CISM Model Development Roadmap

Size: px
Start display at page:

Download "CISM Model Development Roadmap"

Transcription

1 CISM Model Development Roadmap Overview of Model Development Approach CISM s research goal is to develop a comprehensive suite of physics-based numerical simulation models that describes the space environment from the Sun to the Earth. Our strategy is to build the comprehensive model out of separate component models of parts of the overall system, and to couple these together using a computational framework. In addition to developing and coupling the physics-based models, CISM also uses empirical models. The empirical models serve two purposes: to provide well-defined baselines against which the developing physics-based models can be assessed, and to make quickly available a set of forecast models (i.e., models that can be run using real-time inputs to yield results in advance of the outcome, for forecast or nowcast purposes). Development began by using ad hoc methods to couple a core set of existing MHD and neutral fluid models, covering the regions from the solar corona to the thermosphere. Figure 1 illustrates the two tracks of initial models: the core physics-based MHD models (blue), and empirical or hybrid empirical/physics-based models (yellow). Acronyms are defined at the back of this document. Figure 1 Succeeding versions of the coupled models build upon this initial set by providing improvements through parallel development in several areas, as indicated schematically in Figure 2. New generations of component models add and/or improve physics, increase computational efficiency, provide higher resolution, and refine the coupling interfaces. Sophisticated modular coupling, using the InterComm and Overture technologies, replaces ad hoc coupling to create a framework with a robust interface for model additions and replacements. These coupling technologies provide the computational capabilities needed for efficiently running the coupled models and representing the physical processes by which the modeled regions interact. This includes a communications channel between parallel programs in coupled model runs across a

2 variety of platforms, support for overlapping grids, and a powerful syntax for arithmetic and differential operations. New component models are introduced to add physics and capability through varying degrees of interaction with the core models. Examples include: the Rice Convection Model (RCM) that is tightly two-way coupled with the core models; the Solar Energetic Particle (SEP) and Radiation Belt models that operate within the environment defined by the comprehensive MHD model; and a variety of auxiliary models that use the comprehensive model as the foundation for calculations tailored to specific user needs. Examples of such tailored models include using the CMIT current systems to calculate localized db/dt on the ground and a global Ap index (e.g. for SEC), and using the CMIT ionospheric profiles to calculate turbulence growth for prediction of scintillations (in partnership with AFRL). Figure 2 As development proceeds, the modular nature of the model suite provides the flexibility to construct a variety of model combinations, and to use in situ measurement data at various points as model drivers and for direct comparison with model data. Figure 3 illustrates several alternative configurations, including: the comprehensive physicsbased model (CORHEL and LTR); a hybrid model formed by substituting WSA for CORHEL or by the substituting the coronal portion of WSA for MAS; and the use of L1 satellite data to drive the stand-alone LTR geospace model or to compare with results from the standalone CORHEL. Similarly the original forecast model chain can incorporate new physics-based components, for example the Enlil model can replace the solar wind portion of WSA.

3 MODEL CONNECTIVITY & OPTIONS Figure 3 Model Development Sequence The following tables summarize the sequence of CISM model development through Year-5. The Year 6-10 sequence is outlined the CISM Model Development Timeline, which is maintained on the web

4 Year Model Components Capabilities & Additions I. Solar-heliosphere coupled physics-based models CORHEL 1.0 MAS Global ambient (non-event) solar wind specification (including points of ENLIL particular interest, e.g., L1). Inputs: filtered NSO/KP synoptic maps of photospheric magnetic field from specified Carrington rotation. Ad hoc coupling. Frozen Devel CORHEL 1.2 Version of CORHEL 1 frozen for formal validation. Frozen, tagged pre-val CORHEL 2.0 Add: Additional observatory (Wilcox) for inputs, giving greater data Frozen availability and ability to compare and verify input fidelity. Magnetograms can be visually preprocessed. Broader range of controllable inputs. Web-bsaed GUI interface. Stand-alone CD with Linux executables CORHEL 2.3a Version of CORHEL 2 frozen for formal validation. Frozen, tagged pre-val CORHEL 3.0 Add: Full set of observatories as inputs (NSO/KP, Wilcox, Mt. Wilson, Frozen, tagged 2006 MDI). Cone model incorporated for ICME propagation and SEP shock pre-val. source CORHEL 3.4 Minor updates; fixes insertion-time of heliospheric transients. Frozen, taggedd pre-valid II. Solar-heliosphere other physics-based models Cone Model Interim model of CME-like ejection for propagation in a solar wind model (e.g. CORHEL) to produce shocks and background fields for SEP model version 1.0 and to predict the timing and geometry of an ICME in the realistically modeled interplanetary medium. Does not model internal magnetic fields of ICME. Inputs: Source location, angular extent, and speed (observables), density and temperature. To be incorporated in CORHEL 3.0 and SW Event- Driven forecast model. Delivery MAS at CCMC. Enlil at CCMC. To CCMC in 2005, w/out GUI. To CCMC Apr PFSS Coronal magnetic field driven by magnetograms. At CCMC WSA Baseline Same version as running at SEC in Forcing only NSO/KP input. Baseline model for several validation skill scores. Frozen, tagged pre-val SEPMOD 1.0 Energetic particles from parameterized shock source, using shocks and fields from cone model ICME initialization in CORHEL (postprocessing) WSA-ENLIL WSA ENLIL Forecast capability using quasi-realtime magnetogram acquisition and runs. Shock-Finder in test with Cone Model outputs. Ad hoc shock source description being iterated. Frozen, tagged prevalid Respository Detail CORHEL-1_2-prevalid CORHEL-2_3a-prevalid CORHEL-3-prevalid Notes Version for formal validation Version for formal validation To CCMC. CORHEL-3.4-prevalid Version for formal validation In transition at SEC, CCMC WSA-2006_01_13-v1_0- prevalid WSA prevalid ENLIL-wsa-2.4-prevalid See also VI. "WSA Forecast" model Currently uses jumps along field lines. Will introduce shocknormal jumps. see VI. Solar Wind Ambient Forecast

5 Year Model Components Capabilities & Additions III. Geospace coupled physics-based models CMIT 1.0 LFM Geospace model driven by measured (ACE) or modeled (e.g. CORHEL) TING solar wind parameters at L1. Two-way ad hoc coupling. LFM with OMP parallelization. Imposed auroral and empirical low-latitude potentials CMIT 1.1 LFM TING 2007 CMIT 2.0 LFM TIE-GCM 2005 LTR 1.0 CMIT 1.0 RCM 2005 Add: Neutral wind feedback from ionosphere to magnetosphere. Add: Two-way coupled, TIE-GCM (MPI parallelization) replaces TING, giving low latitude electric field. Modularized LFM & TIE-GCM with InterComm. LFM two-way coupled to both RCM and TING. (RCM + CMIT 1.1). RCM drifts give accurate pressure and density to LFM; LFM gives plasma boundary conditions and magnetic field for RCM. Coupled model provides Region 2 currents and penetration electric fields. IV. Geospace other physics-based models Radiation Belt 3 component models for energetic particles in earth's magnetosphere: 2D Models Radbelt, 3D Radbelt, SEP Cutoff. Common future development includes 2D Radbelt 3D Radbelt SEP Cutoff parallelization, cubic interpolation, and InterComm. Efficient tracking of 2D guiding center motion w/ large number of particles in time-dependent LFM fields; polar grid. Post-processing gives fluxes. Future additions: cartesian grid, interior B model. 3D trajectories w/ choice of either guiding-center or Lorentz calculation in time-dependent LFM fields; cartesian grid. Future additions: interior B model; flux calculation. Full 3D Lorentz trajectories determine SEP cutoffs in time-independent LFM fields; cartesian grid. Next: add interior B. Devel. Frozen. Pre-val distribution available. Models coupled. Diagnostics ongoing. v. 1.0 frozen; tagged preval. Tagged devel, development ongoing. Devel version frozen. Tag for validation after adding interior B. Delivery Pre-val distrib to CCMC Jan 2006 v1.0r3 at CCMC Mar 2007 Research model. Not for external delivery. Respository Detail CMIT-1.0-prevalid-r2.tgz CMIT-1.0-prevalid-r3.tgz rbelt2d-1_0-prevalid rbelt3d-1_0-devel Notes All pre-mpi CMITs require at least a 4- processor, shared memory computer. v1.0r3 provides Linux platform compatibility, improved test suite. Neutral wind feedback incorporated in CMIT 2.0 RCM-LFM diagnostics underway; tests w/ parallel LFM at high resol.

6 Year Model Components Capabilities & Additions V. Comprehensive physics-based models CISM 1.0 CORHEL 1.2 Ad hoc coupled CORHEL and CMIT. CMIT 1.0 Provides solar wind and geospace properties. Inputs: same as CORHEL CISM 2.0 CORHEL 3.0 CMIT 2.0 L1 Coupler SEPMOD 1.0 Automated coupler added Adds improvement to component models described above. VI. Forecast and special-purpose models MeV Electron Empirical model: MeV electron radiation belt flux L= Forecast Added: flux at 6 energies Devel. Frozen for validation. in test Delivery Devel. Envir. Respository Detail CISM_DX-Release-0_24 Notes Vassiliades ARMA or FIR. Not currently targeting formal SEC test product Ap Forecast Empirical model: daily average Ap index with lead time of 1-7 days. Inputs: L1 SW velocity and recent Ap history Ap Forecast 3-Hr Adds 3-hr running-average ap with 24-hr derived Ap, per SEC evaluation of daily model. (SEC Goal #1 set Jan. ) 2005 Geomagnetic Disturbances; Empirical 2007 Geomagnetic Disturbances; Physics-Based WSA Forecast Model Auxiliary calculations from CMIT data. Predicted regional ground magnetic variations, driven by solar wind parameters. This Weigel-Baker model is the baseline empirical model for geomagnetic disturbances. Regional ground magnetic variations calculated from model currents, initially CMIT 2.0. Global Ap calculation as top-level indicator for comparison and assessment of model confidence. (SEC Goal #3 set Jan. 2006) Empirical solar wind model. Driven by Mount Wilson, NSO/KP, and Wilcox observatory data. Released Development complete. Running in realtime. Complete In development. Devel. Envir. Devel Envir. Running in real time in SEC Devel. Envir. To CCMC in CISM_DX-Release-0_24 SEC Goal 1 of Jan Weigel SEC Goal 3 of Jan See also II. WSA Baseline model WSA Complete At SEC, CCMC. Running CCMC in realtime. WSA prevalid 2006 Solar Wind Ambient Forecast Model WSA+ENLIL Daily updated magnetograms from NSO/KP drive coronal portion of WSA model, which drives ENLIL MHD Solar Wind model to provide ambient SW in the heliosphere and at L1. Purposes: (a) Research model demonstrates insertion of physics-based MHD module into forecast model and investigates sensitivity of solar wind models at L1 to inner boundary conditions. (b) Forecast model. (SEC Goal #2 set Jan. 2006) Complete. Devel. Envir. WSA prevalid ENLIL-wsa-2.4-prevalid SEC Goal 2 of Jan Runs on workstation. See also II. WSA- ENLIL

7 Names & acronyms CISM CMIT CORHEL ENLIL InterComm LFM LTR MAS Overture SEP TIE-GCM TING WSA Center for Integrated Space Weather Modeling Coupled Magnetosphere, Ionosphere, Thermosphere model. Coupled CORona (MAS) HELiopsphere (Enlil) model Heliosphere model (Enlil is the Sumerian god of wind) Software package used in model coupling to provide communications & control between parallel (and serial) programs Lyon, Fedder, Mobarry magnetosphere model Coupled LFM, TIE-GCM, RCM geospace model Magnetohydrodynamics Around a Sphere coronal MHD model Software package used in model coupling to handle overlapping grids; computations between domains Solar Energetic Particle model Thermosphere Ionosphere Electrodynamics General Circulation Model Thermosphere Ionosphere Nested Grid model Wang-Sheeley-Arge model WSA in CISM is supported through a partnership with AFRL

CISM Model Timeline, Years 6-10

CISM Model Timeline, Years 6-10 Solar-Heliosphere Models 1 Black = capabilities to incoporate in coupled model Green = evaluations, test CORHEL 3.4 MAS,, CONE models. Inputs from full set of observatories (NSO/KP, Wilcox, Mt. Wilson,

More information

Time-Dependent Predictions of the Ambient Solar Wind Using the Zeus-3D MHD Code

Time-Dependent Predictions of the Ambient Solar Wind Using the Zeus-3D MHD Code Time-Dependent Predictions of the Ambient Solar Wind Using the Zeus-3D MHD Code V. J. Pizzo Code R/SEC NOAA/Space Environment Center Code R/SEC 325 Broadway Boulder, CO 80305 phone: (303) 497-6608 fax:

More information

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS Space Physics: Recent Advances and Near-term Challenge Chi Wang National Space Science Center, CAS Feb.25, 2014 Contents Significant advances from the past decade Key scientific challenges Future missions

More information

Test Particle Simulations of Solar Energetic Particles using Parker Spiral and ENLIL Fields

Test Particle Simulations of Solar Energetic Particles using Parker Spiral and ENLIL Fields Test Particle Simulations of Solar Energetic Particles using Parker Spiral and ENLIL Fields Dr. Simon R. Thomas & Prof. Silvia Dalla University of Central Lancashire Thanks to: Markus Battarbee, Timo Laitinen,

More information

A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS

A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS Nicolas Wijsen KU Leuven In collaboration with: A. Aran (University of Barcelona) S. Poedts (KU Leuven) J. Pomoell (University

More information

Substorms at Mercury: Old Questions and New Insights. Daniel N. Baker Laboratory for Atmospheric and Space Physics (LASP)

Substorms at Mercury: Old Questions and New Insights. Daniel N. Baker Laboratory for Atmospheric and Space Physics (LASP) Substorms at Mercury: Old Questions and New Insights Daniel N. Baker Laboratory for Atmospheric and Space Physics (LASP) Outline of Presentation Introduction Substorms in the Earth s Magnetosphere Prior

More information

Inferring the Structure of the Solar Corona and Inner Heliosphere during the Maunder Minimum using MHD simulations

Inferring the Structure of the Solar Corona and Inner Heliosphere during the Maunder Minimum using MHD simulations Inferring the Structure of the Solar Corona and Inner Heliosphere during the Maunder Minimum using MHD simulations Pete Riley, Roberto Lionello, Jon Linker, and Zoran Mikic Predictive Science, Inc. (PSI),

More information

Computational Plasma Physics in the Solar System and Beyond. Ofer Cohen HPC Day 2017 at UMass Dartmouth

Computational Plasma Physics in the Solar System and Beyond. Ofer Cohen HPC Day 2017 at UMass Dartmouth Computational Plasma Physics in the Solar System and Beyond Ofer Cohen HPC Day 2017 at UMass Dartmouth Plasma physics (not medical!!!) - studying the interaction between charged particles and electromagnetic

More information

Progress of MHD Simulations for the Interplanetary Propagation of Coronal Mass Ejections

Progress of MHD Simulations for the Interplanetary Propagation of Coronal Mass Ejections Progress of MHD Simulations for the Interplanetary Propagation of Coronal Mass Ejections C. Verbeke, J. Pomoell, S. Poedts ISEST workshop, Jeju, 19.09.2017 Overview Introduction Constraining CME model

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

A Numerical Framework for Operational Solar Wind Prediction )

A Numerical Framework for Operational Solar Wind Prediction ) A Numerical Framework for Operational Solar Wind Prediction ) Ljubomir NIKOLIĆ, Larisa TRICHTCHENKO and David BOTELER Geomagnetic Laboratory, Natural Resources Canada, 7 Observatory Crescent, Ottawa, ON,

More information

Ambient solar wind s effect on ICME transit times

Ambient solar wind s effect on ICME transit times Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L15105, doi:10.1029/2008gl034493, 2008 Ambient solar wind s effect on ICME transit times A. W. Case, 1 H. E. Spence, 1 M. J. Owens, 1

More information

National Science Foundation Science and Technology Center. Second Annual Report 5/1/2003 4/30/2004

National Science Foundation Science and Technology Center. Second Annual Report 5/1/2003 4/30/2004 National Science Foundation Science and Technology Center Center for Integrated Space Weather Modeling Second Annual Report 5/1/2003 4/30/2004 Boston University 725 Commonwealth Avenue Boston, MA 02215

More information

Lab #2: Activity 5 Exploring the Structure of the Solar Magnetic Field Using the MAS Model

Lab #2: Activity 5 Exploring the Structure of the Solar Magnetic Field Using the MAS Model Lab #2: Activity 5 Exploring the Structure of the Solar Magnetic Field Using the MAS Model In this lab activity we will use results from the MAS (Magnetohydrodynamics Around a Sphere) model of the solar

More information

MHD MODELING FOR HMI JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO

MHD MODELING FOR HMI JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO MHD MODELING FOR HMI ZORAN MIKIĆ JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO Presented at the HMI Team Meeting Stanford University, Palo Alto, May 1 2, 23 USEFULNESS OF MHD MODELS A global

More information

Lessons Learned in Transitioning Solar-Interplanetary Research models into Operational Services

Lessons Learned in Transitioning Solar-Interplanetary Research models into Operational Services Lessons Learned in Transitioning Solar-Interplanetary Research models into Operational Services Siqing Liu 1, Bingxian Luo 1, Jiancun Gong 1, Wengeng Huang, 1 Jingjing Wang 1, Yuming Wang 2, Chuanbing

More information

Forecast Performance Assessment of a Kinematic and a Magnetohydrodynamic Solar Wind Model [Simulation meets Reality]

Forecast Performance Assessment of a Kinematic and a Magnetohydrodynamic Solar Wind Model [Simulation meets Reality] Forecast Performance Assessment of a Kinematic and a Magnetohydrodynamic Solar Wind Model [Simulation meets Reality] 09 October 202 Integrity Service Ecellence Donald C. orquist AFRL/RVBXS Kirtland AFB,

More information

A COMPARATIVE VERIFICATION OF FORECASTS FROM TWO OPERATIONAL SOLAR WIND MODELS (POSTPRINT)

A COMPARATIVE VERIFICATION OF FORECASTS FROM TWO OPERATIONAL SOLAR WIND MODELS (POSTPRINT) AFRL-RV-PS- TP-2012-0006 AFRL-RV-PS- TP-2012-0006 A COMPARATIVE VERIFICATION OF FORECASTS FROM TWO OPERATIONAL SOLAR WIND MODELS (POSTPRINT) Donald C. Norquist and Warner C. Meeks 8 February 2012 Technical

More information

Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations

Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations Click Here for Full Article SPACE WEATHER, VOL. 6,, doi:10.1029/2007sw000380, 2008 Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1

More information

What can I do with the TIEGCM?

What can I do with the TIEGCM? What can I do with the TIEGCM? Astrid Maute and lots of people at HAO, and the community High Altitude Observatory NCAR High Altitude Observatory (HAO) National Center for Atmospheric Research (NCAR) The

More information

Space Weather and Satellite System Interaction

Space Weather and Satellite System Interaction Space Engineering International Course, Kyutech, 4 th Quarter Semester 2017 Space Weather and Satellite System Interaction Lecture 2: Space Weather Concept, Reporting and Forecasting Assoc. Prof. Ir. Dr.

More information

mswim.engin.umich.edu K.C. Hansen

mswim.engin.umich.edu K.C. Hansen mswim.engin.umich.edu K.C. Hansen (A) Having a solar wind monitor would be very beneficial for the auroral studies we are talking about (B) Propagating solar wind from the Sun or from 1AU is being done,

More information

INTERPLANETARY ASPECTS OF SPACE WEATHER

INTERPLANETARY ASPECTS OF SPACE WEATHER INTERPLANETARY ASPECTS OF SPACE WEATHER Richard G. Marsden Research & Scientific Support Dept. of ESA, ESTEC, P.O. Box 299, 2200 AG Noordwijk, NL, Email: Richard.Marsden@esa.int ABSTRACT/RESUME Interplanetary

More information

Geomagnetic Disturbance Report Reeve Observatory

Geomagnetic Disturbance Report Reeve Observatory Event type: Various geomagnetic disturbances including coronal hole high-speed stream, coronal mass ejection, sudden impulse and reverse shock effects Background: This background section defines the various

More information

NASA s Contribution to International Living With a Star

NASA s Contribution to International Living With a Star NASA s Contribution to International Living With a Star Madhulika Guhathakurta Office of Space Science, CodeSS NASA Headquarters October 17,2002 Sun-Earth Connection (Sec) Program Planet Varying Radiation

More information

2-1-4 Preceding Monitoring of Solar Wind Toward the Earth Using STEREO

2-1-4 Preceding Monitoring of Solar Wind Toward the Earth Using STEREO 2-1-4 Preceding Monitoring of Solar Wind Toward the Earth Using STEREO NAGATSUMA Tsutomu, AKIOKA Maki, MIYAKE Wataru, and OHTAKA Kazuhiro Acquisition of solar wind information before it reaches the earth

More information

SEP Modeling and Forecasts Based on the ENLIL Global Heliospheric Model

SEP Modeling and Forecasts Based on the ENLIL Global Heliospheric Model SEP Modeling and Forecasts Based on the ENLIL Global Heliospheric Model M. Leila Mays (CUA/NASA GSFC), J. Luhmann (UCB/SSL), D. Odstrcil (GMU/NASA GSFC), H. Bain (UCB/SSL), Y. Li (UCB/SSL), Y. Zheng (NASA

More information

Ooty Radio Telescope Space Weather

Ooty Radio Telescope Space Weather Ooty Radio Telescope Space Weather P.K. Manoharan Radio Astronomy Centre National Centre for Radio Astrophysics Tata Institute of Fundamental Research Ooty 643001, India mano@ncra.tifr.res.in Panel Meeting

More information

NICT SPACE WEATHER ACTIVITIES

NICT SPACE WEATHER ACTIVITIES Prepared by NICT Agenda Item: 3 Discussed in Ad-Hoc Meeting on Space Weather NICT SPACE WEATHER ACTIVITIES Tsutomu Nagatsuma Space Weather and Environment Informatics Laboratory, Applied Electromagnetic

More information

Pros and Cons (Advantages and Disadvantages) of Various Magnetic Field Extrapolation Techniques

Pros and Cons (Advantages and Disadvantages) of Various Magnetic Field Extrapolation Techniques Pros and Cons (Advantages and Disadvantages) of Various Magnetic Field Extrapolation Techniques Marc DeRosa Lockheed Martin Solar and Astrophysics Lab SDO Summer School ~ August 2010 ~ Yunnan, China Some

More information

Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA

Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA IAU340 1-day School, Saturday 24th February 2018 Jaipur India CMEs & their Consequences

More information

Sun-Earth Connection Missions

Sun-Earth Connection Missions ACE (1997 ) Cosmic and Heliospheric Study of the physics and chemistry Advanced Composition Explorer Learning Center of the solar corona, the solar wind, http://helios.gsfc.nasa.gov/ace/ http://helios.gsfc.nasa.gov

More information

Even if not soon to. humans will still be in Space (ISS)

Even if not soon to. humans will still be in Space (ISS) ESS 7 Lectures 22 and 23 May 28 and June 2, 2010 Humans in Space Even if not soon to the Moon or Mars, humans will still be in Space (ISS) NASA Feb 19 2010 Radiation Doses and Risks When high energy particles

More information

High energy particles from the Sun. Arto Sandroos Sun-Earth connections

High energy particles from the Sun. Arto Sandroos Sun-Earth connections High energy particles from the Sun Arto Sandroos Sun-Earth connections 25.1.2006 Background In addition to the solar wind, there are also particles with higher energies emerging from the Sun. First observations

More information

Air Force Research Laboratory

Air Force Research Laboratory Air Force Research Laboratory Global Solar Magnetic Maps L5 in Tandem with L1 Workshop 07 Mar 2017 Carl J. Henney 1, Nick Arge 2, and Kathleen Shurkin 3 Integrity Service Excellence 1. AFRL/Space Vehicles

More information

U.S. DOD - Air Force Office of Scientific Research Report Type: Final Technical Report

U.S. DOD - Air Force Office of Scientific Research Report Type: Final Technical Report U.S. DOD - Air Force Office of Scientific Research Report Type: Final Technical Report AFOSR Award No.: FA9550-09-1-0028 Project Period: 12/15/08 12/14/09 Numerical Simulation of Heliospheric Transients

More information

MONITORING VARIATIONS TO THE NEAR-EARTH SPACE ENVIRONMENT DURING HIGH SOLAR ACTIVITY USING ORBITING ROCKET BODIES

MONITORING VARIATIONS TO THE NEAR-EARTH SPACE ENVIRONMENT DURING HIGH SOLAR ACTIVITY USING ORBITING ROCKET BODIES MONITORING VARIATIONS TO THE NEAR-EARTH SPACE ENVIRONMENT DURING HIGH SOLAR ACTIVITY USING ORBITING ROCKET BODIES Van Romero, William H. Ryan, and Eileen V. Ryan Magdalena Ridge Observatory, New Mexico

More information

Lecture 5 The Formation and Evolution of CIRS

Lecture 5 The Formation and Evolution of CIRS Lecture 5 The Formation and Evolution of CIRS Fast and Slow Solar Wind Fast solar wind (>600 km/s) is known to come from large coronal holes which have open magnetic field structure. The origin of slow

More information

A Comparative Study of Different Approaches and Potential Improvement to Modeling the Solar Wind

A Comparative Study of Different Approaches and Potential Improvement to Modeling the Solar Wind A Comparative Study of Different Approaches and Potential Improvement to Modeling the Solar Wind Sun, X. and Hoeksema, J. T. W.W. Hansen Experimental Physics Laboratory (HEPL), Stanford University Abstract:

More information

Chapter 8 Geospace 1

Chapter 8 Geospace 1 Chapter 8 Geospace 1 Previously Sources of the Earth's magnetic field. 2 Content Basic concepts The Sun and solar wind Near-Earth space About other planets 3 Basic concepts 4 Plasma The molecules of an

More information

SOLAR ORBITER Linking the Sun and Inner Heliosphere. Daniel Müller

SOLAR ORBITER Linking the Sun and Inner Heliosphere. Daniel Müller SOLAR ORBITER Linking the Sun and Inner Heliosphere Outline Science goals of Solar Orbiter Focus of HELEX joint mission Mission requirements Science payload Status update Top level scientific goals of

More information

Magnetic Drivers of CME Defection in the Low Corona

Magnetic Drivers of CME Defection in the Low Corona Magnetic Drivers of CME Defection in the Low Corona C. Kay (Boston University) M. Opher (Boston University) R. M. Evans (NASA GSFC/ORAU T. I. Gombosi (University of Michigan) B. van der Holst (University

More information

How is Earth s Radiation Belt Variability Controlled by Solar Wind Changes

How is Earth s Radiation Belt Variability Controlled by Solar Wind Changes How is Earth s Radiation Belt Variability Controlled by Solar Wind Changes Richard M. Thorne Department of Atmospheric and Oceanic Sciences, UCLA Electron (left) and Proton (right) Radiation Belt Models

More information

MHD simulation of solar wind using solar photospheric magnetic field data

MHD simulation of solar wind using solar photospheric magnetic field data 6-16P, LWS workshop 2004 March, Boulder MHD simulation of solar wind using solar photospheric magnetic field data Keiji Hayashi (Stanford University) keiji@quake.stanford.edu Introduction Time-dependent

More information

EUHFORIA: Modeling the dangers of the sun.

EUHFORIA: Modeling the dangers of the sun. EUHFORIA: Modeling the dangers of the sun. 1 Introduction When we look at the Sun in visible light, it looks rather boring. However, when we observe the Sun at other wavelengths, it gets very interesting!

More information

HELCATS WP7 Update - overview. Mario Bisi on behalf of Jonathan Eastwood HELCATS month 12 meeting, May 2015, Göttingen, Germany

HELCATS WP7 Update - overview. Mario Bisi on behalf of Jonathan Eastwood HELCATS month 12 meeting, May 2015, Göttingen, Germany HELCATS WP7 Update - overview Mario Bisi on behalf of Jonathan Eastwood HELCATS month 12 meeting, 18-22 May 2015, Göttingen, Germany Work Package 7 (reminder) Assessing the complementary nature of radio

More information

Sun-to-thermosphere simulation of the October 2003 storm with the Space Weather Modeling Framework

Sun-to-thermosphere simulation of the October 2003 storm with the Space Weather Modeling Framework SPACE WEATHER, VOL. 5,, doi:10.1029/2006sw000272, 2007 Sun-to-thermosphere simulation of the 28--30 October 2003 storm with the Space Weather Modeling Framework Gábor Tóth, 1 Darren L. De Zeeuw, 1 Tamas

More information

An event-based approach to validating solar wind speed predictions: High-speed enhancements in the Wang-Sheeley-Arge model

An event-based approach to validating solar wind speed predictions: High-speed enhancements in the Wang-Sheeley-Arge model JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2005ja011343, 2005 An event-based approach to validating solar wind speed predictions: High-speed enhancements in the Wang-Sheeley-Arge model M.

More information

Radio Observations and Space Weather Research

Radio Observations and Space Weather Research Radio Observations and Space Weather Research Jasmina Magdalenić Solar-Terrestrial Centre of Excellence SIDC, Royal Observatory of Belgium What is space weather and why is it important? Eruptive processes:

More information

The Solar Wind Space physics 7,5hp

The Solar Wind Space physics 7,5hp The Solar Wind Space physics 7,5hp Teknisk fysik '07 1 Contents History... 3 Introduction... 3 Two types of solar winds... 4 Effects of the solar wind... 5 Magnetospheres... 5 Atmospheres... 6 Solar storms...

More information

Tracking CME s With LOFAR

Tracking CME s With LOFAR Tracking CME s With LOFAR Interplanetary Scintillation Studies With a Large, Multi-beaming, Phased Interferometric Array Michael Stevens What s A? WHat are All These Silly Acronyms? LOFAR- the LOw Frequency

More information

Remote sensing of magnetospheric processes: Lesson 1: Configura7on of the magnetosphere

Remote sensing of magnetospheric processes: Lesson 1: Configura7on of the magnetosphere Remote sensing of magnetospheric processes: Lesson 1: Configura7on of the magnetosphere AGF-351 Optical methods in auroral physics research UNIS, 24.-25.11.2011 Anita Aikio Dept. Physics University of

More information

Ryuho Kataoka (1), Seiji Yashiro (2), Tatsuhiko Sato (3), Hiroshi Yasuda (4),

Ryuho Kataoka (1), Seiji Yashiro (2), Tatsuhiko Sato (3), Hiroshi Yasuda (4), AOGS 2011 Taipei, ST17 Collaborative researches and operations of space weather forecasting in Ai Asia Oceania i region Development of WASAVIES: Warning System of Aviation Exposure to SEP Ryuho Kataoka

More information

Modeling Interactions between the Magnetosphere, Ionosphere & Thermosphere. M.Wiltberger NCAR/HAO

Modeling Interactions between the Magnetosphere, Ionosphere & Thermosphere. M.Wiltberger NCAR/HAO Modeling Interactions between the Magnetosphere, Ionosphere & Thermosphere M.Wiltberger NCAR/HAO Outline Overview of MIT circuit Modeling Magnetospheric impacts on the Ionosphere Energetic Particle Fluxes

More information

Simulating the Ionosphere, one electron at a time.

Simulating the Ionosphere, one electron at a time. Simulating the Ionosphere, one electron at a time. Meers Oppenheim CEDAR June 2016 Research supported by NSF, NASA, AFRL, and DOE Grants What? Plasma Physics Particle-in-Cell Simulations Two Examples:

More information

EFFECT OF SOLAR AND INTERPLANETARY DISTURBANCES ON SPACE WEATHER

EFFECT OF SOLAR AND INTERPLANETARY DISTURBANCES ON SPACE WEATHER Indian J.Sci.Res.3(2) : 121-125, 2012 EFFECT OF SOLAR AND INTERPLANETARY DISTURBANCES ON SPACE WEATHER a1 b c SHAM SINGH, DIVYA SHRIVASTAVA AND A.P. MISHRA Department of Physics, A.P.S.University, Rewa,M.P.,

More information

Solar wind modeling: a computational tool for the classroom. Lauren N. Woolsey. Harvard University. 60 Garden St, M.S. 10, Cambridge, MA 02138

Solar wind modeling: a computational tool for the classroom. Lauren N. Woolsey. Harvard University. 60 Garden St, M.S. 10, Cambridge, MA 02138 Solar wind modeling: a computational tool for the classroom Lauren N. Woolsey Harvard University 60 Garden St, M.S. 10, Cambridge, MA 02138 lwoolsey@cfa.harvard.edu ABSTRACT: This article presents a Python

More information

Rationale for a European Space Weather Programme

Rationale for a European Space Weather Programme Rationale for a European Space Weather Programme Hannu Koskinen Finnish Meteorological Institute ESWS Final Presentation ESTEC, 6 December, 2001 Scope WP 300 of ESWS: Establishment of detailed rationale

More information

Work Group 2: Theory

Work Group 2: Theory Work Group 2: Theory Progress report (Sept. 2017- ) Bojan Vršnak & Yuming Wang Hvar, Croatia, Sept. 2018 Brief History kick-off meeting of the ISEST program: June 2013, Hvar Observatory, Croatia four groups

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, A11309, doi: /2006ja011746, 2006

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, A11309, doi: /2006ja011746, 2006 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006ja011746, 2006 Vertical variations in the N 2 mass mixing ratio during a thermospheric storm that have been simulated using a coupled magnetosphereionosphere-thermosphere

More information

Toward Interplanetary Space Weather: Strategies for Manned Missions to Mars

Toward Interplanetary Space Weather: Strategies for Manned Missions to Mars centre for fusion, space and astrophysics Toward Interplanetary Space Weather: Strategies for Manned Missions to Mars Presented by: On behalf of: Jennifer Harris Claire Foullon, E. Verwichte, V. Nakariakov

More information

Center for integrated space weather modeling metrics plan and initial model validation results

Center for integrated space weather modeling metrics plan and initial model validation results Journal of Atmospheric and Solar-Terrestrial Physics 66 (2004) 1499 1507 www.elsevier.com/locate/jastp Center for integrated space weather modeling metrics plan and initial model validation results Harlan

More information

Space Weather. ~ Affects of solar activities onto Earth. Cause-Effect Time Intervals range from immediate (precisely, 8 minutes) to several days.

Space Weather. ~ Affects of solar activities onto Earth. Cause-Effect Time Intervals range from immediate (precisely, 8 minutes) to several days. Space Weather ~ Affects of solar activities onto Earth Cause-Effect Time Intervals range from immediate (precisely, 8 minutes) to several days. days Two difficulties arise for forecasting (modelling):

More information

NASA Future Magnetospheric Missions. J. Slavin & T. Moore Laboratory for Solar & Space Physics NASA GSFC

NASA Future Magnetospheric Missions. J. Slavin & T. Moore Laboratory for Solar & Space Physics NASA GSFC NASA Future Magnetospheric Missions J. Slavin & T. Moore Laboratory for Solar & Space Physics NASA GSFC Future Magnetospheric Missions Strategic Missions Radiation Belt Storm Probes (LWS/2011) Magnetospheric

More information

Photo from Sasilssolutions, Shutterstock. Space Weather. Forecasting, Tracking, and Effects of Earth Directed Solar Phenomena

Photo from Sasilssolutions, Shutterstock. Space Weather. Forecasting, Tracking, and Effects of Earth Directed Solar Phenomena Photo from Sasilssolutions, Shutterstock Space Weather Forecasting, Tracking, and Effects of Earth Directed Solar Phenomena Photo: Aurora Borealis WP Pack Burning-Liquid Overview Phenomena Effects Forecasting

More information

Introductory Lecture II: An Overview of Space Storms

Introductory Lecture II: An Overview of Space Storms Introductory Lecture II: An Overview of Space Storms Jan J. Sojka Center for Atmospheric and Space Science Utah State University Logan, Utah 28 July 2010 Overview Space weather and its storms. Super storms

More information

Analysis on selected geo-effective events using observations and models at Space Environment Prediction Center

Analysis on selected geo-effective events using observations and models at Space Environment Prediction Center Analysis on selected geo-effective events using observations and models at Space Environment Prediction Center Siqing Liu, Ercha Aa, Qiuzhen Zhong, Bingxian Luo, Zhitao Li, Jingjing Wang, and Jiancun Gong

More information

The first telescopes at the lunar outpost will be observing the Sun. Ed DeLuca CfA Heliophysics Subcommittee

The first telescopes at the lunar outpost will be observing the Sun. Ed DeLuca CfA Heliophysics Subcommittee The first telescopes at the lunar outpost will be observing the Sun Ed DeLuca CfA Heliophysics Subcommittee Overview The need for an operational solar telescope In situ space weather forecasting / nowcasting

More information

Marianna G. Shepherd Scientific Secretary Scientific Committee on Solar-Terrestrial Physics (SCOSTEP)

Marianna G. Shepherd Scientific Secretary Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) 51 st Scientific and Technical Subcommittee UN COPUOS Vienna, 12 February 2014 Marianna G. Shepherd Scientific Secretary Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) STEP Solar- Terrestrial

More information

Numerical Study of Interplanetary Solar Storms: Present and Future

Numerical Study of Interplanetary Solar Storms: Present and Future Numerical Study of Interplanetary Solar Storms: Present and Future Xueshang Feng fengx@spaceweather.ac.cn SIGMA Weather Group, State Key Laboratory of Space Weather, CAS, China 2014-09: 15-19, The 6th

More information

Vice President, Exploration Physics International, Suite , 6275 University Drive NW, Huntsville AL; AIAA Member.

Vice President, Exploration Physics International, Suite , 6275 University Drive NW, Huntsville AL; AIAA Member. 44th AIAA Aerospace Sciences Meeting and Exhibit 9-12 January 2006, Reno, Nevada AIAA 2006-471 AIAA-2006-0471 Solar and Geomagnetic Space Environment Specification for Operations W. Kent Tobiska * and

More information

Report from Finland. Kirsti Kauristie Finnish Meteorological Institute

Report from Finland. Kirsti Kauristie Finnish Meteorological Institute Report from Finland Kirsti Kauristie Finnish Meteorological Institute IPT-SWeISS-2, Tokyo, Japan, 21-23 May 2018 Current SWE activities Contributors: Universities Aalto Helsinki (UH) Oulu (UO) Turku (UTU)

More information

Summer School Lab Activities

Summer School Lab Activities Summer School Lab Activities Lab #5: Predicting and Modeling the Arrival of the May 12 th 1997 CME In this lab we will use remote observations of the May 12, 1997 solar flare and halo CME made at and near

More information

Coronal Holes. Detection in STEREO/EUVI and SDO/AIA data and comparison to a PFSS model. Elizabeth M. Dahlburg

Coronal Holes. Detection in STEREO/EUVI and SDO/AIA data and comparison to a PFSS model. Elizabeth M. Dahlburg Coronal Holes Detection in STEREO/EUVI and SDO/AIA data and comparison to a PFSS model Elizabeth M. Dahlburg Montana State University Solar Physics REU 2011 August 3, 2011 Outline Background Coronal Holes

More information

AIR FORCE INSTITUTE OF TECHNOLOGY

AIR FORCE INSTITUTE OF TECHNOLOGY Optimization of Coronal Mass Ejection Ensemble Forecasting Using WSA- ENLIL with Coned Model THESIS Jack A. Shepherd III, First Lieutenant, USAF AFIT-ENP-13-M-31 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY

More information

The Dynamic Magnetosphere. Ioannis A. Daglis. National Observatory of Athens, Greece

The Dynamic Magnetosphere. Ioannis A. Daglis. National Observatory of Athens, Greece 310/1749-42 ICTP-COST-USNSWP-CAWSES-INAF-INFN International Advanced School on Space Weather 2-19 May 2006 The Dynamic Magnetosphere: Reaction to and Consequences of Solar Wind Variations Yannis DAGLIS

More information

Living With A Star. Gauging the space weather. Madhulika Guhathakurta SUN-EARTH CONNECTIONS DIVISION NASA, OFFICE OF SPACE SCIENCE

Living With A Star. Gauging the space weather. Madhulika Guhathakurta SUN-EARTH CONNECTIONS DIVISION NASA, OFFICE OF SPACE SCIENCE Living With A Star Gauging the space weather Madhulika Guhathakurta SUN-EARTH CONNECTIONS DIVISION NASA, OFFICE OF SPACE SCIENCE The LWS Philosophy - At the center of our solar system lives a highly variable

More information

Solar-terrestrial relation and space weather. Mateja Dumbović Hvar Observatory, University of Zagreb Croatia

Solar-terrestrial relation and space weather. Mateja Dumbović Hvar Observatory, University of Zagreb Croatia Solar-terrestrial relation and space weather Mateja Dumbović Hvar Observatory, University of Zagreb Croatia Planets Comets Solar wind Interplanetary magnetic field Cosmic rays Satellites Astronauts HELIOSPHERE

More information

Chapter 15. The Role and Form of Modelling in Space Weather

Chapter 15. The Role and Form of Modelling in Space Weather Chapter 15 The Role and Form of Modelling in Space Weather Konstantinos Papadopoulos Departments of Physics and Astronomy, University of Maryland College Park, MD 20782, USA Abstract Keywords A critical

More information

Solar eruptive filament studies at USO for the COMESEP project

Solar eruptive filament studies at USO for the COMESEP project International Symposium on Solar Terrestrial Physics ASI Conference Series, 2013, Vol. 10, pp 67 71 Edited by N. Gopalswamy, S. S. Hasan, P. B. Rao and Prasad Subramanian Solar eruptive filament studies

More information

Sun Earth Connection Missions

Sun Earth Connection Missions Sun Earth Connection Missions ACE Advanced Composition Explorer The Earth is constantly bombarded with a stream of accelerated particles arriving not only from the Sun, but also from interstellar and galactic

More information

Space Weather. Predictions of the solar wind speed by the probability distribution function model RESEARCH ARTICLE 10.

Space Weather. Predictions of the solar wind speed by the probability distribution function model RESEARCH ARTICLE 10. RESEARCH ARTICLE Key Points: Solar wind speed prediction up to 5days Probability distribution functions of the solar wind velocity Periodicity of the solar wind velocity related to the rotation of the

More information

A first step towards proton flux forecasting

A first step towards proton flux forecasting Advances in Space Research xxx (2005) xxx xxx www.elsevier.com/locate/asr A first step towards proton flux forecasting A. Aran a, *, B. Sanahuja a, D. Lario b a Departament dõastronomia i Meteorologia,

More information

Signatures of Geomagnetic Storms and Coronal Mass Ejections on Electron and Ion Temperatures At Low Latitude Upper Ionosphere

Signatures of Geomagnetic Storms and Coronal Mass Ejections on Electron and Ion Temperatures At Low Latitude Upper Ionosphere International Journal of Physics and Applications. ISSN 0974-3103 Volume 7, Number 1 (2015), pp. 43-48 International Research Publication House http://www.irphouse.com Signatures of Geomagnetic Storms

More information

A hybrid heliospheric modeling system: Background solar wind

A hybrid heliospheric modeling system: Background solar wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005ja011430, 2006 A hybrid heliospheric modeling system: Background solar wind Thomas Detman, 1,2 Zdenka Smith, 1 Murray Dryer, 1,2,3 Craig D. Fry,

More information

Cone model-based SEP event calculations for applications to multipoint observations

Cone model-based SEP event calculations for applications to multipoint observations Available online at www.sciencedirect.com Advances in Space Research xxx (1) xxx xxx www.elsevier.com/locate/asr Cone model-based SEP event calculations for applications to multipoint observations J.G.

More information

M. Guhathakurta Lead Program Scientist, LWS NASA Headquarters LWS TR&T Sun-Climate Update SORCE Meeting, May 21, 2010

M. Guhathakurta Lead Program Scientist, LWS NASA Headquarters LWS TR&T Sun-Climate Update SORCE Meeting, May 21, 2010 M. Guhathakurta Lead Program Scientist, LWS NASA Headquarters Madhulika.guhathakurta@nasa.gov LWS TR&T Sun-Climate Update SORCE Meeting, May 21, 2010 Science Application as the Focus The primary goal of

More information

Geomagnetic Disturbances (GMDs) History and Prediction

Geomagnetic Disturbances (GMDs) History and Prediction Geomagnetic Disturbances (GMDs) History and Prediction J. Patrick Donohoe, Ph.D., P.E. Dept. of Electrical and Computer Engineering Mississippi State University Box 9571 Miss. State, MS 39762 donohoe@ece.msstate.edu

More information

A Concept for Real-Time Solar Wind Monitor at Multiple Locations

A Concept for Real-Time Solar Wind Monitor at Multiple Locations A Concept for Real-Time Solar Wind Monitor at Multiple Locations L5 in Tandem with L1: Future Space-Weather Missions Workshop March 8 th, 2017 George C. Ho Sector Science and Space Instrumentation Branch

More information

Dependence of magnetic field just inside the magnetopause on subsolar standoff distance: Global MHD results

Dependence of magnetic field just inside the magnetopause on subsolar standoff distance: Global MHD results Article SPECIAL ISSUE Basic Plasma Processes in Solar-Terrestrial Activities April 2012 Vol.57 No.12: 1438 1442 doi: 10.1007/s11434-011-4961-6 SPECIAL TOPICS: Dependence of magnetic field just inside the

More information

Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry

Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry Babita Chandel Sri Sai University Palampur, Himachal Pradesh, India Abstract: Space weather activity CMEs, and solar energetic

More information

Plasma Processes in the Magnetosphere: Radiation Belt Response to Solar Wind Drivers

Plasma Processes in the Magnetosphere: Radiation Belt Response to Solar Wind Drivers Plasma Processes in the Magnetosphere: Radiation Belt Response to Solar Wind Drivers Slot region outer belt inner belt Mary K. Hudson Dartmouth College Contributions: T. Brito, Zhao Li, S. Elkington, B.

More information

The Solar wind - magnetosphere - ionosphere interaction

The Solar wind - magnetosphere - ionosphere interaction The Solar wind - magnetosphere - ionosphere interaction Research seminar on Sun-Earth connections Eija Tanskanen Friday January 27, 2006 12-14 a.m., D115 Outline 1. Basics of the Earth s magnetosphere

More information

Tracking Solar Eruptions to Their Impact on Earth Carl Luetzelschwab K9LA September 2016 Bonus

Tracking Solar Eruptions to Their Impact on Earth Carl Luetzelschwab K9LA September 2016 Bonus Tracking Solar Eruptions to Their Impact on Earth Carl Luetzelschwab K9LA September 2016 Bonus In June 2015, the Sun emitted several M-Class flares over a 2-day period. These flares were concurrent with

More information

Solar eruptive phenomena

Solar eruptive phenomena Solar eruptive phenomena Andrei Zhukov Solar-Terrestrial Centre of Excellence SIDC, Royal Observatory of Belgium 26/01/2018 1 Eruptive solar activity Solar activity exerts continous influence on the solar

More information

Engineering Models for Galactic Cosmic Rays and Solar Protons: Current Status

Engineering Models for Galactic Cosmic Rays and Solar Protons: Current Status Engineering Models for Galactic Cosmic Rays and Solar Protons: Current Status Stephen Gabriel Professor of Aeronautics and Astronautics School of Engineering Sciences University of Southampton England

More information

STCE Newsletter. 7 Dec Dec 2015

STCE Newsletter. 7 Dec Dec 2015 Published by the STCE - this issue : 18 Dec 2015. Available online at http://www.stce.be/newsletter/. The Solar-Terrestrial Centre of Excellence (STCE) is a collaborative network of the Belgian Institute

More information

Solar Energetic Particles in the Inner Heliosphere

Solar Energetic Particles in the Inner Heliosphere Author: Mariona Adillón Corbera Advisor: Neus Agueda Costafreda Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Abstract: The upcoming missions Solar Orbiter (SolO)

More information

A New Equatorial Plasma Bubble Prediction Capability

A New Equatorial Plasma Bubble Prediction Capability A New Equatorial Plasma Bubble Prediction Capability Brett A. Carter Institute for Scientific Research, Boston College, USA, http://www.bc.edu/research/isr/, RMIT University, Australia, www.rmit.edu.au/space

More information