tropical Cyclone Predictions of a Major Upgrade to the Met Office Global Model

11A.3 The Impact on Tropical Cyclone Predictions of a Major Upgrade to the Met Office Global Model 11A.3 The Impact on Tropical Cyclone Predictions of a Major Upgrade to the Met Office Global Model Julian T. Heming * Met Office, Exeter, UK 1. BACKGROUND TO MODEL UPGRADE The last major upgrade to the

More information

Hurricane Intensity: Governing Factors and Forecasting Challenges. EAS 470 Final Paper Allison Wing

Hurricane Intensity: Governing Factors and Forecasting Challenges. EAS 470 Final Paper Allison Wing Hurricane Intensity: Governing Factors and Forecasting Challenges EAS 470 Final Paper Allison Wing Tropical cyclones are undoubtedly among the mostly deadly and destructive natural phenomena found on Earth

More information

Myung-Sook Park, Russell L. Elsberry and Michael M. Bell. Department of Meteorology, Naval Postgraduate School, Monterey, California, USA

Myung-Sook Park, Russell L. Elsberry and Michael M. Bell. Department of Meteorology, Naval Postgraduate School, Monterey, California, USA Latent heating rate profiles at different tropical cyclone stages during 2008 Tropical Cyclone Structure experiment: Comparison of ELDORA and TRMM PR retrievals Myung-Sook Park, Russell L. Elsberry and

More information

Tropical cyclones in ver/cal shear: dynamic, kinema/c, and thermodynamic aspects of intensity modification

Tropical cyclones in ver/cal shear: dynamic, kinema/c, and thermodynamic aspects of intensity modification Tropical cyclones in ver/cal shear: dynamic, kinema/c, and thermodynamic aspects of intensity modification Michael Riemer 1, Michael T. Montgomery 2,3, Mel E. Nicholls 4 1 Johannes Gutenberg-Universität,

More information

Effects of Convective Heating on Movement and Vertical Coupling of Tropical Cyclones: A Numerical Study*

Effects of Convective Heating on Movement and Vertical Coupling of Tropical Cyclones: A Numerical Study* 3639 Effects of Convective Heating on Movement and Vertical Coupling of Tropical Cyclones: A Numerical Study* LIGUANG WU ANDBIN WANG Department of Meteorology, School of Ocean and Earth Science and Technology,

More information

ESCI 344 Tropical Meteorology Lesson 11 Tropical Cyclones: Formation, Maintenance, and Intensification

ESCI 344 Tropical Meteorology Lesson 11 Tropical Cyclones: Formation, Maintenance, and Intensification ESCI 344 Tropical Meteorology Lesson 11 Tropical Cyclones: Formation, Maintenance, and Intensification References: A Global View of Tropical Cyclones, Elsberry (ed.) Global Perspectives on Tropical Cylones:

More information

Investigating the Environment of the Indiana and Ohio Tornado Outbreak of 24 August 2016 Using a WRF Model Simulation 1.

Investigating the Environment of the Indiana and Ohio Tornado Outbreak of 24 August 2016 Using a WRF Model Simulation 1. Investigating the Environment of the Indiana and Ohio Tornado Outbreak of 24 August 2016 Using a WRF Model Simulation Kevin Gray and Jeffrey Frame Department of Atmospheric Sciences, University of Illinois

More information

Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part II: The Role in Tropical Cyclone Structure and Intensity Changes*

Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part II: The Role in Tropical Cyclone Structure and Intensity Changes* 1APRIL 2002 WANG 1239 Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part II: The Role in Tropical Cyclone Structure and Intensity Changes* YUQING WANG International Pacific Research

More information

Impact of different cumulus parameterizations on the numerical simulation of rain over southern China

Impact of different cumulus parameterizations on the numerical simulation of rain over southern China Impact of different cumulus parameterizations on the numerical simulation of rain over southern China P.W. Chan * Hong Kong Observatory, Hong Kong, China 1. INTRODUCTION Convective rain occurs over southern

More information

(April 7, 2010, Wednesday) Tropical Storms & Hurricanes Part 2

(April 7, 2010, Wednesday) Tropical Storms & Hurricanes Part 2 Lecture #17 (April 7, 2010, Wednesday) Tropical Storms & Hurricanes Part 2 Hurricane Katrina August 2005 All tropical cyclone tracks (1945-2006). Hurricane Formation While moving westward, tropical disturbances

More information

Cold wake of Hurricane Frances

Cold wake of Hurricane Frances Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L15609, doi:10.1029/2007gl030160, 2007 Cold wake of Hurricane Frances Eric A. D Asaro, 1 Thomas B. Sanford, 1 P. Peter Niiler, 2 and Eric

More information

Effects of Vertical Wind Shear on Intensity and Rainfall Asymmetries of Strong Tropical Storm Bilis (2006)

Effects of Vertical Wind Shear on Intensity and Rainfall Asymmetries of Strong Tropical Storm Bilis (2006) ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 27, NO. 3, 2010, 552 561 Effects of Vertical Wind Shear on Intensity and Rainfall Asymmetries of Strong Tropical Storm Bilis (2006) YU Jinhua 1,2 (

More information

Tropical Cyclone Formation/Structure/Motion Studies

Tropical Cyclone Formation/Structure/Motion Studies Tropical Cyclone Formation/Structure/Motion Studies Patrick A. Harr Department of Meteorology Naval Postgraduate School Monterey, CA 93943-5114 phone: (831) 656-3787 fax: (831) 656-3061 email: paharr@nps.edu

More information

6A.4 ASYMMETRIC STRUCTURE and MAINTENANCE in HURRICANE JUAN. Weiqing Zhang 1,2, William Perrie* 1,2

6A.4 ASYMMETRIC STRUCTURE and MAINTENANCE in HURRICANE JUAN. Weiqing Zhang 1,2, William Perrie* 1,2 6A.4 ASYMMETRIC STRUCTURE and MAINTENANCE in HURRICANE JUAN Weiqing Zhang 1,2, William Perrie* 1,2 1 Fisheries & Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Canada 2 Dept. Engineering

More information

Hurricane Structure: Theory and Diagnosis

Hurricane Structure: Theory and Diagnosis Hurricane Structure: Theory and Diagnosis 7 March, 2016 World Meteorological Organization Workshop Chris Landsea Chris.Landsea@noaa.gov National Hurricane Center, Miami Outline Structure of Hurricanes

More information

Tropical Cyclone Formation: Results

Tropical Cyclone Formation: Results Tropical Cyclone Formation: Results from PREDICT (PRE Depression Investigation of Cloud systems in the Tropics) collaborator on this presentation: Dave Ahijevych (NCAR) Chris Davis National Center for

More information

The Properties of Convective Clouds Over the Western Pacific and Their Relationship to the Environment of Tropical Cyclones

The Properties of Convective Clouds Over the Western Pacific and Their Relationship to the Environment of Tropical Cyclones The Properties of Convective Clouds Over the Western Pacific and Their Relationship to the Environment of Tropical Cyclones Principal Investigator: Dr. Zhaoxia Pu Department of Meteorology, University

More information

NOTES AND CORRESPONDENCE. What Has Changed the Proportion of Intense Hurricanes in the Last 30 Years?

NOTES AND CORRESPONDENCE. What Has Changed the Proportion of Intense Hurricanes in the Last 30 Years? 1432 J O U R N A L O F C L I M A T E VOLUME 21 NOTES AND CORRESPONDENCE What Has Changed the Proportion of Intense Hurricanes in the Last 30 Years? LIGUANG WU Laboratory for Atmospheres, NASA Goddard Space

More information

Tropical Cyclone Genesis and Sudden Changes of Track and Intensity in the Western Pacific

Tropical Cyclone Genesis and Sudden Changes of Track and Intensity in the Western Pacific Tropical Cyclone Genesis and Sudden Changes of Track and Intensity in the Western Pacific PI: Bin Wang Co-PI: Yuqing Wang and Tim Li Department of Meteorology and International Pacific Research Center

More information

Shear-Parallel Mesoscale Convective Systems in a Moist Low- Inhibition Mei-Yu Front Environment. Liu and Moncrieff (2017 JAS)

Shear-Parallel Mesoscale Convective Systems in a Moist Low- Inhibition Mei-Yu Front Environment. Liu and Moncrieff (2017 JAS) Shear-Parallel Mesoscale Convective Systems in a Moist Low- Inhibition Mei-Yu Front Environment Liu and Moncrieff (2017 JAS) Introduction Balance of lower-tropospheric wind shear and strength of evaporation-generated

More information

Convective self-aggregation, cold pools, and domain size

Convective self-aggregation, cold pools, and domain size GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 1 5, doi:10.1002/grl.50204, 2013 Convective self-aggregation, cold pools, and domain size Nadir Jeevanjee, 1,2 and David M. Romps, 1,3 Received 14 December 2012;

More information

TOWARDS A BETTER UNDERSTANDING OF AND ABILITY TO FORECAST THE WIND FIELD EXPANSION DURING THE EXTRATROPICAL TRANSITION PROCESS

TOWARDS A BETTER UNDERSTANDING OF AND ABILITY TO FORECAST THE WIND FIELD EXPANSION DURING THE EXTRATROPICAL TRANSITION PROCESS P1.17 TOWARDS A BETTER UNDERSTANDING OF AND ABILITY TO FORECAST THE WIND FIELD EXPANSION DURING THE EXTRATROPICAL TRANSITION PROCESS Clark Evans* and Robert E. Hart Florida State University Department

More information

Cloud-Resolving Simulations of West Pacific Tropical Cyclones

Cloud-Resolving Simulations of West Pacific Tropical Cyclones Cloud-Resolving Simulations of West Pacific Tropical Cyclones Da-Lin Zhang Department of Atmospheric and Oceanic Science, University of Maryland College Park, MD 20742-2425 Phone: (301) 405-2018; Fax:

More information

and 24 mm, hPa lapse rates between 3 and 4 K km 1, lifted index values

and 24 mm, hPa lapse rates between 3 and 4 K km 1, lifted index values 3.2 Composite analysis 3.2.1 Pure gradient composites The composite initial NE report in the pure gradient northwest composite (N = 32) occurs where the mean sea level pressure (MSLP) gradient is strongest

More information

10D.2 Methods for Introducing Vortical Hot Tower Heating in Numerical Models: Retrieving Latent Heat

10D.2 Methods for Introducing Vortical Hot Tower Heating in Numerical Models: Retrieving Latent Heat 10D.2 Methods for Introducing Vortical Hot Tower Heating in Numerical Models: Retrieving Latent Heat Stephen R. Guimond Florida State University, Department of Meteorology and Center for Ocean-Atmospheric

More information

Numerical Experiments of Tropical Cyclone Seasonality over the Western North Pacific

Numerical Experiments of Tropical Cyclone Seasonality over the Western North Pacific Numerical Experiments of Tropical Cyclone Seasonality over the Western North Pacific Dong-Kyou Lee School of Earth and Environmental Sciences Seoul National University, Korea Contributors: Suk-Jin Choi,

More information

Tropical Cyclone Intensity and Structure Changes in relation to Tropical Cyclone Outflow

Tropical Cyclone Intensity and Structure Changes in relation to Tropical Cyclone Outflow DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Tropical Cyclone Intensity and Structure Changes in relation to Tropical Cyclone Outflow Patrick A. Harr Department of

More information

Typhoon Relocation in CWB WRF

Typhoon Relocation in CWB WRF Typhoon Relocation in CWB WRF L.-F. Hsiao 1, C.-S. Liou 2, Y.-R. Guo 3, D.-S. Chen 1, T.-C. Yeh 1, K.-N. Huang 1, and C. -T. Terng 1 1 Central Weather Bureau, Taiwan 2 Naval Research Laboratory, Monterey,

More information

Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A Global Perspective

Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A Global Perspective JULY 2004 LONFAT ET AL. 1645 Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A Global Perspective MANUEL LONFAT Rosenstiel School

More information

Chapter 24. Tropical Cyclones. Tropical Cyclone Classification 4/19/17

Chapter 24. Tropical Cyclones. Tropical Cyclone Classification 4/19/17 Chapter 24 Tropical Cyclones Tropical Cyclones Most destructive storms on the planet Originate over tropical waters, but their paths often take them over land and into midlatitudes Names Hurricane (Atlantic

More information

An Observational and Modeling Study of Air-Sea Fluxes at Very High Wind Speeds

An Observational and Modeling Study of Air-Sea Fluxes at Very High Wind Speeds An Observational and Modeling Study of Air-Sea Fluxes at Very High Wind Speeds Kerry Emanuel Room 54-1620, MIT 77 Massachusetts Avenue Cambridge, MA 02139 phone: (617) 253-2462 fax: (425) 740-9133 email:

More information

Tropical cyclone energy dispersion under vertical shears

Tropical cyclone energy dispersion under vertical shears Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L23807, doi:10.1029/2007gl031867, 2007 Tropical cyclone energy dispersion under vertical shears Xuyang Ge, 1 Tim Li, 1,2 and Xiaqiong

More information

Effect of uncertainties in sea surface temperature dataset on the simulation of typhoon Nangka (2015)

Effect of uncertainties in sea surface temperature dataset on the simulation of typhoon Nangka (2015) Received: 27 July 217 Revised: 6 October 217 Accepted: 2 November 217 Published on: 5 December 217 DOI: 1.12/asl.797 RESEARCH ARTICLE Effect of uncertainties in sea surface temperature dataset on the simulation

More information

Interactions between Simulated Tropical Cyclones and an Environment with a Variable Coriolis Parameter

Interactions between Simulated Tropical Cyclones and an Environment with a Variable Coriolis Parameter MAY 2007 R I TCHIE AND FRANK 1889 Interactions between Simulated Tropical Cyclones and an Environment with a Variable Coriolis Parameter ELIZABETH A. RITCHIE Department of Electrical and Computer Engineering,

More information

Atmosphere-Ocean Interaction in Tropical Cyclones

Atmosphere-Ocean Interaction in Tropical Cyclones Atmosphere-Ocean Interaction in Tropical Cyclones Isaac Ginis University of Rhode Island Collaborators: T. Hara, Y.Fan, I-J Moon, R. Yablonsky. ECMWF, November 10-12, 12, 2008 Air-Sea Interaction in Tropical

More information

DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited.

DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. INITIALIZATION OF TROPICAL CYCLONE STRUCTURE FOR OPERTAIONAL APPLICATION PI: Tim Li IPRC/SOEST, University

More information

Effects of Midlevel Dry Air on Development of the Axisymmetric Tropical Cyclone Secondary Circulation

Effects of Midlevel Dry Air on Development of the Axisymmetric Tropical Cyclone Secondary Circulation MAY 2017 A L L A N D E T A L. 1455 Effects of Midlevel Dry Air on Development of the Axisymmetric Tropical Cyclone Secondary Circulation JOSHUA J. ALLAND, BRIAN H. TANG, AND KRISTEN L. CORBOSIERO Department

More information

Hurricane: an organized tropical storm system featuring vigorous convection and sustained winds in excess of 64 knots (74 mph)

Hurricane: an organized tropical storm system featuring vigorous convection and sustained winds in excess of 64 knots (74 mph) Hurricane: an organized tropical storm system featuring vigorous convection and sustained winds in excess of 64 knots (74 mph) The storms have different names, depending on where they form: Western Hemisphere:

More information

15.6 A NUMERICAL MODELING STUDY OF THE MICROPHYSICAL PROCESSES LEADING TO TROPICAL CYCLOGENESIS UNDER DIFFERENT ENVIRONMENTAL CONDITIONS

15.6 A NUMERICAL MODELING STUDY OF THE MICROPHYSICAL PROCESSES LEADING TO TROPICAL CYCLOGENESIS UNDER DIFFERENT ENVIRONMENTAL CONDITIONS 15.6 A NUMERICAL MODELING STUDY OF THE MICROPHYSICAL PROCESSES LEADING TO TROPICAL CYCLOGENESIS UNDER DIFFERENT ENVIRONMENTAL CONDITIONS Andrew B. Penny* and Elizabeth A. Ritchie Department of Atmospheric

More information

Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part I: Overall Structure, Potential Vorticity, and Kinetic Energy Budgets*

Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part I: Overall Structure, Potential Vorticity, and Kinetic Energy Budgets* 1APRIL 2002 WANG 1213 Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part I: Overall Structure, Potential Vorticity, and Kinetic Energy Budgets* YUQING WANG International Pacific Research

More information

Energy Production, Frictional Dissipation, and Maximum Intensity. of a Numerically Simulated Tropical Cyclone

Energy Production, Frictional Dissipation, and Maximum Intensity. of a Numerically Simulated Tropical Cyclone Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated Tropical Cyclone Yuqing Wang 1 and Jing Xu International Pacific Research Center and Department of Meteorology

More information

Toward Developing an Objective 4DVAR BDA Scheme for Hurricane Initialization Based on TPC Observed Parameters

Toward Developing an Objective 4DVAR BDA Scheme for Hurricane Initialization Based on TPC Observed Parameters 2054 MONTHLY WEATHER REVIEW VOLUME 132 Toward Developing an Objective 4DVAR BDA Scheme for Hurricane Initialization Based on TPC Observed Parameters KYUNGJEEN PARK AND X. ZOU Department of Meteorology,

More information

A New Ocean Mixed-Layer Model Coupled into WRF

A New Ocean Mixed-Layer Model Coupled into WRF ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2012, VOL. 5, NO. 3, 170 175 A New Ocean Mixed-Layer Model Coupled into WRF WANG Zi-Qian 1,2 and DUAN An-Min 1 1 The State Key Laboratory of Numerical Modeling

More information

Multiscale Analyses of Inland Tropical Cyclone Midlatitude Jet Interactions: Camille (1969) and Danny (1997)

Multiscale Analyses of Inland Tropical Cyclone Midlatitude Jet Interactions: Camille (1969) and Danny (1997) Multiscale Analyses of Inland Tropical Cyclone Midlatitude Jet Interactions: Camille (1969) and Danny (1997) Matthew Potter, Lance Bosart, and Daniel Keyser Department of Atmospheric and Environmental

More information

Early Student Support for a Process Study of Oceanic Responses to Typhoons

Early Student Support for a Process Study of Oceanic Responses to Typhoons DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Early Student Support for a Process Study of Oceanic Responses to Typhoons Ren-Chieh Lien Applied Physics Laboratory University

More information

Tropical Cyclone Intensification

Tropical Cyclone Intensification Tropical Cyclone Intensification Theories for tropical cyclone intensification and structure CISK (Charney and Eliassen 1964) Cooperative Intensification Theory (Ooyama 1969). WISHE (Emanuel 1986, Holton

More information

A Reformulation of the Logistic Growth Equation Model (LGEM) for Ensemble and Extended Range Intensity Prediction

A Reformulation of the Logistic Growth Equation Model (LGEM) for Ensemble and Extended Range Intensity Prediction A Reformulation of the Logistic Growth Equation Model (LGEM) for Ensemble and Extended Range Intensity Prediction Mark DeMaria NOAA/NESDIS, Fort Collins, CO Andrea Schumacher and Kate Musgrave CIRA/CSU,

More information

HWRF Ocean: MPIPOM-TC

HWRF Ocean: MPIPOM-TC HWRF v3.7a Tutorial Nanjing, China, December 2, 2015 HWRF Ocean: MPIPOM-TC Ligia Bernardet NOAA SRL Global Systems Division, Boulder CO University of Colorado CIRS, Boulder CO Acknowledgement Richard Yablonsky

More information

Dependence of tropical cyclone intensification on the Coriolis parameter

Dependence of tropical cyclone intensification on the Coriolis parameter May 2012 Li et al. 1 Dependence of tropical cyclone intensification on the Coriolis parameter Tim Li a n d Xu ya n g Ge Department of Meteorology and IPRC, University of Hawaii, Honolulu, Hawaii Melinda

More information

Aircraft Observations of Tropical Cyclones. Robert Rogers NOAA/AOML Hurricane Research Division Miami, FL

Aircraft Observations of Tropical Cyclones. Robert Rogers NOAA/AOML Hurricane Research Division Miami, FL Aircraft Observations of Tropical Cyclones Robert Rogers NOAA/AOML Hurricane Research Division Miami, FL 1 Motivation Why are observations important? Many important physical processes within hurricanes

More information

Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina FEBRUARY 2009 H I L L A N D L A C K M A N N 745 Analysis of Idealized Tropical Cyclone Simulations Using the Weather Research and Forecasting Model: Sensitivity to Turbulence Parameterization and Grid

More information

9D.3 THE INFLUENCE OF VERTICAL WIND SHEAR ON DEEP CONVECTION IN THE TROPICS

9D.3 THE INFLUENCE OF VERTICAL WIND SHEAR ON DEEP CONVECTION IN THE TROPICS 9D.3 THE INFLUENCE OF VERTICAL WIND SHEAR ON DEEP CONVECTION IN THE TROPICS Ulrike Wissmeier, Robert Goler University of Munich, Germany 1 Introduction One does not associate severe storms with the tropics

More information

An ocean coupling potential intensity index for tropical cyclones

An ocean coupling potential intensity index for tropical cyclones GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 1878 1882, doi:10.1002/grl.50091, 2013 An ocean coupling potential intensity index for tropical cyclones I.-I. Lin, 1,2 P. Black, 3 J. F. Price, 4 C.-Y. Yang, 1 S.

More information

Surface Wind/Stress Structure under Hurricane

Surface Wind/Stress Structure under Hurricane Surface Wind/Stress Structure under Hurricane W. Timothy Liu and Wenqing Tang, JPL Asymmetry Relating wind to stress 2008 NASA Ocean Vector Wind Science Team Meeting, 19-21 November 2008, Seattle, WA Asymmetry

More information

Improving Tropical Cyclone Guidance Tools by Accounting for Variations in Size

Improving Tropical Cyclone Guidance Tools by Accounting for Variations in Size Improving Tropical Cyclone Guidance Tools by Accounting for Variations in Size John A. Knaff 1, Mark DeMaria 1, Scott P. Longmore 2 and Robert T. DeMaria 2 1 NOAA Center for Satellite Applications and

More information