Hindcasting of Storm Surge by Typhoon 0314(Maemi) in Masan Bay, Korea

Size: px
Start display at page:

Download "Hindcasting of Storm Surge by Typhoon 0314(Maemi) in Masan Bay, Korea"

Transcription

1 Hindcasting of Storm Surge by Typhoon 0314(Maemi) in Masan Bay, Korea See-Whan Kang 1 ;Kicheon Jun 1 ; Kwang-Soon Park 1 ; Sung-Dae Han 2 1 Coastal Engineering Research Division, Korea Ocean Research and Development Institute Ansan P.O. Box 29, Gyeonggi, Korea swkang@kordi.re.kr ; kcjun@kordi.re.kr; kspark@kordi.re.kr 2 Department of Civil Engineering, Kyoungnam University 449 Wolyong, Masan, Kyoungnam, Korea sdhan@kyungnam.ac.kr Typhoon 0314(Maemi) landed on the south coast of Korea at 21LST, 12 September, 2003, where its storm surge accompanying with high waves and astronomical high tide induced the most severe coastal disaster in Korea. Especially Masan City facing Masan Bay had the worst damages by the storm-surge flooding with the maximum surge height of ~2.3m recorded at Masan Port. In order to obtain the design surge-heights for the coastal structures in Masan City, a hindcasting study of storm surge for Typhoon 0314 were conducted using a fine-scaled regional surge model which was connected to the larger scaled surge models by a nesting grid system. The sea surface pressure and wind fields were computed by a primitive vortex wind model to obtain the input data for storm surge model simulation. The hindcasted surge heights were compared with the observed surges at Masan Port and also were compared with the surge data recorded at the major tide stations in the south coast of Korea. The result shows that the computed surges were in a good agreement with the observations. Keywords: Typhoon 0314(Maemi), storm surge, coastal disaster, Masan Bay, hindcasting, fine-scaled surge model, vortex wind model 1. INTRODUCTION Typhoon 0314(Maemi) landed on the south coast of Korea at 21LST, 12 September, 2003, where its storm surge accompanying with high waves and astronomical high tide induced the most severe coastal disaster in Korea, causing the loss of 130 lives and the property damage of 4.8 trillion won (~5 billion US dollars) which is the largest disaster since Typhoon Sarah in Especially Masan City facing Masan Bay had the worst damage by the storm-surge flooding, killing 32 peoples and inflicting severe coastal damage. During the typhoon passage with a central pressure of 950hPa and a progression speed of 45km/hr, the maximum surge height of ~2.3m was recorded at a tide gage of Masan Port. The residential and commercial area facing to the Masan Bay was heavily flooded and the almost underground facilities suffered from the inundation by the storm surge (Yasuda et al 2005).

2 A hindcasting study of storm surge for Typhoon 0314 was conducted by Kawai et al (2004). The hindcasted surges in Masan Bay were much underestimated comparing with observation. In the present study, a hindcasting study of storm surge for Typhoon 0314 were conducted using a fine-scaled regional surge model which was connected to 3 larger different scaled surge models by a nesting grid system. The sea-surface pressure and wind fields were computed by a primitive vortex wind model (Cardone et al, 1992; Kang et al. 2002) for the input data of storm surge simulation. The hindcasted surge heights were compared with the observed surges at Masan Port and also were compared with the surge heights recorded at the tide stations of Yeosu, Tongyoung, Busan and Ulsan in the south coast of Korea. 2. TYPHOON MAEMI AND MASAN BAY 2.1 CHARACTERISTICS OF TYPHOON MAEMI Figure 1 shows the track of typhoon Maemi. Typhoon Maemi was generated on 6 Sep., 2003 at 25 N and 140 E, and moved in the NW direction. Its direction course changed to NNE after passed Miyakojima Island, Okinawa on Sep.11, and approached to Korean Peninsula. The typhoon passed by Jeju Island and landed on the south coast at 21LST, 12 September, At the landing, the central atmospheric pressure was 950hPa and the progression speed was approximately 45km/h. Then, Typhoon Maemi passed across the Korean Peninsula to East Sea in the early morning on Sep. 13. Fig. 1 Typhoon No. 14 (Maemi) Track 2.2 MASAN BAY Masan Bay is located in about 50km west of Busan as shown in Figure 2, which is a long and slender bay with 2.5km in width and 8km in length, and a bay mouth opens to SSE

3 direction. An average depth of the water in the bay area is about 10 meters. The distance from the Gadeog Channel to Masan Bay mouth is about 25km. It is considered that waves are hard to progress into the bay because the bay mouth is narrower and Masan Port was considered as a good natural harbor. Actually, the Masan Bay had not encountered the damage so far since the opening of Masan Port in a century. An urban area of Masan City lies along the closed-off section of the bay, and harbors are constructed in the coastal area by reclamation. Tid l Fig. 2 Location of the Masan Bay 2.3 OBSERVED WATER-LEVEL DATA While Typhoon Maemi was passing by the southern coast near to Masan Bay, the level of the astronomical tide reached near the high tide of a spring tide. Figure 3 shows the time variation of water level measured at the Masan Port tide station. The tide record indicates that the water-level reached approximately 4.3m above the datum line (chart design level), at which the high tide and the storm surge occurred simultaneously. The astronomical tide level was ~2.0m and then the storm surge deviation became ~2.3m.

4 (C.D.L., m) Tide level tide (Astro.+Storm Surge) Astronomical tide Time (hr) (9/11/03) (9/12/03) (9/13/03) Fig. 3 Time Variation of Water-Level at the Masan Port Tide Station 3. HINDCASTING OF TYPHOON PRESSURE AND WIND FIELD The sea-surface wind and pressure fields for Typhoon Maemi were hindcasted by using the primitive vortex model (PVM) which was developed by Chow (1971) and modified by Cardone et al. (1992). This model is based on the equation of horizontal motion, vertically averaged through the depth of the PBL. Kang et al. (2002) conducted a comparison study of typhoon wind models for 64 typhoon cases for In this study the typhoon wind fields were simulated by the both of primitive vortex model (PVM) and typhoon parametric model (TPM). The hindcasted sea-surface winds of the two models were compared with the typhoon winds observed at JMA ocean buoys (22001 and 21002) and Kyushu ocean observation tower. The analysis of RMS and relative errors between hindcasted and observed winds was made to find the accuracy and sensitivity of the typhoon wind models. The hindcasted winds of TPM and PVM both underestimate the observed typhoon winds but PVM winds were much closer to the observations with less RMS and relative errors. To hindcast the pressure and wind fields of Typhoon Maemi, the computational grid of the PVM was used by a moving grid system (Thompson et al. 1996) of rectangular nests, which provides relatively fine grid spacing of 2km near the typhoon inner region and coarse spacing in the outer region. Fig. 4 shows the wind and pressure fields simulated by the PVM wind model for Typhoon Maemi. As shown in Fig. 5, the hindcasted winds were compared with the observed winds at Ieodo Ocean Station during the passage of Typhoon Maemi. They

5 are generally in a good agreement although the hindcasted winds were slightly underestimated in the peak wind region. Typhoon: Maemi(0314) Date: 2003/09/12/09(LST) Vector Scale 40m/s Typhoon: Maemi(0314) Date: 2003/09/12/15(LST) Vector Scale 40m/s Korea Korea Japan Japan (a) 2003/09/12 09LST (b) 2003/09/12 15LST Typhoon: Maemi(0314) Date: 2003/09/12/21(LST) Vector Scale 40m/s Typhoon: Maemi(0314) Date: 2003/09/13/03(LST) Vector Scale 30m/s Korea Japan Korea 980 Japan 980 (c) 2003/09/12 21LST (d) 2003/09/13 03LST Fig. 4 Surface Wind and Pressure Fields Simulated by PVM Wind

6 * Ieodo Wind Speed (m/sec) Wind Dir. (deg) /11 9/12 9/ /11 9/12 9/13 September, Fig. 5 Comparision of PVM Wind with Observation at Ieodo Station for Typhoon Maemi 4. STORM SURGE SIMULATION The storm surges during the passage of Typhoon Maemi were simulated by the KORDI's storm surge model (Park et al. 2000) including the terms of the curvature of the earth and Coriolis force, which was established on the spherical coordinate system to cover the whole region of typhoon past tracks. Assuming the vertical acceleration is negligible as if the vertical distribution of currents is uniform, the depth-integrated continuity and momentum equations can be expressed as follows: η 1 + t R cosφ λ U g η + = fv t R cosφ λ P τ bλ τ s φ λ ρh ( HU ) + ( HV cosφ) = 0 φ ρr 1 cos V g η P τ b + = fu 1 t R φ ρr φ φ τ ρh sφ λ (1) (2) (3) Where λ, φ and t are the longitude, latitude and time, respectively. η, U and V are the sea surface elevation, depth averaged velocities. R is the radius of the earth, H is total depth, ρ is density of sea water; is gravity, is pressure, is Coriolis g P f

7 parameter, τ s and τ b are stresses induced by wind and bottom friction which are set to be quadratic forms (Park et al. 2000). The governing equations, Eqs. (1) (3), are numerically analyzed by using the fractional step method (Chorin 1968). Those terms are finitely differentiated to the form of a tridiagonal matrix by using ADI implicit method on the staggered grid system. For initial conditions, all variables including the sea level and the current vectors are set to be zero. For boundary conditions, the normal components of current vectors are set to zero at the land boundaries. At open boundaries, the sea levels are calculated from the hydrostatic equation using sea surface pressure. The storm surge model was simulated by using a nested grid system of 4 different grid sizes(table 1). A large-scale model with the grid interval of 1/12 ( 10 km), a mid-scale model with the grid interval of 1/60 ( 2 km) and a small-scaled with 250m and a fine-scaled with 50m were established for the Korean seas including its coastal waters. Fig. 6 shows grid system of the seas around the Korean Peninsula for the storm surge model. Two fine-scaled grids were located on the mid-western and east-southern coasts of Korea. The nested grid system and boundary conditions for simulating storm surge using a regional fine-scaled surge model are shown in Table 1. This surge model has been developed to produce long-term estimation of storm surge in the Korean coast (Kang et al. 2003). Fig. 6 Nested Grid System and Depth Contour for Storm-Surge Hindcasting

8 Table. 1 Nested Grid System and Boundary Conditions for Fine-Scaled Surge Grid system Large-scale Mid-scale Small-scale Fine-scale Domain Size Domain ~143 E 20 ~50 N 124 ~132 E 32 ~40 N ~ ~ ~ E ~35.21 N Interval 1/12 1/60 250m 50m Number Boundary Condition Static Equation Large-scale result Mid-scale result Small-scale result The results of storm surge hindcasting were compared with the observed surges at the 5 different tidal stations in the south coast of Korea. Fig. 7 shows the locations of the tide stations. Fig. 8 shows the comparison of the hindcasted storm surges with the observations. The hindcasted surges were generally in a good agreement with the observations at the major tide stations of Yeosu, Tongyoung, Masan, Busan, and Ulsan. Fig. 9 shows the distribution of the maximum surge in Masan Bay which was hindcasted by the previously described procedures of typhoon wind field and storm surge simulations. The maximum surge height computed by the model simulation was 226cm at the Masan Port, which was a well agreement with the observation of ~230cm. Masan Busan Ulsan Yeosu TongYoung Ieodo Fig. 7 Major Tide Stations in the South Coast of Korea

9 Surge (cm) Ulsan Surge (cm) Surge (cm) Surge (cm) -20 9/12 9/ Busan -40 9/12 9/ Masan /12 9/ Tongyoung /12 9/13 Surge (cm) Yeosu /12 9/13 Fig. 8 Hindcasting Storm Surges with Observations at the Tide Stations of South Coast

10 (a) small-scaled model A B C (b) fine-scaled model Fig. 9 Maximum Surge Heights(in cm) in Masan Bay, Hindcasted for Typhoon Maemi

11 5. CONCLUSION Typhoon Maemi caused the most severe coastal disaster in Masan City due to storm surge on September 12, The coastal disaster occurred in Masan Bay was a historical record since the opening of Masan Port in a century. According to the field survey of storm surge traces, which was investigated by Yasuda et al. (2005), the inundation water depth on the coast of Masan City was found in the range of 4.1~4.4m. Also the tide record at Masan Port indicates that the water-level reached approximately 4.3m above the datum line, and at that time the spring high tide and the storm surge occurred simultaneously. The storm surge deviation became approximately ~2.3m because the astronomical tide level was 2.06m. The hindcasted result of the maximum storm surges along the Masan coast was in the range of 2.1~2.26m as shown in Fig. 9. This result was in quite a well agreement with the observed surge height in Masan Port. However, it is necessary to improve further the regional, fine scaled surge model to hindcast more accurately and also to understand in more detail on the dynamics of storm surge propagation in a long, narrow and slender coastal bay. ACKNOWLEDGMENTS This study was conducted by the support of Top Brand Project Safe Coast of Korea Ocean Research and Development Institute (KORDI), and also The investigation and mitigation of coastal hazards in Masan Bay supported by Masan City Government. REFERENCES 1. Cardone, V.J., C.V. Greenwood, and J.A. Greenwood, 1992: Unified program for the specification of hurricane boundary layer winds over surfaces of specified roughness, Contract Rep. CERC-92-1, U.S. Army Engrs. Wtrwy. Expreriment Station, Vicksburg, Miss. 2. Chorin, A. J., Vortex Sheet approx. of boundary layer, J. of Comput. Phys., 27: Chow, S.H, 1971: A study of the wind field in the planetary boundary layer of a moving tropical cyclone, MS thesis, School of Engrg. and Sci., New York Univ., N.Y. 4. Kang, S.W., K.C. Jun, K.S. Park, and G.H. Bang, 2002: A Comparison of Typhoon Wind s with Winds. J. Korean Soc. Oceano., 7(3): Kang, S.W., K.C. Jun, K.S. Park, and D.Y. Lee, 2003: Long-term Estimation of Storm Surge in the Korean Coast, Coastal Hazard 2003, Japan, G1-G8. 6. Kawai, H., T. Tomita, T., Hiraishi, D.S. Kim, and Y.K. Kang, 2004: Hindcasting of storm surge by typhoon 0314(Maemi), Waves and Storm Surges around Korean Penninsula, Workshop Proceeding on 19 August, 2004, KSCOE.

12 7. Park, K. S. et. al., 2000: Mitigation Engineering Development for sea and Coastal Hazards(II). Technical Report N A-02, Korea Ocean Research and Development Institute. p (in Korean). 8. Thompson, E. F., and V. J. Cardone, 1996: Practical modeling of hurricane surface wind fields, J. of Waterway, Port, Coastal and Ocean Engineering. 122(4): Yasuda, T., T. Hiraishi, H. Kawai, K. Nagase, S.W. Kang, and W.M. Jeong, 2005: Field survey and computation analysys of storm surge disaster in Masan due to Typhoon Maemi, Proceeding of Asian and Pacific Coasts 2005, Jeju, Korea.

Changes of storm surge and typhoon intensities under the future global warming conditions Storm Surge Congress 2010

Changes of storm surge and typhoon intensities under the future global warming conditions Storm Surge Congress 2010 Changes of storm surge and typhoon intensities under the future global warming conditions Storm Surge Congress 2010 Il-Ju Moon & S. M. Oh Jeju (Cheju) National University, Korea Tropical Cyclone (TC) and

More information

SIMULATION OF ATMOSPHERIC STATES FOR THE CASE OF YEONG-GWANG STORM SURGE ON 31 MARCH 2007 : MODEL COMPARISON BETWEEN MM5, WRF AND COAMPS

SIMULATION OF ATMOSPHERIC STATES FOR THE CASE OF YEONG-GWANG STORM SURGE ON 31 MARCH 2007 : MODEL COMPARISON BETWEEN MM5, WRF AND COAMPS SIMULATION OF ATMOSPHERIC STATES FOR THE CASE OF YEONG-GWANG STORM SURGE ON 31 MARCH 2007 : MODEL COMPARISON BETWEEN MM5, WRF AND COAMPS JEONG-WOOK LEE 1 ; KYUNG-JA HA 1* ; KI-YOUNG HEO 1 ; KWANG-SOON

More information

PREDICTION OF DESIGN WATER LEVEL DUE TO STORM SURGE AT THE SEOGWIPO COASTAL ZONE IN KOREA

PREDICTION OF DESIGN WATER LEVEL DUE TO STORM SURGE AT THE SEOGWIPO COASTAL ZONE IN KOREA Proceedings of the 7 th International Conference on Asian and Pacific Coasts (APAC 2013) Bali, Indonesia, September 24-26, 2013 PREDICTION OF DESIGN WATER LEVEL DUE TO STORM SURGE AT THE SEOGWIPO COASTAL

More information

PREDICTING TROPICAL CYCLONE FORERUNNER SURGE. Abstract

PREDICTING TROPICAL CYCLONE FORERUNNER SURGE. Abstract PREDICTING TROPICAL CYCLONE FORERUNNER SURGE Yi Liu 1 and Jennifer L. Irish 1 Abstract In 2008 during Hurricane Ike, a 2-m forerunner surge, early surge arrival before tropical cyclone landfall, flooded

More information

Prediction of changes in tidal system and deltas at Nakdong estuary due to construction of Busan new port

Prediction of changes in tidal system and deltas at Nakdong estuary due to construction of Busan new port Prediction of changes in tidal system and deltas at Nakdong estuary due to construction of Busan new port H. Gm1 & G.-Y. park2 l Department of Civil & Environmental Engineering, Kookmin University, Korea

More information

PROJECTION OF FUTURE STORM SURGE DUE TO CLIMATE CHANGE AND ITS UNCERTAINTY A CASE STUDY IN THE TOKYO BAY

PROJECTION OF FUTURE STORM SURGE DUE TO CLIMATE CHANGE AND ITS UNCERTAINTY A CASE STUDY IN THE TOKYO BAY Proceedings of the Sixth International Conference on Asian and Pacific Coasts (APAC 2011) December 14 16, 2011, Hong Kong, China PROJECTION OF FUTURE STORM SURGE DUE TO CLIMATE CHANGE AND ITS UNCERTAINTY

More information

Comparison of directional wave spectrum hindcast to the buoy data measured near the typhoon path

Comparison of directional wave spectrum hindcast to the buoy data measured near the typhoon path Comparison of directional wave spectrum hindcast to the buoy data measured near the typhoon path TAERIM KIM and JAEHYUK LEE trkim@kunsan.ac.kr Department of Ocean Science and Engineering Kunsan National

More information

Introduction of Korea Operational Oceanographic System (KOOS)

Introduction of Korea Operational Oceanographic System (KOOS) PICES-2010, Portland, USA October 21-31, 2010 Introduction of Korea Operational Oceanographic System (KOOS) Oct. 28, 2010 Kwang-Soon Park, Dong-Young Lee, Ki-Cheon Jun, Sang-Ik Kim, Jae-Il Kwon and Jung-Woon

More information

MODELLING CATASTROPHIC COASTAL FLOOD RISKS AROUND THE WORLD

MODELLING CATASTROPHIC COASTAL FLOOD RISKS AROUND THE WORLD MODELLING CATASTROPHIC COASTAL FLOOD RISKS AROUND THE WORLD Nicola Howe Christopher Thomas Copyright 2016 Risk Management Solutions, Inc. All Rights Reserved. June 27, 2016 1 OUTLINE MOTIVATION What we

More information

Importance of air-sea interaction on the coupled typhoon-wave-ocean modeling

Importance of air-sea interaction on the coupled typhoon-wave-ocean modeling Importance of air-sea interaction on the coupled typhoon-wave-ocean modeling Collaborators: I. Ginis (GSO/URI) T. Hara (GSO/URI) B. Thomas (GSO/URI) H. Tolman (NCEP/NOAA) IL-JU MOON ( 文一柱 ) Cheju National

More information

STORM SURGE SIMULATION IN NAGASAKI DURING THE PASSAGE OF 2012 TYPHOON SANBA

STORM SURGE SIMULATION IN NAGASAKI DURING THE PASSAGE OF 2012 TYPHOON SANBA STORM SURGE SIMULATION IN NAGASAKI DURING THE PASSAGE OF 2012 TYPHOON SANBA D. P. C. Laknath 1, Kazunori Ito 1, Takahide Honda 1 and Tomoyuki Takabatake 1 As a result of global warming effect, storm surges

More information

Optimal Design Conditions for Storm Surge Barriers. Tomotsuka TAKAYAMA and Hajime MASE

Optimal Design Conditions for Storm Surge Barriers. Tomotsuka TAKAYAMA and Hajime MASE 47 C 6 3 Annuals of isas. Prev. Res. Inst., Kyoto Univ., No.47 Optimal esign Conditions for Storm Surge Barriers Tomotsuka TAKAYAMA and Hajime MASE Synopsis In Japan Isewan Typhoon which caused the severest

More information

ESTIMATION OF DESIGN WAVE HEIGHT AND COASTAL DEFENSE: CONSIDERATION OF GLOBAL CLIMATE CHANGE. Abstract

ESTIMATION OF DESIGN WAVE HEIGHT AND COASTAL DEFENSE: CONSIDERATION OF GLOBAL CLIMATE CHANGE. Abstract 9th International Conference on Public Communication of Science and Technology (PCST) Seoul, South Korea, 17-19 May 2006 ESTIMATION OF DESIGN WAVE HEIGHT AND COASTAL DEFENSE: CONSIDERATION OF GLOBAL CLIMATE

More information

Evacuation Alarm Using the Improved Magnitude Method to Damage Caused by Typhoon 9918

Evacuation Alarm Using the Improved Magnitude Method to Damage Caused by Typhoon 9918 ICHE 2014, Hamburg - Lehfeldt & Kopmann (eds) - 2014 Bundesanstalt für Wasserbau ISBN 978-3-939230-32-8 Evacuation Alarm Using the Improved Magnitude Method to Damage Caused by Typhoon 9918 R. Hashimura

More information

HURRICANE - GENERATED OCEAN WAVES

HURRICANE - GENERATED OCEAN WAVES HURRICANE - GENERATED OCEAN WAVES Fumin Xu,, Will Perrie Bechara Toulany and Peter C Smith Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada College of Ocean Engineering,

More information

Typhoon Maemi and Hurricane Katrina: Impacts and Aftermath. Typhoon Maemi: September 13, Typhoon Maemi Track and Characteristics

Typhoon Maemi and Hurricane Katrina: Impacts and Aftermath. Typhoon Maemi: September 13, Typhoon Maemi Track and Characteristics Typhoon Maemi and Hurricane Katrina: Impacts and Aftermath Pierre Julien Un Ji Department of Civil Engineering Colorado State University Fort Collins, Colorado USA September, 2005 Typhoon Maemi: September

More information

Coastal Storms of the New Jersey Shore

Coastal Storms of the New Jersey Shore Coastal Storms of the New Jersey Shore Dr. Steven G. Decker Dept. of Environmental Sciences School of Environmental and Biological Sciences Rutgers University May 25, 2011 Overview Threats Historical Examples

More information

Coastal Inundation Forecasting and Community Response in Bangladesh

Coastal Inundation Forecasting and Community Response in Bangladesh WMO Coastal Inundation Forecasting and Community Response in Bangladesh Bapon (SHM) Fakhruddin Nadao Kohno 12 November 2015 System Design for Coastal Inundation Forecasting CIFDP-PSG-5, 14-16 May 2014,

More information

Advances in Coastal Inundation Simulation Using Unstructured-Grid Coastal Ocean Models

Advances in Coastal Inundation Simulation Using Unstructured-Grid Coastal Ocean Models Advances in Coastal Inundation Simulation Using Unstructured-Grid Coastal Ocean Models Bob Beardsley (WHOI) Changsheng Chen (UMass-Dartmouth) Bob Weisberg (U. South Florida) Joannes Westerink (U. Notre

More information

THC-T-2013 Conference & Exhibition

THC-T-2013 Conference & Exhibition Modeling of Shutter Coastal Protection against Storm Surge for Galveston Bay C. Vipulanandan, Ph.D., P.E., Y. Jeannot Ahossin Guezo and and B. Basirat Texas Hurricane Center for Innovative Technology (THC-IT)

More information

1. Sea Surface Temperatures (SSTs) > 27 and extending to some depth.

1. Sea Surface Temperatures (SSTs) > 27 and extending to some depth. Formation Factors for Hurricanes 1. Sea Surface Temperatures (SSTs) > 27 and extending to some depth. 2. Location >5 away from the equator (usually 10 ). Coriolis force is necessary for rotation. 3. High

More information

NUMERICAL SIMULATION OF SURGES 191

NUMERICAL SIMULATION OF SURGES 191 CHAPTER THIRTEEN NUMERICAL SIMULATION OF STORM SURGES INDUCED BY TROPICAL STORMS IMPINGING ON THE BANGLADESH COAST 1.2 3 S.K. Dube, P.C. Sinha, and G.D. Roy ABSTRACT: In the present paper a vertically

More information

Projection of Extreme Wave Climate Change under Global Warming

Projection of Extreme Wave Climate Change under Global Warming Hydrological Research Letters, 4, 15 19 (2010) Published online in J-STAGE (www.jstage.jst.go.jp/browse/hrl). DOI: 10.3178/HRL.4.15 Projection of Extreme Wave Climate Change under Global Warming Nobuhito

More information

Long-Term Trend of Summer Rainfall at Selected Stations in the Republic of Korea

Long-Term Trend of Summer Rainfall at Selected Stations in the Republic of Korea Long-Term Trend of Summer Rainfall at Selected Stations in the Republic of Korea Il-Kon Kim Professor, Department of Region Information Rafique Ahmed Professor, Geography and Earth Science Silla University

More information

EFFECTIVE TROPICAL CYCLONE WARNING IN BANGLADESH

EFFECTIVE TROPICAL CYCLONE WARNING IN BANGLADESH Country Report of Bangladesh On EFFECTIVE TROPICAL CYCLONE WARNING IN BANGLADESH Presented At JMA/WMO WORKSHOP ON EFFECTIVE TROPICAL CYCLONE WARNING IN SOUTHEAST ASIA Tokyo, Japan,11-14 March 2014 By Sayeed

More information

JCOMM-CHy Coastal Inundation Forecasting Demonstration Project (CIFDP)

JCOMM-CHy Coastal Inundation Forecasting Demonstration Project (CIFDP) WMO World Meteorological Organization Working together in weather, climate and water JCOMM-CHy Coastal Inundation Forecasting Demonstration Project (CIFDP) Coastal Flooding & Vulnerable Populations Coastal

More information

Impact of Sea Level Rise on Future Storm-induced Coastal Inundation

Impact of Sea Level Rise on Future Storm-induced Coastal Inundation Impact of Sea Level Rise on Future Storm-induced Coastal Inundation Changsheng Chen School for Marine Science and Technology, University of Massachusetts-Dartmouth Email: c1chen@umassd.edu 04/14/2015 Outline

More information

Robert Weaver, Donald Slinn 1

Robert Weaver, Donald Slinn 1 1 1 Robert Weaver, Donald Slinn 1 Department of Civil and Coastal Engineering, University of Florida, Gainesville, Florida Supported by the US Office of Naval Research AGU Fall Meeting 2002 Poster OS72A-0342

More information

HURRICANE FRANCES CHARACTERISTICS and STORM TIDE EVALUATION

HURRICANE FRANCES CHARACTERISTICS and STORM TIDE EVALUATION HURRICANE FRANCES CHARACTERISTICS and STORM TIDE EVALUATION ((DRAFT)) By Robert Wang and Michael Manausa Sponsored by Florida Department of Environmental Protection, Bureau of Beaches and Coastal Systems

More information

A TRANSFORMED COORDINATE MODEL TO PREDICT TIDE AND SURGE ALONG THE HEAD BAY OF BENGAL- APPLICATION TO CYCLONE OF 1991 AND 1970

A TRANSFORMED COORDINATE MODEL TO PREDICT TIDE AND SURGE ALONG THE HEAD BAY OF BENGAL- APPLICATION TO CYCLONE OF 1991 AND 1970 GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 35 (015) 7-5 A TRANSFORMED COORDINATE MODEL TO PREDICT TIDE AND SURGE ALONG THE HEAD BAY OF BENGAL- APPLICATION TO CYCLONE OF 1991 AND 1970 Farzana Hussain

More information

Chapter 24 Tropical Cyclones

Chapter 24 Tropical Cyclones Chapter 24 Tropical Cyclones Tropical Weather Systems Tropical disturbance a cluster of thunderstorms about 250 to 600 km in diameter, originating in the tropics or sub-tropics Tropical depression a cluster

More information

Comparative Analysis of Hurricane Vulnerability in New Orleans and Baton Rouge. Dr. Marc Levitan LSU Hurricane Center. April 2003

Comparative Analysis of Hurricane Vulnerability in New Orleans and Baton Rouge. Dr. Marc Levitan LSU Hurricane Center. April 2003 Comparative Analysis of Hurricane Vulnerability in New Orleans and Baton Rouge Dr. Marc Levitan LSU Hurricane Center April 2003 In order to compare hurricane vulnerability of facilities located in different

More information

Experimental Probabilistic Hurricane Inundation Surge Height (PHISH) Guidance

Experimental Probabilistic Hurricane Inundation Surge Height (PHISH) Guidance Experimental Probabilistic Hurricane Inundation Surge Height (PHISH) Guidance DRBC Flood Advisory Committee John Kuhn - NWS/OCWWS Anne Myckow (NWS/MDL), Arthur Taylor (NWS/MDL) SLOSH Sea, Lake and Overland

More information

HURRICANE CHARLEY CHARACTERISTICS and STORM TIDE EVALUATION

HURRICANE CHARLEY CHARACTERISTICS and STORM TIDE EVALUATION HURRICANE CHARLEY CHARACTERISTICS and STORM TIDE EVALUATION By Robert Wang, Michael Manausa And Jenny Cheng Sponsored by Florida Department of Environmental Protection, Bureau of Beaches and Coastal Systems

More information

Saiful Islam Anisul Haque

Saiful Islam Anisul Haque Workshop on Disaster Prevention/Mitigation Measures against Floods and Storm Surges in Bangladesh on 17-21 November, 2012, in Kyoto University, Japan Component 2: Flood disaster risk assessment and mitigation

More information

Impact assessment on disasters

Impact assessment on disasters The 5th International Coordination Group (ICG) Meeting GEOSS Asian Water Cycle Initiative (AWCI), Dec. 16, 2009. Impact assessment on disasters Eiichi Nakakita Disaster Prevention Research Institute Kyoto

More information

Earth Observation & forecasting Storm Surges in the North Western Pacific. Mr. Nadao Kohno Japan Meteorological Agency

Earth Observation & forecasting Storm Surges in the North Western Pacific. Mr. Nadao Kohno Japan Meteorological Agency Earth Observation & forecasting Storm Surges in the North Western Pacific Mr. Nadao Kohno Japan Meteorological Agency Lesson Outline Introduction JMA s responsibility and work as a RSMC, Tokyo Typhoon

More information

The Field Research Facility, Duck, NC Warming Ocean Observations and Forecast of Effects

The Field Research Facility, Duck, NC Warming Ocean Observations and Forecast of Effects The Field Research Facility, Duck, NC Warming Ocean Observations and Forecast of Effects A potential consequence of a warming ocean is more frequent and more intense wind events (Hurricanes & Typhoons)

More information

2014/2/25. Earth Observation & forecasting Storm Surges in the North Western Pacific. Lesson Outline. RSMC Tokyo Typhoon Center.

2014/2/25. Earth Observation & forecasting Storm Surges in the North Western Pacific. Lesson Outline. RSMC Tokyo Typhoon Center. Earth Observation & forecasting Storm Surges in the North Western Pacific Mr. Nadao Kohno Japan Meteorological Agency Lesson Outline Introduction JMA s responsibility and work as a RSMC, Tokyo Typhoon

More information

LECTURE #17: Severe Weather: Introduction to Hurricanes

LECTURE #17: Severe Weather: Introduction to Hurricanes GEOL 0820 Ramsey Natural Disasters Spring, 2018 LECTURE #17: Severe Weather: Introduction to Hurricanes Date: 15 March 2018 I. Hurricane Overview hurricanes o what they are? o how they form? storm stages:

More information

CURRENT AND FUTURE TROPICAL CYCLONE RISK IN THE SOUTH PACIFIC

CURRENT AND FUTURE TROPICAL CYCLONE RISK IN THE SOUTH PACIFIC CURRENT AND FUTURE TROPICAL CYCLONE RISK IN THE SOUTH PACIFIC COUNTRY RISK PROFILE: SAMOA JUNE 2013 Samoa has been affected by devastating cyclones on multiple occasions, e.g. tropical cyclones Ofa and

More information

Simulation of storm surge and overland flows using geographical information system applications

Simulation of storm surge and overland flows using geographical information system applications Coastal Processes 97 Simulation of storm surge and overland flows using geographical information system applications S. Aliabadi, M. Akbar & R. Patel Northrop Grumman Center for High Performance Computing

More information

CHAPTER 62. Observed and Modeled Wave Results From Near-Stationary Hurricanes

CHAPTER 62. Observed and Modeled Wave Results From Near-Stationary Hurricanes CHAPTER 62 Observed and Modeled Wave Results From Near-Stationary Hurricanes Charles L. Vincent, PhD 1 and Robert E. Jensen, PhD 2 Abstract Wave conditions in hurricanes have been difficult to study because

More information

Impact of upper-ocean thermal structure on the intensity of Korean peninsular. landfall typhoons. Abstract

Impact of upper-ocean thermal structure on the intensity of Korean peninsular. landfall typhoons. Abstract Impact of upper-ocean thermal structure on the intensity of Korean peninsular landfall typhoons Il-Ju Moon 1 and Seok Jae Kwon 2 1 College of Ocean Science, Cheju National University 2 National Oceanographic

More information

High Resolution Modeling of Multi-scale Cloud and Precipitation Systems Using a Cloud-Resolving Model

High Resolution Modeling of Multi-scale Cloud and Precipitation Systems Using a Cloud-Resolving Model Chapter 1 Atmospheric and Oceanic Simulation High Resolution Modeling of Multi-scale Cloud and Precipitation Systems Using a Cloud-Resolving Model Project Representative Kazuhisa Tsuboki Author Kazuhisa

More information

HURRICANE IVAN CHARACTERISTICS and STORM TIDE EVALUATION

HURRICANE IVAN CHARACTERISTICS and STORM TIDE EVALUATION HURRICANE IVAN CHARACTERISTICS and STORM TIDE EVALUATION By Robert Wang and Michael Manausa Sponsored by Florida Department of Environmental Protection, Bureau of Beaches and Coastal Systems Submitted

More information

The Relation between the Red Tide Occurrence and the Sea Water Temperature in South Sea of Korea

The Relation between the Red Tide Occurrence and the Sea Water Temperature in South Sea of Korea , pp.132-136 http://dx.doi.org/10.14257/astl.2017.145.26 The Relation between the Red Tide Occurrence and the Sea Water Temperature in South Sea of Korea Do-Hyun Hwang 1, Su-Ho Bak 1, Heung-Min Kim 1,

More information

1.2 DEVELOPMENT OF THE NWS PROBABILISTIC EXTRA-TROPICAL STORM SURGE MODEL AND POST PROCESSING METHODOLOGY

1.2 DEVELOPMENT OF THE NWS PROBABILISTIC EXTRA-TROPICAL STORM SURGE MODEL AND POST PROCESSING METHODOLOGY 1.2 DEVELOPMENT OF THE NWS PROBABILISTIC EXTRA-TROPICAL STORM SURGE MODEL AND POST PROCESSING METHODOLOGY Huiqing Liu 1 and Arthur Taylor 2* 1. Ace Info Solutions, Reston, VA 2. NOAA / NWS / Science and

More information

Features of the wind fields associated with Typhoon 0418 (Songda) compared with those of Typhoon 9119 (Mireille)

Features of the wind fields associated with Typhoon 0418 (Songda) compared with those of Typhoon 9119 (Mireille) Features of the wind fields associated with Typhoon 0418 (Songda) compared with those of Typhoon 9119 (Mireille) by Fumiaki Fujibe 1, Naoko Kitabatake 2, Kotaro Bessho 2 and Shunsuke Hoshino 3 ABSTRACT

More information

Assessing Storm Tide Hazard for the North-West Coast of Australia using an Integrated High-Resolution Model System

Assessing Storm Tide Hazard for the North-West Coast of Australia using an Integrated High-Resolution Model System Assessing Storm Tide Hazard for the North-West Coast of Australia using an Integrated High-Resolution Model System J. Churchill, D. Taylor, J. Burston, J. Dent September 14, 2017, Presenter Jim Churchill

More information

Extreme Winds in the Western North Pacific. Søren Ott

Extreme Winds in the Western North Pacific. Søren Ott in the Western North Pacific Søren Ott Outline Tropical cyclones and wind turbines Modelling extreme winds Validation Conclusions Cat. 4 tropical cyclone IVAN 15 Sept 2004 at landfall near Luisiana, USA

More information

Parallel Platform for Multi-Scale CFD Storm Flood Forecast Using Geographical Information System Applications

Parallel Platform for Multi-Scale CFD Storm Flood Forecast Using Geographical Information System Applications Parallel Platform for Multi-Scale CFD Storm Flood Forecast Using Geographical Information System Applications Tian Wan a and Shahrouz Aliabadi a a Northrop Grumman Center for HPC of Ship Systems Engineering,

More information

Prediction of tropical cyclone induced wind field by using mesoscale model and JMA best track

Prediction of tropical cyclone induced wind field by using mesoscale model and JMA best track The Eighth Asia-Pacific Conference on Wind Engineering, December 1-14, 213, Chennai, India ABSTRACT Prediction of tropical cyclone induced wind field by using mesoscale model and JMA best track Jun Tanemoto

More information

UNDERSTANDING STORM TIDES

UNDERSTANDING STORM TIDES UNDERSTANDING STORM TIDES Run from the water, hide from the wind.. CATEGORY CATEGORY CATEGORY CATEGORY CATEGORY 1 2 3 4 5 WIND 74-95 mph 64-82 knots 96-110 mph 83-95 knots 111-130 mph 96-113 knots 131-155

More information

4-3-1 Earthquake and Tsunami Countermeasures of Tokyo s

4-3-1 Earthquake and Tsunami Countermeasures of Tokyo s 4-3-1 Earthquake and Tsunami Countermeasures of Tokyo s Sewerage Masahiro Hikino* and Gaku Sato** *Planning Section, Planning and Coordinating Division, Bureau of Sewerage, Tokyo Metropolitan Government

More information

Research of the Influential Factors on the Simulation of Storm Surge in the Bohai Sea

Research of the Influential Factors on the Simulation of Storm Surge in the Bohai Sea Send Orders for Reprints to reprints@benthamscience.net The Open Mechanical Engineering Journal, 2014, 8, 151-156 151 Open Access Research of the Influential Factors on the Simulation of Storm Surge in

More information

Integrating Climate Adaptation in Hawaii Disaster Risk Management

Integrating Climate Adaptation in Hawaii Disaster Risk Management Integrating Climate Adaptation in Hawaii Disaster Risk Management Building Resilient Communities HCPO/HIGICC 2009 Conference September 23-25 Sheraton Waikiki Introduction What are weather/climate-related

More information

P2.57 Cyclone Yasi Storm Surge in Australia Implications for Catastrophe Modeling

P2.57 Cyclone Yasi Storm Surge in Australia Implications for Catastrophe Modeling P2.57 Cyclone Yasi Storm Surge in Australia Implications for Catastrophe Modeling Kevin A. Hill*, Peter Sousounis, and Jason Butke AIR Worldwide Corporation, Boston, Massachusetts 1. INTRODUCTION Storm

More information

Coupling of Wave and Hydrodynamic Models for Predicting Coastal Inundation: A case study in Jakarta and Semarang

Coupling of Wave and Hydrodynamic Models for Predicting Coastal Inundation: A case study in Jakarta and Semarang Coupling of Wave and Hydrodynamic Models for Predicting Coastal Inundation: A case study in Jakarta and Semarang http://peta-maritim.bmkg.go.id/cifdp/maps Nelly Florida Riama,Andri Ramdhani, Andi Eka Sakya,,

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Numerical simulation of overland flood flows in an urban bay area M. Takeda, T, Uetsuka, K. Inoue, K. Toda Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto, 611, Japan Abstract

More information

The Improvement of JMA Operational Wave Models

The Improvement of JMA Operational Wave Models The Improvement of JMA Operational Wave Models Toshiharu Tauchi Nadao Kohno * Mika Kimura Japan Meteorological Agency * (also) Meteorological Research Institute, JMA 10 th International Workshop on Wave

More information

8.1 Attachment 1: Ambient Weather Conditions at Jervoise Bay, Cockburn Sound

8.1 Attachment 1: Ambient Weather Conditions at Jervoise Bay, Cockburn Sound 8.1 Attachment 1: Ambient Weather Conditions at Jervoise Bay, Cockburn Sound Cockburn Sound is 20km south of the Perth-Fremantle area and has two features that are unique along Perth s metropolitan coast

More information

Savannah Harbor Expansion Project

Savannah Harbor Expansion Project Savannah Harbor Expansion Project Evaluation of Hurricane Surge Impacts with Proposed Mitigation Plan December 2007 Introduction This report summarizes the results of hurricane surge impacts with implementation

More information

Reduction of the Radius of Probability Circle. in Typhoon Track Forecast

Reduction of the Radius of Probability Circle. in Typhoon Track Forecast Reduction of the Radius of Probability Circle in Typhoon Track Forecast Nobutaka MANNOJI National Typhoon Center, Japan Meteorological Agency Abstract RSMC Tokyo - Typhoon Center of the Japan Meteorological

More information

Report on the Damage Survey Caused by Hurricane Katrina (Tentative Report)

Report on the Damage Survey Caused by Hurricane Katrina (Tentative Report) Report on the Damage Survey Caused by Hurricane Katrina (Tentative Report) November 1, 2005 Coastal Disaster Prevention Technology Survey Team 1. Introduction Hurricane Katrina struck the United States

More information

Operational Forecasting of Marine Meteorology by Model and Observation in KMA. Jang-Won SEO

Operational Forecasting of Marine Meteorology by Model and Observation in KMA. Jang-Won SEO Operational Forecasting of Marine Meteorology by Model and Observation in KMA Jang-Won SEO Global Environment Research Lab. National Institute of Meteorological Research DBCP-XXIII Session of the Data

More information

Cause, Assessment & Management of Flood Hazards associated with Landfalling Tropical Cyclones & Heavy Rain

Cause, Assessment & Management of Flood Hazards associated with Landfalling Tropical Cyclones & Heavy Rain Cause, Assessment & Management of Flood Hazards associated with Landfalling Tropical Cyclones & Heavy Rain by CHEN Charng Ning, Professor Emeritus Nanyang Technological University (NTU), Singapore Consultant,

More information

- tornadoes. Further Reading: Chapter 08 of the text book. Outline. -tropical storms. -Storm surge

- tornadoes. Further Reading: Chapter 08 of the text book. Outline. -tropical storms. -Storm surge (1 of 12) Further Reading: Chapter 08 of the text book Outline - tornadoes -tropical storms -Storm surge (2 of 12) Introduction Previously, We talked about fronts and their relationship to air masses Also

More information

Ocean in Motion 7: El Nino and Hurricanes!

Ocean in Motion 7: El Nino and Hurricanes! Ocean in Motion 7: El Nino and Hurricanes! A. Overview 1. Ocean in Motion -- El Nino and hurricanes We will look at the ocean-atmosphere interactions that cause El Nino and hurricanes. Using vocabulary

More information

STORM SURGE PREDICTION USING ARTIFICIAL NEURAL NETWORK MODEL AND CLUSTER ANALYSIS

STORM SURGE PREDICTION USING ARTIFICIAL NEURAL NETWORK MODEL AND CLUSTER ANALYSIS STORM SURGE PREDICTION USING ARTIFICIAL NEURAL NETWORK MODEL AND CLUSTER ANALYSIS DA-UN LEE 1 ; JANG-WON SEO 1 1 Global Environment System Research Lab, National Institute of Meteorological Research, Korea

More information

Development of Tropical Storm Falcon (Meari) over the Philippines

Development of Tropical Storm Falcon (Meari) over the Philippines Development of Tropical Storm Falcon (Meari) over the Philippines June 20-27, 2011 At the end of June, 2011, the Philippines were struck again by Tropical storm Falcon (Meari). After gaining strength over

More information

Chapter 27. Shelf sea modelling Test case bohai

Chapter 27. Shelf sea modelling Test case bohai Chapter 27 Shelf sea modelling 27.1 Test case bohai The aim of this test case is to illustrate the use of COHERENS for tidal prediction studies, to show how an harmonic analysis can be performed and how

More information

What a Hurricane Needs to Develop

What a Hurricane Needs to Develop Massive Storms! Hurricanes What a Hurricane Needs to Develop Warm tropical water - at least 80 F High Humidity Light wind Low Pressure Area Form between 5 and 20 latitude Hurricane Ingredients Hurricane

More information

Monthly Variations of Global Wave Climate due to Global Warming

Monthly Variations of Global Wave Climate due to Global Warming Jurnal Teknologi Full paper Monthly Variations of Global Wave Climate due to Global Warming Muhammad Zikra a*, Noriaki Hashimoto b, Kodama Mitsuyasu c, Kriyo Sambodho d a Ocean Engineering Department,

More information

VALIDATION OF TSUNAMI INUNDATION MODELING FOR THE 2004 SUMATRA-ANDAMAN EARTHQUAKE FOR MAKING HAZARD MAPS IN PENANG AND LANGKAWI, MALAYSIA

VALIDATION OF TSUNAMI INUNDATION MODELING FOR THE 2004 SUMATRA-ANDAMAN EARTHQUAKE FOR MAKING HAZARD MAPS IN PENANG AND LANGKAWI, MALAYSIA Synopses of Master Papers Bulletin of IISEE, 47, 11-16, 013 VALIDATION OF TSUNAMI INUNDATION MODELING FOR THE 004 SUMATRA-ANDAMAN EARTHQUAKE FOR MAKING HAZARD MAPS IN PENANG AND LANGKAWI, MALAYSIA Noor

More information

Development of Super High Resolution Global and Regional Climate Models

Development of Super High Resolution Global and Regional Climate Models Development of Super High Resolution Global and Regional Climate Models Project Representative Akira Noda Meteorological Research Institute Authors Akira Noda 1, Shoji Kusunoki 1 and Masanori Yoshizaki

More information

Wainui Beach Management Strategy (WBMS) Summary of Existing Documents. GNS Tsunami Reports

Wainui Beach Management Strategy (WBMS) Summary of Existing Documents. GNS Tsunami Reports Wainui Beach Management Strategy (WBMS) Summary of Existing Documents GNS Tsunami Reports a) Review of Tsunami Hazard and Risk in New Zealand ( National Risk Report ) b) Review of New Zealand s Preparedness

More information

A Climatology of the Extratropical Transition of Tropical Cyclones in the Western North Pacific

A Climatology of the Extratropical Transition of Tropical Cyclones in the Western North Pacific A Climatology of the Extratropical Transition of Tropical Cyclones in the Western North Pacific Naoko KITABATAKE (Meteorological Research Institute / Japan Meteorological Agency) 1 Outline 1. Topic 1:

More information

Hurricanes. April 14, 2009

Hurricanes. April 14, 2009 Tropical Weather & Hurricanes Chapter 15 April 14, 2009 Tropical meteorology Tropics characterized by seasonal wet and drier periods- wet when sun is nearly overhead at noon and inter-tropical convergence

More information

Warm Up Vocabulary Check

Warm Up Vocabulary Check Warm Up Vocabulary Check Surface current Coriolis Effect global winds upwelling Gulf Stream deep current climate El Nino convection current continental deflection 1.The apparent curving of the path of

More information

Global Climate Change and Human Health Cycloning out of Control: Climate Change Impacts on Natural Disasters; Cyclones

Global Climate Change and Human Health Cycloning out of Control: Climate Change Impacts on Natural Disasters; Cyclones INSTRUCTOR BACKGROUND Cyclones are one of the world s most devastating natural disasters causing billions of dollars in damages to homes, building and infrastructure annually. The United Nations estimates

More information

Towards an integrated assessment of coastal flood risk in southern China.

Towards an integrated assessment of coastal flood risk in southern China. Towards an integrated assessment of coastal flood risk in southern China. ADAM D. SWITZER EARTH OBSERVATORY OF SINGAPORE ASIAN SCHOOL OF THE ENVIRONMENT NANYANG TECHNOLOGICAL UNIVERSITY http://timeout

More information

Tropical Cyclone Atmospheric Forcing 1 for Ocean Response Models: Approaches and Issues

Tropical Cyclone Atmospheric Forcing 1 for Ocean Response Models: Approaches and Issues Tropical Cyclone Atmospheric Forcing 1 for Ocean Response Models: Approaches and Issues Vincent Cardone and Andrew Cox Oceanweather Inc. Cos Cob, CT, USA DEFINITION: 1 Specification of time and space evolution

More information

P4.10. Kenichi Kusunoki 1 * and Wataru Mashiko 1 1. Meteorological Research Institute, Japan

P4.10. Kenichi Kusunoki 1 * and Wataru Mashiko 1 1. Meteorological Research Institute, Japan P4. DOPPLER RADAR INVESTIGATIONS OF THE INNER CORE OF TYPHOON SONGDA (24) Polygonal / elliptical eyewalls, eye contraction, and small-scale spiral bands. Kenichi Kusunoki * and Wataru Mashiko Meteorological

More information

CMIP5-based global wave climate projections including the entire Arctic Ocean

CMIP5-based global wave climate projections including the entire Arctic Ocean CMIP5-based global wave climate projections including the entire Arctic Ocean 1 ST International Workshop ON Waves, storm Surges and Coastal Hazards Liverpool, UK, 10-15 September 2017 Mercè Casas-Prat,

More information

The dynamics of high and low pressure systems

The dynamics of high and low pressure systems The dynamics of high and low pressure systems Newton s second law for a parcel of air in an inertial coordinate system (a coordinate system in which the coordinate axes do not change direction and are

More information

Modeling Storm Surge for Emergency Management

Modeling Storm Surge for Emergency Management Modeling Storm Surge for Emergency Management Study Area: Guam is the southern-most island of the Mariana Archipelago and is located at 13 28 N, 144 47 E. It has a total area of 541.3 sq. km. and the highest

More information

(energy loss is greater with longer wavelengths)

(energy loss is greater with longer wavelengths) GEOL 0820 Ramsey Natural Disasters Spring, 2018 LECTURE #9: Tsunami Monitoring & Mitigation Date: 8 February 2018 I. Characteristics (con t): shoaling: o process of wave height increase and breaking as

More information

Specification of Tropical Cyclone Parameters From Aircraft Reconnaissance. Andrew Cox and Vincent Cardone Oceanweather Inc.

Specification of Tropical Cyclone Parameters From Aircraft Reconnaissance. Andrew Cox and Vincent Cardone Oceanweather Inc. Specification of Tropical Cyclone Parameters From Aircraft Reconnaissance Andrew Cox and Vincent Cardone Oceanweather Inc. Cos Cob, CT, USA Motivation This paper is part of on-going work to improve the

More information

Estimation of Wave Heights during Extreme Events in Lake St. Clair

Estimation of Wave Heights during Extreme Events in Lake St. Clair Abstract Estimation of Wave Heights during Extreme Events in Lake St. Clair T. J. Hesser and R. E. Jensen Lake St. Clair is the smallest lake in the Great Lakes system, with a maximum depth of about 6

More information

Development of an M.I.S. for the prevention of hurricane damage on the Mexican coast

Development of an M.I.S. for the prevention of hurricane damage on the Mexican coast Development of an M.I.S. for the prevention of hurricane damage on the Mexican coast A. Contreras, R. Silva & G. Diaz Institute* de Ingenieria UNAM, Grupo de Ingenieria de Costas y Puertos. Mexico D.F.

More information

TROPICAL CYCLONES IN A WARMER WORLD

TROPICAL CYCLONES IN A WARMER WORLD TROPICAL CYCLONES IN A WARMER WORLD Dr Mark Saunders Benfield Hazard Research Centre Department of Space and Climate Physics University College London Workshop for Under 35s Reinsurance Group 14th October

More information

Heavy Rain/Flooding September 8-10 Associated with Tropical Storm Etau

Heavy Rain/Flooding September 8-10 Associated with Tropical Storm Etau Heavy Rain/Flooding September 8-10 Associated with Tropical Storm Etau Wx Files Vol.32 September 24, 2015 Tropical Storm Etau made landfall over the Chita Peninsula in Aichi just after 10:00 AM on September

More information

Hurricane Irma Page 1 HURRTRAK RM/Pro 2017 Summary Report for Tampa, FL 09/10/ EDT, Adv. # 46

Hurricane Irma Page 1 HURRTRAK RM/Pro 2017 Summary Report for Tampa, FL 09/10/ EDT, Adv. # 46 Hurricane Irma Page 1 Description of impact to Tampa, FL, Tampa, FL, is expected to receive a major impact from Hurricane Irma. The forecast maximum wind for this location has increased since the last

More information

COASTAL DATA APPLICATION

COASTAL DATA APPLICATION 2015 Coastal GeoTools Proactive By Design. Our Company Commitment COASTAL DATA APPLICATION Projecting Future Coastal Flood Risk for Massachusetts Bay Bin Wang, Tianyi Liu, Daniel Stapleton & Michael Mobile

More information

Climate Change Impacts and Adaptation for Coastal Transport Infrastructure in Caribbean SIDS

Climate Change Impacts and Adaptation for Coastal Transport Infrastructure in Caribbean SIDS UNCTAD National Workshop Jamaica 30 May 1 June 2017, Kingston, Jamaica Climate Change Impacts and Adaptation for Coastal Transport Infrastructure in Caribbean SIDS LISCoAsT Large Scale Integrated Sealevel

More information

Variations of Typhoon Activity in Asia - Global Warming and/or Natural Cycles?

Variations of Typhoon Activity in Asia - Global Warming and/or Natural Cycles? Variations of Typhoon Activity in Asia - Global Warming and/or Natural Cycles? Johnny Chan Guy Carpenter Asia-Pacific Climate Impact Centre City University of Hong Kong Tropical Cyclones Affecting the

More information

Geospatial application in Kiribati

Geospatial application in Kiribati Geospatial application in Kiribati ICC-21 ST RESAP (9 TH TO 13 TH OCTOBER, 2017) BANGKOK, THAILAND Outline Kiribati Profile Natural disasters in Kiribati Achievements Challenges/Issues Ways forward 1 Kiribati

More information

CLIMATE READY BOSTON. Climate Projections Consensus ADAPTED FROM THE BOSTON RESEARCH ADVISORY GROUP REPORT MAY 2016

CLIMATE READY BOSTON. Climate Projections Consensus ADAPTED FROM THE BOSTON RESEARCH ADVISORY GROUP REPORT MAY 2016 CLIMATE READY BOSTON Sasaki Steering Committee Meeting, March 28 nd, 2016 Climate Projections Consensus ADAPTED FROM THE BOSTON RESEARCH ADVISORY GROUP REPORT MAY 2016 WHAT S IN STORE FOR BOSTON S CLIMATE?

More information

Disaster Risk Assessment And Mitigation Strategy For Tropical Cyclone Induced Storm Surge Hazard And Coastal Impacts Of Climate Change In Sri Lanka

Disaster Risk Assessment And Mitigation Strategy For Tropical Cyclone Induced Storm Surge Hazard And Coastal Impacts Of Climate Change In Sri Lanka City University of New York (CUNY) CUNY Academic Works International Conference on Hydroinformatics 8-1-2014 Disaster Risk Assessment And Mitigation Strategy For Tropical Cyclone Induced Storm Surge Hazard

More information