Cyclical Effect, and Measuring Irregular Effect

Size: px
Start display at page:

Download "Cyclical Effect, and Measuring Irregular Effect"

Transcription

1 Paper:15, Quantitative Techniques for Management Decisions Module- 37 Forecasting & Time series Analysis: Measuring- Seasonal Effect, Cyclical Effect, and Measuring Irregular Effect Principal Investigator Co-Principal Investigator Paper Coordinator Prof. S P Bansal Vice Chancellor Maharaja Agrasen University, Baddi Prof. YoginderVerma Pro Vice Chancellor Central University of Himachal Pradesh. Kangra. H.P. Prof. Pankaj Madan Dean- FMS Gurukul Kangri Vishwavidyalaya, Haridwar Content Writer Prof. Pankaj Madan Dean- FMS Gurukul Kangri Vishwavidyalaya, Haridwar

2 Items Subject Name Paper Name Module Title Description of Module Management Quantitative Techniques for Management Decisions Forecasting & Time series Analysis: Measuring- Seasonal Effect, Cyclical Effect, and Measuring Irregular Effect Module Id 37 Pre- Requisites Objectives Keywords Basic mathematical operations Time series models of forecasting Decomposition of a time series Secular trend, cyclical movements, random movements Methods to analysis of seasonality Two general aspects of time series patterns Trend analysis and trend Projections General model of seasonality Self-check exercise Summary Time series, seasonal Effect, cyclical effects Module-37 Forecasting & Time series Analysis: Measuring- Seasonal Effect, Cyclical Effect, and Measuring Irregular Effect Introduction of Time series Analysis... 4 Two Main Goals of Time Series Analysis... 4 Time series models of forecasting... 5 Decomposition of a time series... 5 Two General Aspects of Time Series Patterns... 7 Trend and... 7 Seasonality Trend Analysis... 9 Smoothing... 9

3 Fitting a function Trend Projections Graphic presentation Seasonal variations Graphic presentation... Error! Bookmark not defined. Methods to analysis of Seasonality General model Additive and multiplicative seasonality Additive and multiplicative trend-cycle... Error! Bookmark not defined. Moving average Ratios or differences Seasonal components Seasonally adjusted series Trend-cycle component Random or irregular component Self Check Exercise... 15

4 Quadrant-I Forecasting & Time series Analysis: Measuring- Seasonal Effect, Cyclical Effect, and Measuring Irregular Effect Learning Objectives: After the completion of this module the student will understand: Introduction of Time series Analysis Seasonal Effect, Cyclical Effect, and Measuring Irregular Effect Introduction of Time series Analysis A set of data depending on the time A series of values over a period of time Collection of magnitudes belonging to different time periods of some variable or composite of variables such as production of steel, per capita income, gross national income, price of tobacco, index of industrial production. Time is act as a device to set of common stable reference point. In time series, time act as an independent variable to estimate dependent variables Two Main Goals of Time Series Analysis There are two main goals of time series analysis: (a) identifying the nature of the phenomenon represented by the sequence of observations, and (b) forecasting (predicting future values of the time series variable). Both of these goals require that the pattern of observed time series data is identified and more or less formally described. Once the pattern is established, we can interpret and integrate it with other data (i.e., use it in our theory of the investigated phenomenon, e.g., sesonal commodity prices). Regardless of the depth of our understanding and the validity of our

5 interpretation (theory) of the phenomenon, we can extrapolate the identified pattern to predict future events. Identifying Patterns in Time Series Data Systematic pattern and random noise Two general aspects of time series patterns Trend Analysis Time series models of forecasting Time series models use time-based data. A time series is a collection of readings belonging to different time periods, usually equally spaced, which may be months, weeks or years, of some economic variable. It may be sales of HP personal computers, production of steel, per capita income, price of a share on National Stock Exchange and so on. Thus, it is a series in which the data are put in a chronological order. Forecasting time series data implies that predictions about the future values are made only from the past data, and other factors, no matter how important they might potentially be, are not considered. We will first review techniques used to identify patterns in time series data (such as smoothing and curve fitting techniques and autocorrelations), then we will introduce a general class of models that can be used to represent time series data and generate predictions (autoregressive and moving average models). Finally, we will review some simple but commonly used modeling and forecasting techniques based on linear regression. Decomposition of a time series A time series is the result of a number of movements which are caused by numerous economic, political, natural and other factors. The analysis of time series

6 means decomposing the past data into components and then projecting them forward. A time series typically has four components, though on occasions only one or two of these may eclipse the others. (i) Secular trend Over a long period, a time series will have an overall tendency either to move upwards or downwards or sometimes a blend thereof, though the actual movement will not be regular. This tendency of the time series is known as the secular trend. For example, a glance at the sales of a popular soft drink manufacturer is likely to reveal an increasing trend. (ii) Seasonal variations The fluctuations that occur periodically the movements recurring within a definite period, may be every week or month or quarter with reasonably high degree of predictability are called seasonal variations. For a soft drink manufacturer, while the yearly sales may be on the increase, the sales are likely to be high every summer and low every winter. (iii) Cyclical movements They are caused by business cycles or trade cycles. These are oscillatory movements a series of repeated sequences-superimposed on the original data. These movements are of longer duration than a year. The sales of a company, for example, may be high because the level of economic activity may be high. Similarly, the sales may be low due to overall subdued economic activity. (iv)random movements Random movements are residual, or erratic, movements that do not have any set pattern and are usually caused by some unpredictable reason, like wild-cat strike, earthquake, fire and so on. We will review techniques that are useful for analyzing time series data, that is, sequences of measurements that follow non-random orders. Unlike the analyses of random samples of observations that are discussed in the context of most other statistics, the analysis of time series

7 is based on the assumption that successive values in the data file represent consecutive measurements taken at equally spaced time intervals. The time series models first deals with projections of values without decomposition and then relating to trend, also making adjustment for the seasonal variations. The three time series models discussed in this chapter include moving averages, exponential smoothing and trend projections. Two General Aspects of Time Series Patterns Most time series patterns can be described in terms of two basic classes of components: Trend Seasonality The former represents a general systematic linear or (most often) nonlinear component that changes over time and does not repeat or at least does not repeat within the time range captured by our data (e.g., a plateau followed by a period of exponential growth). The latter may have a formally similar nature (e.g., a plateau followed by a period of exponential growth), however, it repeats itself in systematic intervals over time. Those two general classes of time series components may coexist in real-life data. For example, sales of a company can rapidly grow over years but they still follow consistent seasonal patterns (e.g., as much as 25% of yearly sales each year are made in December, whereas only 4% in August).

8 This general pattern is well illustrated in a "classic" Series G data set (Box and Jenkins, 1976, p. 531) representing monthly international airline passenger totals (measured in thousands) in twelve consecutive years from 1949 to 1960 (see example data file G.sta and graph above). If you plot the successive observations (months) of airline passenger totals, a clear, almost linear trend emerges, indicating that the airline industry enjoyed a steady growth over the years (approximately 4 times more passengers traveled in 1960 than in 1949). At the same time, the monthly figures will follow an almost identical pattern each year (e.g., more people travel during holidays then during any other time of the year). This example data file also illustrates a very common general type of pattern in time series data, where the amplitude of the seasonal changes increases with the overall trend (i.e., the variance is correlated with the mean over the segments of the series). This pattern which is called multiplicative seasonality indicates that the relative amplitude of seasonal changes is constant over time, thus it is related to the trend.

9 Trend Analysis There are no proven "automatic" techniques to identify trend components in the time series data; however, as long as the trend is monotonous (consistently increasing or decreasing) that part of data analysis is typically not very difficult. If the time series data contain considerable error, then the first step in the process of trend identification is smoothing. Smoothing. Smoothing always involves some form of local averaging of data such that the nonsystematic components of individual observations cancel each other out. The most common technique is moving average smoothing which replaces each element of the series by either the simple or weighted average of n surrounding elements, where n is the width of the smoothing "window" (see Box & Jenkins, 1976; Velleman & Hoaglin, 1981). Medians can be used instead of means. The main advantage of median as compared to moving average smoothing is that its results are less biased by outliers (within the smoothing window). Thus, if there are outliers in the data (e.g., due to measurement errors), median smoothing typically produces smoother or at least more "reliable" curves than moving average based on the same window width. The main disadvantage of median smoothing is that in the absence of clear outliers it may produce more "jagged" curves than moving average and it does not allow for weighting. In the relatively less common cases (in time series data), when the measurement error is very large, the distance weighted least squares smoothing or negative exponentially weighted smoothing techniques can be used. All those methods will filter out the noise and convert the data into a smooth curve that is relatively unbiased by outliers (see the respective sections on each of those methods for more details). Series with relatively few and systematically distributed points can be smoothed with bicubic splines.

10 Fitting a function. Many monotonous time series data can be adequately approximated by a linear function; if there is a clear monotonous nonlinear component, the data first need to be transformed to remove the nonlinearity. Usually a logarithmic, exponential, or (less often) polynomial function can be used. Trend Projections We now consider the last of time-series forecasting techniques, in the form of trend projections. For this method, a trend line is fitted to the given time series data and then projections are made into future using this line. The trend line may be linear (straight line) or curvi-linear in nature. There is a wide variety of curvi-linear trend lines possible to draw, but our focus in this module is on linear trend only. For obtaining the trend line, the given historical data are first plotted on the graph, representing time scale on the X-axis. Then a line is drawn through these points in such a way that (i) the sum of deviations above the line is equal to the sum of deviations below the line so that the sum of deviations is equal to zero, and (ii) the sum of squares of these (vertical) deviations is the minimum. In essence, the trend line is drawn on the basis of the principle of least squares. Such a line, like any other straight line, is represented by the equation: V = a + bx where V = the trend value (which is to be predicted) a = the V-axis intercept b = slope of the trend line X = the independent variable, the time Graphic presentation The given data and the trend line are shown in Figure The projections for the years 2001 and 2002 using the trend line are also shown. These projections have the same values as obtained earlier.

11 Years: Fig : Trend Line and Trend Projections Seasonal variations: The trend projections of time series data discussed earlier involves focusing at the trend (long term tendency) of the data over a series of time periods. Thus, if yearly sales data are given, we can obtain forecasts for likely yearly sales using the trend line. However, if projections are to be made on, say, monthly or quarterly basis, then recurring variations at certain seasons of the year make a seasonal adjustment in the trend forecast necessary. Sales of soft drinks, woollen garments, cooking gas and so on are certainly not expected to be the same in all months of the year. A consideration of monthly or quarterly data makes it easy to study seasonal patterns. Seasonal indices, which are used to study seasonal variations, can be obtained by applying a number of methods. Here, we demonstrate the method of simple averages. a=y-fcx=89-2x3.5=82 Accordingly, the trend equation is: Y, = X, with origin in Using this equation, trend values for various years are obtained (by substituting the corresponding X-values in the equation) and shown in the sixth column of the table. The next column gives the deviations of V-values

12 from the corresponding ^-values. Their sum is found to be equal to zero. The last column of the table contains the squares of deviations which sum upto 142. Forecasting K2001 = x 8 = Rs 98 million (for year 2001, X = 8) ^2002 = x 9 = Rs 100 million Methods to analysis of Seasonality ARIMA (Box & Jenkins) and Autocorrelations Interrupted Time Series Exponential Smoothing Seasonal Decomposition (Census I) X-11 Census method II seasonal adjustment X-11 Census method II result tables Distributed Lags Analysis Single Spectrum (Fourier) Analysis Cross-spectrum Analysis Basic Notations and Principles Fast Fourier Transformations General model The general idea of seasonal decomposition is straightforward. In general, a time series like the one described above can be thought of as consisting of four different components: (1) A seasonal component (denoted as St, where t stands for the particular point in time) (2) a trend component (Tt), (3) a cyclical component (Ct), and (4) a random, error, or irregular component (It). The difference between a cyclical and a seasonal component is that the latter occurs at regular (seasonal) intervals, while cyclical factors have usually a longer duration that varies from cycle to cycle. In the Census I method, the trend and cyclical components are customarily combined into a trend-cycle component (TCt). The specific functional relationship between these

13 components can assume different forms. However, two straightforward possibilities are that they combine in an additive or a multiplicative fashion: Additive model: Xt = TCt + St + It Multiplicative model: Xt = Tt*Ct*St*It Here Xt stands for the observed value of the time series at time t. Given some a priori knowledge about the cyclical factors affecting the series (e.g., business cycles), the estimates for the different components can be used to compute forecasts for future observations. (However, the Exponential smoothing method, which can also incorporate seasonality and trend components, is the preferred technique for forecasting purposes.) Additive and multiplicative seasonality. Let us consider the difference between an additive and multiplicative seasonal component in an example: The annual sales of toys will probably peak in the months of November and December, and perhaps during the summer (with a much smaller peak) when children are on their summer break. This seasonal pattern will likely repeat every year. Seasonal components can be additive or multiplicative in nature. For example, during the month of December the sales for a particular toy may increase by 3 million dollars every year. Thus, we could add to our forecasts for every December the amount of 3 million to account for this seasonal fluctuation. In this case, the seasonality is additive. when the sales for the toy are generally weak, then the absolute (dollar) increase in sales during December will be relatively weak (but the percentage will be constant); if the sales of the toy are strong, then the absolute (dollar) increase in sales will be proportionately greater.

14 Moving average. First a moving average is computed for the series, with the moving average window width equal to the length of one season. If the length of the season is even, then the user can choose to use either equal weights for the moving average or unequal weights can be used, where the first and last observation in the moving average window are averaged. Ratios or differences. In the moving average series, all seasonal (within-season) variability will be eliminated; thus, the differences (in additive models) or ratios (in multiplicative models) of the observed and smoothed series will isolate the seasonal component (plus irregular component). Specifically, the moving average is subtracted from the observed series (for additive models) or the observed series is divided by the moving average values (for multiplicative models). Seasonal components. The seasonal component is then computed as the average (for additive models) or medial average (for multiplicative models) for each point in the season. (The medial average of a set of values is the mean after the smallest and largest values are excluded). The resulting values represent the (average) seasonal component of the series.

15 Seasonally adjusted series. The original series can be adjusted by subtracting from it (additive models) or dividing it by (multiplicative models) the seasonal component. The resulting series is the seasonally adjusted series (i.e., the seasonal component will be removed). Trend-cycle component. Remember that the cyclical component is different from the seasonal component in that it is usually longer than one season, and different cycles can be of different lengths. The combined trend and cyclical component can be approximated by applying to the seasonally adjusted series a 5 point (centered) weighed moving average smoothing transformation with the weights of 1, 2, 3, 2, 1. Random or irregular component. Finally, the random or irregular (error) component can be isolated by subtracting from the seasonally adjusted series (additive models) or dividing the adjusted series by (multiplicative models) the trend-cycle component. Self-Check Exercise Question 1: Month Demand Month Demand Month Demand Month Demand Calculate (i) 3-monthly and (ii) 4-monthly moving averages. What is the forecast for month 16 for each one?

16 The given data is reproduced in Table TABLE 18.1 Forecasting Using Moving Averages Month Demand (Y) 3-Monthly Moving 4-Monthly Moving 3-Monthly Weighted The three-monthly moving averages [i.e /3 = 278] is shown as the first figure in third column and four-monthly moving averages [i.e /4 = 282.3] is shown as the first figure in the fourth column of the table. Consequently, finding three months moving averages, in the third column, the forecast for month 16 th month is 313 units, while taking 4- monthly moving average, in the fourth column, yields a forecast of 318 units for 16 th month. Weighted moving averages A careful analysis of the moving average method reveals that the moving average with a base of n periods is in fact an equal-weighted average with a weightage of 1/n to each of the preceding n values and a zero weightage to all the previous values. Thus, in a 3-monthly forecast, the immediately last three months' values are given a weightage of 1/3 each and the remaining values a weightage of zero. However, one may like to forecast values by giving differential weights to the values entering into moving average calculation. For example,

17 a 3-monthly moving average may be calculated by assigning weightage of 3, 2 and 1 respectively for the three months' values. Question 2: The sales data with the break-up of the yearly sales on a quarterly basis. You are required to (a) obtain seasonal indices, and (b) forecast the sales for the years 2001 and 2002 on a quarterly basis. Year Quarter Total I II III IV The given data are reproduced in Table To obtain seasonal indices, we first calculate average sales for each of the four quarters. The overall mean of these quarterly averages is calculated, which here works out to be ( )/4= 89/4 = Each of the quarterly values is then expressed as a percentage of this overall mean. For example, for Quarter I, we have (20.375/22.25) x 100 = These percentages are termed as the seasonal index numbers. TABLE 18.6 Calculation Seasonal idices V^or of Quarter In Total icdr I II in IV

18 Total Average Seasonal index /4 = Estimation of Quarterly Sales: The sales for the years 2001 and 2002 are estimated to be Rs 98 million and Rs 100 million respectively, which yield a corresponding average sales of Rs 24.5 million and Rs 25 million. Based on the seasonal indices, the quarterly sales are estimated on next page: Quarter Year 2001 Year 2002 I 24.5 x = Rs m 25 x = Rs m II 24.5 x =Rs 31.80m 25 x = Rs m III 24.5 x =Rs 26.56m 25 x =Rs m IV 24.5 x =Rs 17.20m 25 x =Rs m

19

20

21

22

23

24 Summary This module focused on forecasting and time series analysis that helps in forecasting (predicting future values of the time series variable). In this, we have described the process of projecting past trend and seasonal variation into the future. There are four kinds of changes or variation involved in time-series analysis, which includes (a) secular trend, (b) Cyclical fluctuations (c) Seasonal variation (d) irregular variation. Although the irregular and cyclical components do affect the future, they are unreliable and difficult to use in forecasting. This module also concluded that the time series models first deals with projections of values without decomposition and then relating to trend make adjustment for the seasonal variations. For a problem that uses all four components of time series, we first need to deseasonalize the time series, then develop a trend line and then adjust the cyclical variation around the trend line to predict the future pattern.

Module:7-Measures of Dispersion: Mean Absolute Deviation, Standard Deviation, Variance, Coefficient of Variation

Module:7-Measures of Dispersion: Mean Absolute Deviation, Standard Deviation, Variance, Coefficient of Variation Paper: 15-Quantitative Techniques for Management Decisions Module:7-Measures of Dispersion: Mean Absolute Deviation, Standard Deviation, Variance, Coefficient of Variation Principle Investigator Prof.

More information

Module 16. Sampling and Sampling Distributions: Random Sampling, Non Random Sampling

Module 16. Sampling and Sampling Distributions: Random Sampling, Non Random Sampling Module 16 Sampling and Sampling Distributions: Random Sampling, Non Random Sampling Principal Investigator Co-Principal Investigator Paper Coordinator Content Writer Prof. S P Bansal Vice Chancellor Maharaja

More information

Time-Series Analysis. Dr. Seetha Bandara Dept. of Economics MA_ECON

Time-Series Analysis. Dr. Seetha Bandara Dept. of Economics MA_ECON Time-Series Analysis Dr. Seetha Bandara Dept. of Economics MA_ECON Time Series Patterns A time series is a sequence of observations on a variable measured at successive points in time or over successive

More information

3 Time Series Regression

3 Time Series Regression 3 Time Series Regression 3.1 Modelling Trend Using Regression Random Walk 2 0 2 4 6 8 Random Walk 0 2 4 6 8 0 10 20 30 40 50 60 (a) Time 0 10 20 30 40 50 60 (b) Time Random Walk 8 6 4 2 0 Random Walk 0

More information

Product and Inventory Management (35E00300) Forecasting Models Trend analysis

Product and Inventory Management (35E00300) Forecasting Models Trend analysis Product and Inventory Management (35E00300) Forecasting Models Trend analysis Exponential Smoothing Data Storage Shed Sales Period Actual Value(Y t ) Ŷ t-1 α Y t-1 Ŷ t-1 Ŷ t January 10 = 10 0.1 February

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

Introduction to Forecasting

Introduction to Forecasting Introduction to Forecasting Introduction to Forecasting Predicting the future Not an exact science but instead consists of a set of statistical tools and techniques that are supported by human judgment

More information

Chapter 7 Forecasting Demand

Chapter 7 Forecasting Demand Chapter 7 Forecasting Demand Aims of the Chapter After reading this chapter you should be able to do the following: discuss the role of forecasting in inventory management; review different approaches

More information

Decision 411: Class 3

Decision 411: Class 3 Decision 411: Class 3 Discussion of HW#1 Introduction to seasonal models Seasonal decomposition Seasonal adjustment on a spreadsheet Forecasting with seasonal adjustment Forecasting inflation Poor man

More information

Time Series Analysis. Smoothing Time Series. 2) assessment of/accounting for seasonality. 3) assessment of/exploiting "serial correlation"

Time Series Analysis. Smoothing Time Series. 2) assessment of/accounting for seasonality. 3) assessment of/exploiting serial correlation Time Series Analysis 2) assessment of/accounting for seasonality This (not surprisingly) concerns the analysis of data collected over time... weekly values, monthly values, quarterly values, yearly values,

More information

Decision 411: Class 3

Decision 411: Class 3 Decision 411: Class 3 Discussion of HW#1 Introduction to seasonal models Seasonal decomposition Seasonal adjustment on a spreadsheet Forecasting with seasonal adjustment Forecasting inflation Poor man

More information

Decision 411: Class 3

Decision 411: Class 3 Decision 411: Class 3 Discussion of HW#1 Introduction to seasonal models Seasonal decomposition Seasonal adjustment on a spreadsheet Forecasting with seasonal adjustment Forecasting inflation Log transformation

More information

Based on the original slides from Levine, et. all, First Edition, Prentice Hall, Inc

Based on the original slides from Levine, et. all, First Edition, Prentice Hall, Inc Based on the original slides from Levine, et. all, First Edition, Prentice Hall, Inc Process of predicting a future event Underlying basis of all business decisions Production Inventory Personnel Facilities

More information

INTRODUCTION TO FORECASTING (PART 2) AMAT 167

INTRODUCTION TO FORECASTING (PART 2) AMAT 167 INTRODUCTION TO FORECASTING (PART 2) AMAT 167 Techniques for Trend EXAMPLE OF TRENDS In our discussion, we will focus on linear trend but here are examples of nonlinear trends: EXAMPLE OF TRENDS If you

More information

STAT 115: Introductory Methods for Time Series Analysis and Forecasting. Concepts and Techniques

STAT 115: Introductory Methods for Time Series Analysis and Forecasting. Concepts and Techniques STAT 115: Introductory Methods for Time Series Analysis and Forecasting Concepts and Techniques School of Statistics University of the Philippines Diliman 1 FORECASTING Forecasting is an activity that

More information

Forecasting. Simon Shaw 2005/06 Semester II

Forecasting. Simon Shaw 2005/06 Semester II Forecasting Simon Shaw s.c.shaw@maths.bath.ac.uk 2005/06 Semester II 1 Introduction A critical aspect of managing any business is planning for the future. events is called forecasting. Predicting future

More information

Forecasting Chapter 3

Forecasting Chapter 3 Forecasting Chapter 3 Introduction Current factors and conditions Past experience in a similar situation 2 Accounting. New product/process cost estimates, profit projections, cash management. Finance.

More information

YEAR 10 GENERAL MATHEMATICS 2017 STRAND: BIVARIATE DATA PART II CHAPTER 12 RESIDUAL ANALYSIS, LINEARITY AND TIME SERIES

YEAR 10 GENERAL MATHEMATICS 2017 STRAND: BIVARIATE DATA PART II CHAPTER 12 RESIDUAL ANALYSIS, LINEARITY AND TIME SERIES YEAR 10 GENERAL MATHEMATICS 2017 STRAND: BIVARIATE DATA PART II CHAPTER 12 RESIDUAL ANALYSIS, LINEARITY AND TIME SERIES This topic includes: Transformation of data to linearity to establish relationships

More information

Time Series and Forecasting

Time Series and Forecasting Time Series and Forecasting Introduction to Forecasting n What is forecasting? n Primary Function is to Predict the Future using (time series related or other) data we have in hand n Why are we interested?

More information

The Art of Forecasting

The Art of Forecasting Time Series The Art of Forecasting Learning Objectives Describe what forecasting is Explain time series & its components Smooth a data series Moving average Exponential smoothing Forecast using trend models

More information

DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS

DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS Moving Averages and Smoothing Methods ECON 504 Chapter 7 Fall 2013 Dr. Mohammad Zainal 2 This chapter will describe three simple approaches to forecasting

More information

TIMES SERIES INTRODUCTION INTRODUCTION. Page 1. A time series is a set of observations made sequentially through time

TIMES SERIES INTRODUCTION INTRODUCTION. Page 1. A time series is a set of observations made sequentially through time TIMES SERIES INTRODUCTION A time series is a set of observations made sequentially through time A time series is said to be continuous when observations are taken continuously through time, or discrete

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

Lecture Prepared By: Mohammad Kamrul Arefin Lecturer, School of Business, North South University

Lecture Prepared By: Mohammad Kamrul Arefin Lecturer, School of Business, North South University Lecture 15 20 Prepared By: Mohammad Kamrul Arefin Lecturer, School of Business, North South University Modeling for Time Series Forecasting Forecasting is a necessary input to planning, whether in business,

More information

Chapter 5: Forecasting

Chapter 5: Forecasting 1 Textbook: pp. 165-202 Chapter 5: Forecasting Every day, managers make decisions without knowing what will happen in the future 2 Learning Objectives After completing this chapter, students will be able

More information

Chapter 8 - Forecasting

Chapter 8 - Forecasting Chapter 8 - Forecasting Operations Management by R. Dan Reid & Nada R. Sanders 4th Edition Wiley 2010 Wiley 2010 1 Learning Objectives Identify Principles of Forecasting Explain the steps in the forecasting

More information

Forecasting. Al Nosedal University of Toronto. March 8, Al Nosedal University of Toronto Forecasting March 8, / 80

Forecasting. Al Nosedal University of Toronto. March 8, Al Nosedal University of Toronto Forecasting March 8, / 80 Forecasting Al Nosedal University of Toronto March 8, 2016 Al Nosedal University of Toronto Forecasting March 8, 2016 1 / 80 Forecasting Methods: An Overview There are many forecasting methods available,

More information

Time Series and Forecasting

Time Series and Forecasting Time Series and Forecasting Introduction to Forecasting n What is forecasting? n Primary Function is to Predict the Future using (time series related or other) data we have in hand n Why are we interested?

More information

Industrial Engineering Prof. Inderdeep Singh Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee

Industrial Engineering Prof. Inderdeep Singh Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Industrial Engineering Prof. Inderdeep Singh Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Module - 04 Lecture - 05 Sales Forecasting - II A very warm welcome

More information

Forecasting Using Time Series Models

Forecasting Using Time Series Models Forecasting Using Time Series Models Dr. J Katyayani 1, M Jahnavi 2 Pothugunta Krishna Prasad 3 1 Professor, Department of MBA, SPMVV, Tirupati, India 2 Assistant Professor, Koshys Institute of Management

More information

Econ 300/QAC 201: Quantitative Methods in Economics/Applied Data Analysis. 17th Class 7/1/10

Econ 300/QAC 201: Quantitative Methods in Economics/Applied Data Analysis. 17th Class 7/1/10 Econ 300/QAC 201: Quantitative Methods in Economics/Applied Data Analysis 17th Class 7/1/10 The only function of economic forecasting is to make astrology look respectable. --John Kenneth Galbraith show

More information

Forecasting. Copyright 2015 Pearson Education, Inc.

Forecasting. Copyright 2015 Pearson Education, Inc. 5 Forecasting To accompany Quantitative Analysis for Management, Twelfth Edition, by Render, Stair, Hanna and Hale Power Point slides created by Jeff Heyl Copyright 2015 Pearson Education, Inc. LEARNING

More information

Ch3. TRENDS. Time Series Analysis

Ch3. TRENDS. Time Series Analysis 3.1 Deterministic Versus Stochastic Trends The simulated random walk in Exhibit 2.1 shows a upward trend. However, it is caused by a strong correlation between the series at nearby time points. The true

More information

7CORE SAMPLE. Time series. Birth rates in Australia by year,

7CORE SAMPLE. Time series. Birth rates in Australia by year, C H A P T E R 7CORE Time series What is time series data? What are the features we look for in times series data? How do we identify and quantify trend? How do we measure seasonal variation? How do we

More information

Time series and Forecasting

Time series and Forecasting Chapter 2 Time series and Forecasting 2.1 Introduction Data are frequently recorded at regular time intervals, for instance, daily stock market indices, the monthly rate of inflation or annual profit figures.

More information

Time Series Analysis

Time Series Analysis Time Series Analysis A time series is a sequence of observations made: 1) over a continuous time interval, 2) of successive measurements across that interval, 3) using equal spacing between consecutive

More information

Chapter 3: Regression Methods for Trends

Chapter 3: Regression Methods for Trends Chapter 3: Regression Methods for Trends Time series exhibiting trends over time have a mean function that is some simple function (not necessarily constant) of time. The example random walk graph from

More information

CHAPTER 18. Time Series Analysis and Forecasting

CHAPTER 18. Time Series Analysis and Forecasting CHAPTER 18 Time Series Analysis and Forecasting CONTENTS STATISTICS IN PRACTICE: NEVADA OCCUPATIONAL HEALTH CLINIC 18.1 TIME SERIES PATTERNS Horizontal Pattern Trend Pattern Seasonal Pattern Trend and

More information

Some Personal Perspectives on Demand Forecasting Past, Present, Future

Some Personal Perspectives on Demand Forecasting Past, Present, Future Some Personal Perspectives on Demand Forecasting Past, Present, Future Hans Levenbach, PhD Delphus, Inc. INFORMS Luncheon Penn Club, NYC Presentation Overview Introduction Demand Analysis and Forecasting

More information

Introduction to Regression Analysis. Dr. Devlina Chatterjee 11 th August, 2017

Introduction to Regression Analysis. Dr. Devlina Chatterjee 11 th August, 2017 Introduction to Regression Analysis Dr. Devlina Chatterjee 11 th August, 2017 What is regression analysis? Regression analysis is a statistical technique for studying linear relationships. One dependent

More information

Public Library Use and Economic Hard Times: Analysis of Recent Data

Public Library Use and Economic Hard Times: Analysis of Recent Data Public Library Use and Economic Hard Times: Analysis of Recent Data A Report Prepared for The American Library Association by The Library Research Center University of Illinois at Urbana Champaign April

More information

3. If a forecast is too high when compared to an actual outcome, will that forecast error be positive or negative?

3. If a forecast is too high when compared to an actual outcome, will that forecast error be positive or negative? 1. Does a moving average forecast become more or less responsive to changes in a data series when more data points are included in the average? 2. Does an exponential smoothing forecast become more or

More information

Lecture 4 Forecasting

Lecture 4 Forecasting King Saud University College of Computer & Information Sciences IS 466 Decision Support Systems Lecture 4 Forecasting Dr. Mourad YKHLEF The slides content is derived and adopted from many references Outline

More information

14. Time- Series data visualization. Prof. Tulasi Prasad Sariki SCSE, VIT, Chennai

14. Time- Series data visualization. Prof. Tulasi Prasad Sariki SCSE, VIT, Chennai 14. Time- Series data visualization Prof. Tulasi Prasad Sariki SCSE, VIT, Chennai www.learnersdesk.weebly.com Overview What is forecasting Time series & its components Smooth a data series Moving average

More information

Forecasting. BUS 735: Business Decision Making and Research. exercises. Assess what we have learned

Forecasting. BUS 735: Business Decision Making and Research. exercises. Assess what we have learned Forecasting BUS 735: Business Decision Making and Research 1 1.1 Goals and Agenda Goals and Agenda Learning Objective Learn how to identify regularities in time series data Learn popular univariate time

More information

Economic Forecasting Lecture 9: Smoothing Methods

Economic Forecasting Lecture 9: Smoothing Methods Economic Forecasting Lecture 9: Smoothing Methods Richard G. Pierse 1 Introduction Smoothing methods are rather different from the model-based methods that we have been looking at up to now in this module.

More information

CHAPTER 4: DATASETS AND CRITERIA FOR ALGORITHM EVALUATION

CHAPTER 4: DATASETS AND CRITERIA FOR ALGORITHM EVALUATION CHAPTER 4: DATASETS AND CRITERIA FOR ALGORITHM EVALUATION 4.1 Overview This chapter contains the description about the data that is used in this research. In this research time series data is used. A time

More information

ECON 343 Lecture 4 : Smoothing and Extrapolation of Time Series. Jad Chaaban Spring

ECON 343 Lecture 4 : Smoothing and Extrapolation of Time Series. Jad Chaaban Spring ECON 343 Lecture 4 : Smoothing and Extrapolation of Time Series Jad Chaaban Spring 2005-2006 Outline Lecture 4 1. Simple extrapolation models 2. Moving-average models 3. Single Exponential smoothing 4.

More information

7. Forecasting with ARIMA models

7. Forecasting with ARIMA models 7. Forecasting with ARIMA models 309 Outline: Introduction The prediction equation of an ARIMA model Interpreting the predictions Variance of the predictions Forecast updating Measuring predictability

More information

A MACRO-DRIVEN FORECASTING SYSTEM FOR EVALUATING FORECAST MODEL PERFORMANCE

A MACRO-DRIVEN FORECASTING SYSTEM FOR EVALUATING FORECAST MODEL PERFORMANCE A MACRO-DRIVEN ING SYSTEM FOR EVALUATING MODEL PERFORMANCE Bryan Sellers Ross Laboratories INTRODUCTION A major problem of forecasting aside from obtaining accurate forecasts is choosing among a wide range

More information

Seasonal Adjustment using X-13ARIMA-SEATS

Seasonal Adjustment using X-13ARIMA-SEATS Seasonal Adjustment using X-13ARIMA-SEATS Revised: 10/9/2017 Summary... 1 Data Input... 3 Limitations... 4 Analysis Options... 5 Tables and Graphs... 6 Analysis Summary... 7 Data Table... 9 Trend-Cycle

More information

Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa. Forecasting demand 02/06/03 page 1 of 34

Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa. Forecasting demand 02/06/03 page 1 of 34 demand -5-4 -3-2 -1 0 1 2 3 Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa Forecasting demand 02/06/03 page 1 of 34 Forecasting is very difficult. especially about the

More information

Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book; you are not tested on them.

Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book; you are not tested on them. TS Module 1 Time series overview (The attached PDF file has better formatting.)! Model building! Time series plots Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book;

More information

Year 10 Mathematics Semester 2 Bivariate Data Chapter 13

Year 10 Mathematics Semester 2 Bivariate Data Chapter 13 Year 10 Mathematics Semester 2 Bivariate Data Chapter 13 Why learn this? Observations of two or more variables are often recorded, for example, the heights and weights of individuals. Studying the data

More information

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

Regression of Time Series

Regression of Time Series Mahlerʼs Guide to Regression of Time Series CAS Exam S prepared by Howard C. Mahler, FCAS Copyright 2016 by Howard C. Mahler. Study Aid 2016F-S-9Supplement Howard Mahler hmahler@mac.com www.howardmahler.com/teaching

More information

Forecasting: The First Step in Demand Planning

Forecasting: The First Step in Demand Planning Forecasting: The First Step in Demand Planning Jayant Rajgopal, Ph.D., P.E. University of Pittsburgh Pittsburgh, PA 15261 In a supply chain context, forecasting is the estimation of future demand General

More information

Forecasting. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall

Forecasting. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Forecasting Chapter 15 15-1 Chapter Topics Forecasting Components Time Series Methods Forecast Accuracy Time Series Forecasting Using Excel Time Series Forecasting Using QM for Windows Regression Methods

More information

FinQuiz Notes

FinQuiz Notes Reading 9 A time series is any series of data that varies over time e.g. the quarterly sales for a company during the past five years or daily returns of a security. When assumptions of the regression

More information

FURTHER MATHEMATICS Units 3 & 4 - Written Examination 2

FURTHER MATHEMATICS Units 3 & 4 - Written Examination 2 THIS BOX IS FOR ILLUSTRATIVE PURPOSES ONLY 2016 Examination Package - Trial Examination 4 of 5 Figures STUDENT NUMBER Letter Words FURTHER MATHEMATICS Units 3 & 4 - Written Examination 2 (TSSM s 2014 trial

More information

CHAPTER 1: Decomposition Methods

CHAPTER 1: Decomposition Methods CHAPTER 1: Decomposition Methods Prof. Alan Wan 1 / 48 Table of contents 1. Data Types and Causal vs.time Series Models 2 / 48 Types of Data Time series data: a sequence of observations measured over time,

More information

Making sense of Econometrics: Basics

Making sense of Econometrics: Basics Making sense of Econometrics: Basics Lecture 4: Qualitative influences and Heteroskedasticity Egypt Scholars Economic Society November 1, 2014 Assignment & feedback enter classroom at http://b.socrative.com/login/student/

More information

Euro-indicators Working Group

Euro-indicators Working Group Euro-indicators Working Group Luxembourg, 9 th & 10 th June 2011 Item 9.4 of the Agenda New developments in EuroMIND estimates Rosa Ruggeri Cannata Doc 309/11 What is EuroMIND? EuroMIND is a Monthly INDicator

More information

Multiple Regression Analysis

Multiple Regression Analysis 1 OUTLINE Analysis of Data and Model Hypothesis Testing Dummy Variables Research in Finance 2 ANALYSIS: Types of Data Time Series data Cross-Sectional data Panel data Trend Seasonal Variation Cyclical

More information

Lecture # 31. Questions of Marks 3. Question: Solution:

Lecture # 31. Questions of Marks 3. Question: Solution: Lecture # 31 Given XY = 400, X = 5, Y = 4, S = 4, S = 3, n = 15. Compute the coefficient of correlation between XX and YY. r =0.55 X Y Determine whether two variables XX and YY are correlated or uncorrelated

More information

CHAPTER 14. Time Series Analysis and Forecasting STATISTICS IN PRACTICE:

CHAPTER 14. Time Series Analysis and Forecasting STATISTICS IN PRACTICE: CHAPTER 14 Time Series Analysis and Forecasting CONTENTS STATISTICS IN PRACTICE: Nevada Occupational Health Clinic 14.1 Time Series Patterns Horizontal Pattern Trend Pattern Seasonal Pattern Trend and

More information

Practice Questions for Math 131 Exam # 1

Practice Questions for Math 131 Exam # 1 Practice Questions for Math 131 Exam # 1 1) A company produces a product for which the variable cost per unit is $3.50 and fixed cost 1) is $20,000 per year. Next year, the company wants the total cost

More information

FORECASTING THE INVENTORY LEVEL OF MAGNETIC CARDS IN TOLLING SYSTEM

FORECASTING THE INVENTORY LEVEL OF MAGNETIC CARDS IN TOLLING SYSTEM FORECASTING THE INVENTORY LEVEL OF MAGNETIC CARDS IN TOLLING SYSTEM Bratislav Lazić a, Nebojša Bojović b, Gordana Radivojević b*, Gorana Šormaz a a University of Belgrade, Mihajlo Pupin Institute, Serbia

More information

ECON 427: ECONOMIC FORECASTING. Ch1. Getting started OTexts.org/fpp2/

ECON 427: ECONOMIC FORECASTING. Ch1. Getting started OTexts.org/fpp2/ ECON 427: ECONOMIC FORECASTING Ch1. Getting started OTexts.org/fpp2/ 1 Outline 1 What can we forecast? 2 Time series data 3 Some case studies 4 The statistical forecasting perspective 2 Forecasting is

More information

Simple Descriptive Techniques

Simple Descriptive Techniques Simple Descriptive Techniques Outline 1 Types of variation 2 Stationary Time Series 3 The Time Plot 4 Transformations 5 Analysing Series that Contain a Trend 6 Analysing Series that Contain Seasonal Variation

More information

On the Use of Forecasts when Forcing Annual Totals on Seasonally Adjusted Data

On the Use of Forecasts when Forcing Annual Totals on Seasonally Adjusted Data The 34 th International Symposium on Forecasting Rotterdam, The Netherlands, June 29 to July 2, 2014 On the Use of Forecasts when Forcing Annual Totals on Seasonally Adjusted Data Michel Ferland, Susie

More information

Summary statistics. G.S. Questa, L. Trapani. MSc Induction - Summary statistics 1

Summary statistics. G.S. Questa, L. Trapani. MSc Induction - Summary statistics 1 Summary statistics 1. Visualize data 2. Mean, median, mode and percentiles, variance, standard deviation 3. Frequency distribution. Skewness 4. Covariance and correlation 5. Autocorrelation MSc Induction

More information

Midterm 2 - Solutions

Midterm 2 - Solutions Ecn 102 - Analysis of Economic Data University of California - Davis February 24, 2010 Instructor: John Parman Midterm 2 - Solutions You have until 10:20am to complete this exam. Please remember to put

More information

Name (print, please) ID

Name (print, please) ID Name (print, please) ID Operations Management I 7- Winter 00 Odette School of Business University of Windsor Midterm Exam I Solution Wednesday, ebruary, 0:00 :0 pm Last Name A-S: Odette B0 Last Name T-Z:

More information

Forecasting: Principles and Practice. Rob J Hyndman. 1. Introduction to forecasting OTexts.org/fpp/1/ OTexts.org/fpp/2/3

Forecasting: Principles and Practice. Rob J Hyndman. 1. Introduction to forecasting OTexts.org/fpp/1/ OTexts.org/fpp/2/3 Rob J Hyndman Forecasting: Principles and Practice 1. Introduction to forecasting OTexts.org/fpp/1/ OTexts.org/fpp/2/3 Forecasting: Principles and Practice 1 Resources Slides Exercises Textbook Useful

More information

Reconnect 2017 Module: Time Series Applications in Energy-Related Issues Instructor Version

Reconnect 2017 Module: Time Series Applications in Energy-Related Issues Instructor Version Reconnect 2017 Module: Time Series Applications in Energy-Related Issues Instructor Version Eugene Fiorini Truman Koehler Professor of Mathematics Muhlenberg College, PA Kevin Shirley Associate Professor

More information

WEATHER NORMALIZATION METHODS AND ISSUES. Stuart McMenamin Mark Quan David Simons

WEATHER NORMALIZATION METHODS AND ISSUES. Stuart McMenamin Mark Quan David Simons WEATHER NORMALIZATION METHODS AND ISSUES Stuart McMenamin Mark Quan David Simons Itron Forecasting Brown Bag September 17, 2013 Please Remember» Phones are Muted: In order to help this session run smoothly,

More information

Charting Employment Loss in North Carolina Textiles 1

Charting Employment Loss in North Carolina Textiles 1 P. Conway 14 January 2004 Charting Employment Loss in North Carolina Textiles 1 The job losses in North Carolina manufacturing, and the textiles industry in particular, are most often attributed to the

More information

Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models

Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models Facoltà di Economia Università dell Aquila umberto.triacca@gmail.com Introduction In this lesson we present a method to construct an ARMA(p,

More information

Over Determined Algebraic Systems: Curve Fitting to Data

Over Determined Algebraic Systems: Curve Fitting to Data Over Determined Algebraic Systems: Curve Fitting to Data Introduction. In this section we investigate algebraic systems that have more equations than unknowns. In general, these will not have a solution

More information

Every day, health care managers must make decisions about service delivery

Every day, health care managers must make decisions about service delivery Y CHAPTER TWO FORECASTING Every day, health care managers must make decisions about service delivery without knowing what will happen in the future. Forecasts enable them to anticipate the future and plan

More information

1 Numbers, Sets, Algebraic Expressions

1 Numbers, Sets, Algebraic Expressions AAU - Business Mathematics I Lecture #1, February 27, 2010 1 Numbers, Sets, Algebraic Expressions 1.1 Constants, Variables, and Sets A constant is something that does not change, over time or otherwise:

More information

BUSI 460 Suggested Answers to Selected Review and Discussion Questions Lesson 7

BUSI 460 Suggested Answers to Selected Review and Discussion Questions Lesson 7 BUSI 460 Suggested Answers to Selected Review and Discussion Questions Lesson 7 1. The definitions follow: (a) Time series: Time series data, also known as a data series, consists of observations on a

More information

Bus 216: Business Statistics II Introduction Business statistics II is purely inferential or applied statistics.

Bus 216: Business Statistics II Introduction Business statistics II is purely inferential or applied statistics. Bus 216: Business Statistics II Introduction Business statistics II is purely inferential or applied statistics. Study Session 1 1. Random Variable A random variable is a variable that assumes numerical

More information

STOCHASTIC MODELING OF MONTHLY RAINFALL AT KOTA REGION

STOCHASTIC MODELING OF MONTHLY RAINFALL AT KOTA REGION STOCHASTIC MODELIG OF MOTHLY RAIFALL AT KOTA REGIO S. R. Bhakar, Raj Vir Singh, eeraj Chhajed and Anil Kumar Bansal Department of Soil and Water Engineering, CTAE, Udaipur, Rajasthan, India E-mail: srbhakar@rediffmail.com

More information

Plan-Making Methods AICP EXAM REVIEW. February 11-12, 2011 Georgia Tech Student Center

Plan-Making Methods AICP EXAM REVIEW. February 11-12, 2011 Georgia Tech Student Center Plan-Making Methods AICP EXAM REVIEW February 11-12, 2011 Georgia Tech Student Center Session Outline Introduction (5 min) A. Basic statistics concepts (5 min) B. Forecasting methods (5 min) C. Population

More information

STA 6104 Financial Time Series. Moving Averages and Exponential Smoothing

STA 6104 Financial Time Series. Moving Averages and Exponential Smoothing STA 6104 Financial Time Series Moving Averages and Exponential Smoothing Smoothing Our objective is to predict some future value Y n+k given a past history {Y 1, Y 2,..., Y n } of observations up to time

More information

A Plot of the Tracking Signals Calculated in Exhibit 3.9

A Plot of the Tracking Signals Calculated in Exhibit 3.9 CHAPTER 3 FORECASTING 1 Measurement of Error We can get a better feel for what the MAD and tracking signal mean by plotting the points on a graph. Though this is not completely legitimate from a sample-size

More information

Forecasting: principles and practice. Rob J Hyndman 1.1 Introduction to Forecasting

Forecasting: principles and practice. Rob J Hyndman 1.1 Introduction to Forecasting Forecasting: principles and practice Rob J Hyndman 1.1 Introduction to Forecasting 1 Outline 1 Background 2 Case studies 3 The statistical forecasting perspective 4 What can we forecast? 2 Resources Slides

More information

Study of Time Series and Development of System Identification Model for Agarwada Raingauge Station

Study of Time Series and Development of System Identification Model for Agarwada Raingauge Station Study of Time Series and Development of System Identification Model for Agarwada Raingauge Station N.A. Bhatia 1 and T.M.V.Suryanarayana 2 1 Teaching Assistant, 2 Assistant Professor, Water Resources Engineering

More information

The ARIMA Procedure: The ARIMA Procedure

The ARIMA Procedure: The ARIMA Procedure Page 1 of 120 Overview: ARIMA Procedure Getting Started: ARIMA Procedure The Three Stages of ARIMA Modeling Identification Stage Estimation and Diagnostic Checking Stage Forecasting Stage Using ARIMA Procedure

More information

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis Chapter 12: An introduction to Time Series Analysis Introduction In this chapter, we will discuss forecasting with single-series (univariate) Box-Jenkins models. The common name of the models is Auto-Regressive

More information

ANSWERS CHAPTER 15 THINK IT OVER EXERCISES. Nick Lee and Mike Peters think it over. No answers required.

ANSWERS CHAPTER 15 THINK IT OVER EXERCISES. Nick Lee and Mike Peters think it over. No answers required. ANSWERS CHAPTER 15 THINK IT OVER think it over No answers required. EXERCISES 1. (a) Yes it could but you would have to be careful in interpreting the results. Transformers tend to be situated outside

More information

Marquette University Executive MBA Program Statistics Review Class Notes Summer 2018

Marquette University Executive MBA Program Statistics Review Class Notes Summer 2018 Marquette University Executive MBA Program Statistics Review Class Notes Summer 2018 Chapter One: Data and Statistics Statistics A collection of procedures and principles

More information

Forecasting. Dr. Richard Jerz rjerz.com

Forecasting. Dr. Richard Jerz rjerz.com Forecasting Dr. Richard Jerz 1 1 Learning Objectives Describe why forecasts are used and list the elements of a good forecast. Outline the steps in the forecasting process. Describe at least three qualitative

More information

Time Series and Forecasting

Time Series and Forecasting Chapter 8 Time Series and Forecasting 8.1 Introduction A time series is a collection of observations made sequentially in time. When observations are made continuously, the time series is said to be continuous;

More information

Analyzing Lines of Fit

Analyzing Lines of Fit 4.5 Analyzing Lines of Fit Essential Question How can you analytically find a line of best fit for a scatter plot? Finding a Line of Best Fit Work with a partner. The scatter plot shows the median ages

More information

Warwick Business School Forecasting System. Summary. Ana Galvao, Anthony Garratt and James Mitchell November, 2014

Warwick Business School Forecasting System. Summary. Ana Galvao, Anthony Garratt and James Mitchell November, 2014 Warwick Business School Forecasting System Summary Ana Galvao, Anthony Garratt and James Mitchell November, 21 The main objective of the Warwick Business School Forecasting System is to provide competitive

More information

Inference with Simple Regression

Inference with Simple Regression 1 Introduction Inference with Simple Regression Alan B. Gelder 06E:071, The University of Iowa 1 Moving to infinite means: In this course we have seen one-mean problems, twomean problems, and problems

More information

Homework 2. For the homework, be sure to give full explanations where required and to turn in any relevant plots.

Homework 2. For the homework, be sure to give full explanations where required and to turn in any relevant plots. Homework 2 1 Data analysis problems For the homework, be sure to give full explanations where required and to turn in any relevant plots. 1. The file berkeley.dat contains average yearly temperatures for

More information