The Characteristics and Consequences of the Break-up of the Fengyun-1C Spacecraft

Size: px
Start display at page:

Download "The Characteristics and Consequences of the Break-up of the Fengyun-1C Spacecraft"

Transcription

1 The Characteristics and Consequences of the Break-up of the Fengyun-1C Spacecraft N. Johnson, E. Stansbery, J.-C. Liou, M. Horstman, C. Stokely, D. Whitlock NASA Orbital Debris Program Office NASA Johnson Space Center 58 th International Astronautical Congress September 2007

2 Outline Background of Breakup Event Debris Cloud Characterization U.S. Space Surveillance Network data Special Haystack radar observations Changes in the near-earth Environment Near- and Long-term Collision Effects Conclusions 2 58 th International Astronautical Congress

3 Breakup Event Summary The Fengyun-1C spacecraft ( A, U.S. Satellite Number 25730) was the target on 11 January 2007 of a ground-launched, direct ascent ballistic missile equipped with a kinetic kill vehicle. Fengyun-1C orbit: ~ 850 km, 98.6 deg inclination Fengyun-1C mass: ~960 kg Impact velocity: ~ 9 km/s 3 58 th International Astronautical Congress

4 SSN Observations of Debris Cloud Six months after the breakup, a total of 1967 pieces of debris had been officially cataloged by the U.S. Space Surveillance Network. ~ 400 additional debris were being tracked but not yet cataloged Apogee Perigee 11 July 2007 Orbital Period of Parent Altitude (km) Slight posigrade asymmetry (60/40) in the heart of the cloud Period (min) 4 58 th International Astronautical Congress

5 SSN Observations of Debris Cloud (continued) A greater asymmetry is seen in the debris inclinations; approximately 80% of the debris have inclinations greater than those of Fengyun-1C prior to the intercept Inclination (deg) Period (min) 5 58 th International Astronautical Congress

6 SSN Observations of Debris Cloud (continued) Preliminary analysis of 1600 debris indicates area-to-mass ratios on average greater than predicted by the NASA standard breakup model for a hypervelocity collision. Verification of conversation from RCS to characteristic length is continuing. 1.E+02 1.E+01 1.E+00 A/M (m 2 /kg) 1.E-01 1.E-02 1.E Characteristic Length (m) 6 58 th International Astronautical Congress

7 Haystack Observations of Debris Cloud The Haystack radar observed the debris cloud for 1.9 hours in a special orbit plane tracking mode ~24 hours after the breakup. Some sub-centimeter debris were observed Count Altitude (km) Characteristic Length (m) GMT Time of Day (hrs) 7 58 th International Astronautical Congress

8 Haystack Observations of Debris Cloud (continued) During January through May, Haystack observed the debris in a normal staring mode for 184 hours Approximate time of parent orbit plane crossing Inclination (deg) Haystack not operated during this time window GMT Time of Day (hrs) 8 58 th International Astronautical Congress

9 Changes in the near-earth Environment The number of tracked objects in LEO increased ~ one-third as a result of the breakup of Fengyun-1C. The debris now represents a significant portion of conjunction assessments for many operational spacecraft. A least two U.S. spacecraft have maneuvered to avoid very close approaches of tracked debris, and the ISS canceled a planned collision avoidance maneuver when the estimated miss distance increased to an acceptable value shortly before the conjunction Effective Number of Objects per 50 km Bin Tracked objects (1 June, 2007) Tracked objects (1 January, 2007) Fengyun-1C fragments Altitude (km) 9 58 th International Astronautical Congress

10 Evolution of Debris Orbit Planes th International Astronautical Congress

11 Projected Debris Decay Rate Due to the apparent higher than expected debris area-to-mass ratios, the orbital decay rates will likewise be accelerated. However, the greater than expected number of large debris yields a lifetime large debris collision risk for the cloud of essentially the same magnitude. For smaller debris collision risks may be greater than model predictions. 100 Percent of Debris Cloud Remaining in Orbit Projected decay based upon standard model Projected decay based upon preliminary observations Years since the Event th International Astronautical Congress

12 Long-term Effects on the Environment NASA s evolutionary satellite population model LEGEND was employed to predict the possible increase in the long-term large object population resulting from the Fengyun-1C debris cloud Effective Number of Objects (>10 cm) in LEO With Chinese ASAT debris Without Chinese ASAT debris th International Astronautical Congress

13 Summary The breakup of Fengyun-1C stands as the most severe satellite fragmentation of the space age, and its detrimental effects will be very longlasting. In analyses to date, the number of debris greater than 10 cm produced appears to markedly exceed the number predicted by the NASA standard breakup model for hypervelocity collisions. An assessment of the number of actual debris 1 cm and larger is still underway. Both the IADC Space Debris Mitigation Guidelines and the UN COPUOS Space Debris Mitigation Guidelines explicitly recommend the avoidance of any intentional destruction which would result in long-lived debris. The test involving Fengyun-1C is non-compliant with those recommendations th International Astronautical Congress

Space Debris Assessment for USA-193

Space Debris Assessment for USA-193 Space Debris Assessment for USA-193 Presentation to the 45 th Session of the Scientific and Technical Subcommittee Committee on the Peaceful Uses of Outer Space United Nations 11-22 February 2008 Presentation

More information

USA Space Debris Environment, Operations, and Modeling Updates

USA Space Debris Environment, Operations, and Modeling Updates USA Space Debris Environment, Operations, and Modeling Updates Presentation to the 51 st Session of the Scientific and Technical Subcommittee Committee on the Peaceful Uses of Outer Space United Nations

More information

USA Space Debris Environment and Operational Updates

USA Space Debris Environment and Operational Updates USA Space Debris Environment and Operational Updates Presentation to the 46 th Session of the Scientific and Technical Subcommittee Committee on the Peaceful Uses of Outer Space United Nations 9-20 February

More information

Analysis of Debris from the Collision of the Cosmos 2251 and the Iridium 33 Satellites

Analysis of Debris from the Collision of the Cosmos 2251 and the Iridium 33 Satellites Science & Global Security, 18:87 118, 2010 Copyright C Taylor & Francis Group, LLC ISSN: 0892-9882 print / 1547-7800 online DOI: 10.1080/08929882.2010.493078 Analysis of Debris from the Collision of the

More information

Space Debris Activities in India

Space Debris Activities in India Indian Presentation to the 47 th Session of Scientific and Technical Subcommittee of United Nations Committee on the Peaceful Uses of Outer Space Agenda 8 Space Debris Activities in India 1 Space Debris

More information

USA Space Debris Environment, Operations, and Policy Updates

USA Space Debris Environment, Operations, and Policy Updates USA Space Debris Environment, Operations, and Policy Updates Presentation to the 48 th Session of the Scientific and Technical Subcommittee Committee on the Peaceful Uses of Outer Space United Nations

More information

STUDY THE SPACE DEBRIS IMPACT IN THE EARLY STAGES OF THE NANO-SATELLITE DESIGN

STUDY THE SPACE DEBRIS IMPACT IN THE EARLY STAGES OF THE NANO-SATELLITE DESIGN ARTIFICIAL SATELLITES, Vol. 51, No. 4 2016 DOI: 10.1515/arsa-2016-0014 STUDY THE SPACE DEBRIS IMPACT IN THE EARLY STAGES OF THE NANO-SATELLITE DESIGN Mohammed Chessab Mahdi Al-Furat Al-Awsat Technical

More information

SPACE SITUATIONAL AWARENESS AND SPACE DEBRIS ACTIVITIES IN INDIA

SPACE SITUATIONAL AWARENESS AND SPACE DEBRIS ACTIVITIES IN INDIA SPACE SITUATIONAL AWARENESS AND SPACE DEBRIS ACTIVITIES IN INDIA P Soma, Adjunct Faculty, NIAS Agenda The Growth of Space Objects since 1957 Space Situational Awareness India s Space Assets and SSA Space

More information

Orbital Debris Mitigation

Orbital Debris Mitigation Orbital Debris Mitigation R. L. Kelley 1, D. R. Jarkey 2, G. Stansbery 3 1. Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA 2. HX5 - Jacobs JETS Contract, NASA Johnson Space Center, Houston,

More information

Orbital Debris Challenges for Space Operations J.-C. Liou, PhD NASA Chief Scientist for Orbital Debris

Orbital Debris Challenges for Space Operations J.-C. Liou, PhD NASA Chief Scientist for Orbital Debris Orbital Debris Challenges for Space Operations J.-C. Liou, PhD NASA Chief Scientist for Orbital Debris The Second ICAO / UNOOSA Symposium Abu Dhabi, United Arab Emirates, 15-17 March 2016 Presentation

More information

Modeling of the Orbital Debris Environment Risks in the Past, Present, and Future

Modeling of the Orbital Debris Environment Risks in the Past, Present, and Future Modeling of the Orbital Debris Environment Risks in the Past, Present, and Future Mark Matney, Ph.D. Orbital Debris Program Office NASA Johnson Space Center 2 National Aeronautics and Space Administration

More information

Accepted Manuscript. Physical Properties and Long-Term Evolution of the Debris Clouds Produced by Two Catastrophic Collisions in Earth Orbit

Accepted Manuscript. Physical Properties and Long-Term Evolution of the Debris Clouds Produced by Two Catastrophic Collisions in Earth Orbit Accepted Manuscript Physical Properties and Long-Term Evolution of the Debris Clouds Produced by Two Catastrophic Collisions in Earth Orbit C. Pardini, L. Anselmo PII: S0273-1177(11)00243-2 DOI: 10.1016/j.asr.2011.04.006

More information

IAC - 12.A6.1.8 EISCAT SPACE DEBRIS AFTER THE INTERNATIONAL POLAR YEAR (IPY) Alan Li Stanford University, USA,

IAC - 12.A6.1.8 EISCAT SPACE DEBRIS AFTER THE INTERNATIONAL POLAR YEAR (IPY) Alan Li Stanford University, USA, IAC - 12.A6.1.8 EISCAT SPACE DEBRIS AFTER THE INTERNATIONAL POLAR YEAR (IPY) Alan Li Stanford University, USA, alanli@stanford.edu Sigrid Close, Jussi Markannen Abstract We present results from analysis

More information

INTER-AGENCY SPACE DEBRIS COORDINATION COMMITTEE (IADC) SPACE DEBRIS ISSUES IN THE GEOSTATIONARY ORBIT AND THE GEOSTATIONARY TRANSFER ORBITS

INTER-AGENCY SPACE DEBRIS COORDINATION COMMITTEE (IADC) SPACE DEBRIS ISSUES IN THE GEOSTATIONARY ORBIT AND THE GEOSTATIONARY TRANSFER ORBITS INTER-AGENCY SPACE DEBRIS COORDINATION COMMITTEE (IADC) SPACE DEBRIS ISSUES IN THE GEOSTATIONARY ORBIT AND THE GEOSTATIONARY TRANSFER ORBITS Presented to: 37-th Session of the SCIENTIFIC AND TECHNICAL

More information

Space Debris Mitigation Activities at ESA

Space Debris Mitigation Activities at ESA Space Debris Mitigation Activities at ESA Heiner Klinkrad ESA Space Debris Office H. Klinkrad, ESA, Feb 2011, page 1 Space Debris Environment in 2010 4,765 launches and 251 on-orbit break-ups led to 16,200

More information

Critical Density of Spacecraft in Low Earth Orbit: Using Fragmentation Data to Evaluate the Stability of the Orbital Debris Environment

Critical Density of Spacecraft in Low Earth Orbit: Using Fragmentation Data to Evaluate the Stability of the Orbital Debris Environment Critical Density of Spacecraft in Low Earth Orbit: Using Fragmentation Data to Evaluate the Stability of the Orbital Debris Environment Lockheed Martin Space Operations Company 2400 NASA Rd 1, Houston,

More information

OVERVIEW ON 2012 SPACE DEBRIS ACTIVITIES IN FRANCE

OVERVIEW ON 2012 SPACE DEBRIS ACTIVITIES IN FRANCE OVERVIEW ON 2012 SPACE DEBRIS ACTIVITIES IN FRANCE F.ALBY COPUOS STSC 11-22 February 2013 Overview on 2012 space debris activities in France, COPUOS STSC-February 2013, Vienna 1 End of life operations

More information

Space debris. feature. David Wright

Space debris. feature. David Wright Space debris feature David Wright Controlling the production of debris is crucial to the sustainable use of space. But even without additional launches, let alone antisatellite tests, the amount of debris

More information

How CubeSats are Helping Address the Space Debris Problem: Results from the Polar Orbiting Passive Atmospheric Calibration Spheres

How CubeSats are Helping Address the Space Debris Problem: Results from the Polar Orbiting Passive Atmospheric Calibration Spheres How CubeSats are Helping Address the Space Debris Problem: Results from the Polar Orbiting Passive Atmospheric Calibration Spheres 13th Annual Summer CubeSat Developers' Workshop Logan, UT 5/26/2016 Marcin

More information

Debris Mitigation Efforts

Debris Mitigation Efforts Debris Mitigation Efforts David Wright Co-Director, Global Security Program Union of Concerned Scientists International Interdisciplinary Congress on Space Debris 7-9 May 2009 McGill University, Montreal,

More information

Fragments Analyses of the Soviet Anti-Satellite Tests- Round 2

Fragments Analyses of the Soviet Anti-Satellite Tests- Round 2 Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 4, Number 1 (214), pp. 35-43 Research India Publications http://www.ripublication.com Fragments Analyses of the Soviet Anti-Satellite

More information

IAC - 13.A Orbital Debris Parameter Estimation from Vertical Pointing Radar. Alan Li Stanford University, USA,

IAC - 13.A Orbital Debris Parameter Estimation from Vertical Pointing Radar. Alan Li Stanford University, USA, IAC - 13.A6.1.7 Orbital Debris Parameter Estimation from Vertical Pointing Radar Alan Li Stanford University, USA, alanli@stanford.edu Sigrid Close Abstract We present results from analysis of space debris

More information

Implementation of the Outer Space Treaties in view of Small Satellites

Implementation of the Outer Space Treaties in view of Small Satellites Implementation of the Outer Space Treaties in view of Small Satellites 17th Annual Small Payload Rideshare Symposium Laurel, Maryland June 10, 2015 Matt Witsil Foreign Affairs Officer/Franklin Fellow Office

More information

FEDERAL SPACE AGENCY OF RUSSIA ACTIVITY OF RUSSIAN FEDERATION ON SPACE DEBRIS PROBLEM

FEDERAL SPACE AGENCY OF RUSSIA ACTIVITY OF RUSSIAN FEDERATION ON SPACE DEBRIS PROBLEM ACTIVITY OF RUSSIAN FEDERATION ON SPACE DEBRIS PROBLEM 44-th session of the Scientific and Technical Subcommittee of the UN Committee on the Peaceful Uses of Outer Space (COPOUS) Vienna - February, 2007

More information

Prof. Richard Crowther Chief Engineer, UK Space Agency. Reflections on Orbital Debris Mitigation Measures

Prof. Richard Crowther Chief Engineer, UK Space Agency. Reflections on Orbital Debris Mitigation Measures Prof. Richard Crowther Chief Engineer, UK Space Agency Reflections on Orbital Debris Mitigation Measures near-earth satellite population reflects use of space >17000 tracked objects concentrated in distinct

More information

IADC Re-Entry Prediction Campaigns

IADC Re-Entry Prediction Campaigns IADC Re-Entry Prediction Campaigns H. Klinkrad, ESA IADC chair UNCOPUOS STSC, Feb 2009 page 1 Presentation Outline terms of reference of the Inter-Agency Space Debris Coordination Committee (IADC) concept

More information

OVERVIEW ON 2012 SPACE DEBRIS ACTIVITIES IN FRANCE

OVERVIEW ON 2012 SPACE DEBRIS ACTIVITIES IN FRANCE OVERVIEW ON 2012 SPACE DEBRIS ACTIVITIES IN FRANCE F.ALBY IAA-Beijing 21 September 2013 IAA-Beijing-21 September 2013 1 End of life operations CONT TENT T Collision risk monitoring Atmospheric reentries

More information

TUNDRA DISPOSAL ORBIT STUDY

TUNDRA DISPOSAL ORBIT STUDY TUNDRA DISPOSAL ORBIT STUDY Al an B. Jenki n (1 ), John P. McVey (2 ), James R. Wi l son (3 ), Marl on E. Sorge (4) (1) The Aerospace Corporation, P.O. Box 92957, Los Angeles, CA 90009-2957, USA, Email:

More information

Orbital Debris: Time to Remove

Orbital Debris: Time to Remove Orbital Debris: Time to Remove Eugene Levin Google TechTalk, August 11, 2011 1 Jerome Pearson Star Technology and Research, Inc. www.star-tech-inc.com Joe Carroll Tether Applications, Inc. www.tetherapplications.com

More information

The Inter-Agency Space Debris Coordination Committee (IADC)

The Inter-Agency Space Debris Coordination Committee (IADC) The Inter-Agency Space Debris Coordination Committee (IADC) An overview of IADC s annual activities Mitsuru Ohnishi, JAXA, Japan IADC Chair www.iadc-online.org 55 th Session of the Scientific and Technical

More information

Analysis of the Briz-M Propellant Tank (35698) Fragmentation Using the Velocity Perturbations of the Fragments

Analysis of the Briz-M Propellant Tank (35698) Fragmentation Using the Velocity Perturbations of the Fragments Advances in Aerospace Science and Applications. Volume 4, Number 1 (14), pp. 11-19 Research India Publications http://www.ripublication.com Analysis of the Briz-M Propellant Tank (35698) Fragmentation

More information

Major fragmentation of Atlas 5 Centaur upper stage B (SSN #40209)

Major fragmentation of Atlas 5 Centaur upper stage B (SSN #40209) Major fragmentation of Atlas 5 Centaur upper stage 2014 055B (SSN #40209) Vladimir Agapov IAA Space Debris Committee meeting Bremen, 29 Sep 2018 Outline Atlas 5 Centaur overview 30 Aug 2018 anomaly in

More information

Orbital Debris Observation via Laser Illuminated Optical Measurement Techniques

Orbital Debris Observation via Laser Illuminated Optical Measurement Techniques Orbital Debris Observation via Laser Illuminated Optical Measurement Techniques Makoto TAGAWA Kyushu University Toshiya HANADA Kyushu University Kozue HASHIMOTO, Yukihito KITAZAWA, Aritsune KAWABE IHI

More information

FORENSIC ANALYSIS OF ON-ORBIT DEBRIS GENERATION EVENTS

FORENSIC ANALYSIS OF ON-ORBIT DEBRIS GENERATION EVENTS FORENSIC ANALYSIS OF ON-ORBIT DEBRIS GENERATION EVENTS Marlon Sorge (1), Glenn Peterson (2), John McVey (2) (1) The Aerospace Corporation, 2155 Louisiana Blvd Suite 5, NE Albuquerque, NM 8711, USA, Email:

More information

ACTIVITY OF RUSSIAN FEDERATION ON SPACE DEBRIS PROBLEM

ACTIVITY OF RUSSIAN FEDERATION ON SPACE DEBRIS PROBLEM ACTIVITY OF RUSSIAN FEDERATION ON SPACE DEBRIS PROBLEM 51-th session of the UN Committee on the Peaceful Uses of Outer Space (COPUOS) 1 Federal Space Agency of Russia continues consecutive activity in

More information

How to Improve Small Satellite Missions in Two Easy Steps:

How to Improve Small Satellite Missions in Two Easy Steps: How to Improve Small Satellite Missions in Two Easy Steps: Adopting Space Debris Mitigation Guidelines and Improving Space Surveillance Network Tracking Support G. Taft DeVere Jason C. Randolph Headquarters

More information

ORBITAL DECAY PREDICTION AND SPACE DEBRIS IMPACT ON NANO-SATELLITES

ORBITAL DECAY PREDICTION AND SPACE DEBRIS IMPACT ON NANO-SATELLITES Journal of Science and Arts Year 16, No. 1(34), pp. 67-76, 2016 ORIGINAL PAPER ORBITAL DECAY PREDICTION AND SPACE DEBRIS IMPACT ON NANO-SATELLITES MOHAMMED CHESSAB MAHDI 1 Manuscript received: 22.02.2016;

More information

What Happened to BLITS? An Analysis of the 2013 Jan 22 Event

What Happened to BLITS? An Analysis of the 2013 Jan 22 Event What Happened to BLITS? An Analysis of the 2013 Jan 22 Event T.S. Kelso Center for Space Standards & Innovation N.N. Parkhomenko, V.D. Shargorodsky, V.P. Vasiliev, V.S. Yurasov Open Joint-Stock Company

More information

Analytical Method for Space Debris propagation under perturbations in the geostationary ring

Analytical Method for Space Debris propagation under perturbations in the geostationary ring Analytical Method for Space Debris propagation under perturbations in the geostationary ring July 21-23, 2016 Berlin, Germany 2nd International Conference and Exhibition on Satellite & Space Missions Daniel

More information

Past and Future Climate of Thermospheric Density: Solar and Anthropogenic Influences

Past and Future Climate of Thermospheric Density: Solar and Anthropogenic Influences Past and Future Climate of Thermospheric Density: Solar and Anthropogenic Influences Thermosphere energy balance Thermosphere climate from satellite drag Attribution of 2008 solar minimum behavior Scenarios

More information

Marlene H. Dortch Secretary, Federal Communications Commission th Street, S.W. Washington, D.C

Marlene H. Dortch Secretary, Federal Communications Commission th Street, S.W. Washington, D.C 1776 K STREET NW WASHINGTON, DC 20006 PHONE 202.719.7000 November 10, 2016 Jennifer D. Hindin 202.719.4975 JHindin@wileyrein.com www.wileyrein.com VIA IBFS Marlene H. Dortch Secretary, Federal Communications

More information

CRITICAL NUMBER OF SPACECRAFT IN LOW EARTH ORBIT: USING SATELLITE FRAGMENTATION DATA TO EVALUATE THE STABILITY OF THE ORBITAL DEBRIS ENVIRONMENT

CRITICAL NUMBER OF SPACECRAFT IN LOW EARTH ORBIT: USING SATELLITE FRAGMENTATION DATA TO EVALUATE THE STABILITY OF THE ORBITAL DEBRIS ENVIRONMENT CRITICAL NUMBER OF SPACECRAFT IN LOW EARTH ORBIT: USING SATELLITE FRAGMENTATION DATA TO EVALUATE THE STABILITY OF THE ORBITAL DEBRIS ENVIRONMENT Donald J. Kessler (1), Phillip D. Anz-Meador (2) (1) Consultant,

More information

RISK INDUCED BY THE UNCATALOGUED SPACE DEBRIS POPULATION IN THE PRESENCE OF LARGE CONSTELLATIONS

RISK INDUCED BY THE UNCATALOGUED SPACE DEBRIS POPULATION IN THE PRESENCE OF LARGE CONSTELLATIONS RISK INDUCED BY THE UNCATALOGUED SPACE DEBRIS POPULATION IN THE PRESENCE OF LARGE CONSTELLATIONS REVELIN Bruno (1), DOLADO-PEREZ Juan-Carlos (2) (1) CS-SI, 5 Rue Brindejonc des Moulinais, 31506 Toulouse

More information

DEBRIS IMPACT ON LOW EARTH ORBIT SPACE MISSION

DEBRIS IMPACT ON LOW EARTH ORBIT SPACE MISSION PROCEEDING OF THE 4 TH SOUTHEAST ASIA ASTRONOMY NETWORK MEETING, BANDUNG 1-11 OCTOBER 212 Editor: D. Herdiwijaya DEBRIS IMPACT ON LOW EARTH ORBIT SPACE MISSION DHANI HERDIWIJAYA Astronomy Research Division

More information

Space Debris Mitigation Activities at ESA in 2013

Space Debris Mitigation Activities at ESA in 2013 Space Debris Mitigation Activities at ESA in 2013 Heiner Klinkrad ESA Space Debris Office H. Klinkrad (ESA) 51st UNCOPUOS STSC 14-Feb-2014 page 1 ESA Launches in 2013 PROBA-V (2013-021A) launch May 7,

More information

The Inter-Agency Space Debris Coordination Committee (IADC)

The Inter-Agency Space Debris Coordination Committee (IADC) The Inter-Agency Space Debris Coordination Committee (IADC) An overview of the IADC annual activities Holger Krag, ESA IADC Chair www.iadc-online.org 54 th Session of the Scientific and Technical Subcommittee

More information

The Inter-Agency Space Debris Coordination Committee (IADC)

The Inter-Agency Space Debris Coordination Committee (IADC) The Inter-Agency Space Debris Coordination Committee (IADC) An overview of the IADC annual activities Prof. Richard Crowther, UKSA, United Kingdom IADC Chair Dr. Holger Krag, ESA/ESOC, incoming IADC Chair

More information

Consideration of Solar Activity in Models of the Current and Future Particulate Environment of the Earth

Consideration of Solar Activity in Models of the Current and Future Particulate Environment of the Earth Consideration of Solar Activity in Models of the Current and Future Particulate Environment of the Earth H. Sdunnus 1, H. Stokes, R. Walker, J. Bendisch 3, H. Klinkrad 1 eta_max space, Technologiepark

More information

A Preliminary Analysis of the Proposed USA-193 Shoot-down Geoffrey Forden 18 February 2008 (revised on 12 March 2008)

A Preliminary Analysis of the Proposed USA-193 Shoot-down Geoffrey Forden 18 February 2008 (revised on 12 March 2008) A Preliminary Analysis of the Proposed USA-193 Shoot-down Geoffrey Forden 18 February 2008 (revised on 12 March 2008) Background The target Satellite, known to the public as USA 193, was launched on 13

More information

GEO protected region: ISON capabilities to provide informational support for tasks of spacecraft flight safety and space debris removal

GEO protected region: ISON capabilities to provide informational support for tasks of spacecraft flight safety and space debris removal Russian Academy of Sciences Keldysh Institute of Applied Mathematics GEO protected region: ISON capabilities to provide informational support for tasks of spacecraft flight safety and space debris removal

More information

A Space Debris Alert System for Aviation. US Patent pending Inventor: T. Sgobba - ESA Independent Safety Office

A Space Debris Alert System for Aviation. US Patent pending Inventor: T. Sgobba - ESA Independent Safety Office A Space Debris Alert System for Aviation US Patent pending Inventor: T. Sgobba - ESA Independent Safety Office Re-entry breakup basics Space systems in LEO reenter naturally at very shallow angle (

More information

Optical Tracking and Characterization of Space Objects

Optical Tracking and Characterization of Space Objects Optical Tracking and Characterization of Space Objects T. Schildknecht Astronomical Institute, University of Bern, Switzerland Deutsche Physikalische Gesellschaft, Arbeitsgruppe Physik und Abrüstung, Frühjahrstagung

More information

Asia-Pacific ground-base Optical Satellite Observation System APOSOS

Asia-Pacific ground-base Optical Satellite Observation System APOSOS Asia-Pacific ground-base Optical Satellite Observation System APOSOS Center for Research and Application of Space Debris National Astronomical Observatories, CAS GUO Xiaozhong Oct 2011 Outline Space debris

More information

Catcher s Mitt Final Report

Catcher s Mitt Final Report Catcher s Mitt Final Report Wade Pulliam, PhD Program Manager, Tactical Technology Office, Defense Advanced Research Projects Agency 1 1 Executive Summary Since the advent of the space age, more than thirty-five

More information

Statistical methods to address the compliance of GTO with the French Space Operations Act

Statistical methods to address the compliance of GTO with the French Space Operations Act Statistical methods to address the compliance of GTO with the French Space Operations Act 64 th IAC, 23-27 September 2013, BEIJING, China H.Fraysse and al. Context Space Debris Mitigation is one objective

More information

THE KESSLER SYNDROME: IMPLICATIONS TO FUTURE SPACE OPERATIONS

THE KESSLER SYNDROME: IMPLICATIONS TO FUTURE SPACE OPERATIONS (Preprint) AAS 10-016 THE KESSLER SYNDROME: IMPLICATIONS TO FUTURE SPACE OPERATIONS Donald J. Kessler, * Nicholas L. Johnson, and J.-C. Liou, and Mark Matney INTRODUCTION The term Kessler Syndrome is an

More information

Overview of JAXA Activities on Sustainable Space Development and Space Situational Awareness

Overview of JAXA Activities on Sustainable Space Development and Space Situational Awareness Overview of JAXA Activities on Sustainable Space Development and Space Situational Awareness 26 February 2015 Shizuo YAMAMOTO Vice President, JAXA CONTENTS 1. Japan s Space Activities Structure 2. JAXA

More information

New Observation Results from A Rotating-drift-scan CCD System

New Observation Results from A Rotating-drift-scan CCD System New Observation Results from A Rotating-drift-scan CCD System TANG Zheng-Hong, MAO Yin-Dun, LI Yan, YU Yong Shanghai Astronomical Observatory, Chinese Academy of Sciences Abstract: A Rotating-drift-scan

More information

Space Debris Re-entries and Aviation Safety

Space Debris Re-entries and Aviation Safety IAASS Space Debris Re-entries and Aviation Safety By Tommaso Sgobba IAASS President (iaass.president@gmail.com) International Association for the Advancement of Space Safety 1 Space debris as re-entry

More information

9 th US/Russian Space Surveillance Workshop

9 th US/Russian Space Surveillance Workshop 9 th US/Russian Space Surveillance Workshop Real-Time Monitoring and Warning of Near- Earth Space Dangerous Events for Mission Control by MCC TSNIIMASH Federal State Unitary Enterprise Speakers: V. M.

More information

End of Life Re-orbiting The Meteosat-5 Experience

End of Life Re-orbiting The Meteosat-5 Experience End of Life Re-orbiting The Meteosat-5 Experience Milan EUMETSAT, Darmstadt, Germany This article illustrates the orbit maneuver sequence performed during Meteosat- 5 End of Life (EOL) re-orbiting operations

More information

Panel on the Challenge of Orbital Debris

Panel on the Challenge of Orbital Debris Panel on the Challenge of Orbital Debris Bhavya Lal, Ph.D. Session Moderator Space Studies Board National Academies of Sciences, Engineering, Medicine May 1, 2018 A little history of man -made debris Vanguard-I,

More information

AKATSUKI s Second Journey to Venus. 7 October 2015 Chikako Hirose Japan Aerospace Exploration Agency

AKATSUKI s Second Journey to Venus. 7 October 2015 Chikako Hirose Japan Aerospace Exploration Agency AKATSUKI s Second Journey to Venus 7 October 2015 Chikako Hirose Japan Aerospace Exploration Agency My STK usage history (2005-2009) JAXA conjunction assessment system JAXA CA system was developed in 2007

More information

Analysis of the Iridium 33 and Cosmos 2251 Collision using Velocity Perturbations of the Fragments

Analysis of the Iridium 33 and Cosmos 2251 Collision using Velocity Perturbations of the Fragments Advances in Aerospace Science and Applications. Volume 3, Number 1 (213), pp. 13-25 Research India Publications http://www.ripublication.com/aasa.htm Analysis of the Iridium 33 and Cosmos 2251 Collision

More information

Introduction to Satellite Orbits

Introduction to Satellite Orbits Introduction to Satellite Orbits Dinesh Manandhar Center for Spatial Information Science The University of Tokyo Contact Information: dinesh@iis.u-tokyo.ac.jp Slide : 1 Basics of Satellite Orbits The speed

More information

CHAPTER 3 PERFORMANCE

CHAPTER 3 PERFORMANCE PERFORMANCE The launch performance given in this chapter is based on the following assumptions: The LV system parameters being all nominal values; Mass of the LV adapter and the separation system are included

More information

Passive Orbital Debris Removal Using Special Density Materials

Passive Orbital Debris Removal Using Special Density Materials Passive Orbital Debris Removal Using Special Density Materials Hiroshi Hirayama( 平山寛 ) Toshiya Hanada( 花田俊也 ) Yuya Ariyoshi( 有吉雄哉 ) Kyushu University, Fukuoka, Japan Supported by IHI Corporation, Tokyo,

More information

SENSITIVITY OF THE SPACE DEBRIS ENVIRONMENT TO LARGE CONSTELLATIONS AND SMALL SATELLITES

SENSITIVITY OF THE SPACE DEBRIS ENVIRONMENT TO LARGE CONSTELLATIONS AND SMALL SATELLITES SENSITIVITY OF THE SPACE DEBRIS ENVIRONMENT TO LARGE CONSTELLATIONS AND SMALL SATELLITES H.G. Lewis (1), J. Radtke (2), A. Rossi (3), J. Beck (4), M. Oswald (5), P. Anderson (6), B. Bastida Virgili (7),

More information

The use of ASPOS OKP System in the interests of ensuring the safety of space operations and increasing awareness about the situation in high orbits

The use of ASPOS OKP System in the interests of ensuring the safety of space operations and increasing awareness about the situation in high orbits The use of ASPOS OKP System in the interests of ensuring the safety of space operations and increasing awareness about the situation in high orbits Committee on the Peaceful Uses of Outer Space 61 st session,

More information

Sustainable activities in space: Space debris problematic in a nutshell

Sustainable activities in space: Space debris problematic in a nutshell Sustainable activities in space: Space debris problematic in a nutshell Christophe BONNAL CNES, Launcher Directorate Chairman IAA Space Debris Committee OUTLINE Evolution of the orbital population Casualty

More information

A.I. Nazarenko 1

A.I. Nazarenko 1 Model Study of the Possibilities of Space Debris Cataloging A.I. Nazarenko 1 anazarenko32@mail.ru The objective of this paper is the estimation of the characteristics of the measuring means and the software,

More information

Velocity Perturbations Analysis of Cosmos 1375 Fragmentation by a Combination Method

Velocity Perturbations Analysis of Cosmos 1375 Fragmentation by a Combination Method Advances in Aerospace Science and Applications. Volume 3, Number 1 (13), pp. 27-34 Research India Publications http://www.ripublication.com/aasa.htm Velocity Perturbations Analysis of Cosmos 1375 Fragmentation

More information

New Observation Results from A Rotating-drift-scan CCD System

New Observation Results from A Rotating-drift-scan CCD System New Observation Results from A Rotating-drift-scan CCD System TANG Zhenghong, MAO Yindun, LI Yan, YU Yong Shanghai Astronomical Observatory 2011-10 TANG Zhenghong 1 Background Up to now, the number of

More information

DESIGN STANDARD. Micro-debris Impact Survivability Assessment Procedure

DESIGN STANDARD. Micro-debris Impact Survivability Assessment Procedure DESIGN STANDARD Micro-debris Impact Survivability Assessment Procedure May 10, 2012 Japan Aerospace Exploration Agency This is an English translation of. Whenever there is anything ambiguous in this document,

More information

Collision Risk Assessment for Spacecraft with CASS

Collision Risk Assessment for Spacecraft with CASS Collision Risk Assessment for Spacecraft with CASS Ma Chaowei 2011, 17-18 Oct 2011 Beijing Institute of Tracking and Telecommunications Technology Ma Chaowei 2 Contents Introduction Basic Information of

More information

How Can Small Satellites be used to Support Orbital Debris Removal Goals Instead of Increasing the Problem?

How Can Small Satellites be used to Support Orbital Debris Removal Goals Instead of Increasing the Problem? How Can Small Satellites be used to Support Orbital Debris Removal Goals Instead of Increasing the Problem? August 19, 2010 Jose Guerrero, Jon Manash, Kevin McKee, Matt Russell, Steve Stone and Doyle Towles

More information

Orbital Anomaly Detection and Application of Space Object

Orbital Anomaly Detection and Application of Space Object Orbital Anomaly Detection and Application of Space Object Lei CHEN *, Xianzong BAI, Taotao ZHANG College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 473,China

More information

SPACE DEBRIS. Hazard Evaluation and Mitigation. Edited by. Nickolay N. Smirnov. Moscow M.V. Lomonosov State University, Moscow, Russia

SPACE DEBRIS. Hazard Evaluation and Mitigation. Edited by. Nickolay N. Smirnov. Moscow M.V. Lomonosov State University, Moscow, Russia SPACE DEBRIS Hazard Evaluation and Mitigation Edited by Nickolay N. Smirnov Moscow M.V. Lomonosov State University, Moscow, Russia London and New York CONTENTS Preface Contributors ix xi Chapter 1: Orbital

More information

RECENT SPACE DEBRIS MITIGATION ACTIVITIES IN FRANCE F.ALBY

RECENT SPACE DEBRIS MITIGATION ACTIVITIES IN FRANCE F.ALBY RECENT SPACE DEBRIS MITIGATION ACTIVITIES IN FRANCE F.ALBY GEO END OF LIFE WORKSHOP BACKGROUND Particularity of the GEO orbit: unique resource Need to protect and to keep available orbital positions Mitigation

More information

OPERATIONAL IMPACT OF IMPROVED SPACE TRACKING ON COLLISION AVOIDANCE IN THE FUTURE LEO SPACE DEBRIS ENVIRONMENT

OPERATIONAL IMPACT OF IMPROVED SPACE TRACKING ON COLLISION AVOIDANCE IN THE FUTURE LEO SPACE DEBRIS ENVIRONMENT OPERATIONAL IMPACT OF IMPROVED SPACE TRACKING ON COLLISION AVOIDANCE IN THE FUTURE LEO SPACE DEBRIS ENVIRONMENT David Sibert ExoAnlaytic Solutions, Inc. Kaneohe, HI (Operational Impact Assessment) Maj

More information

SPACE DEBRIS CHASER CONSTELLATION

SPACE DEBRIS CHASER CONSTELLATION THE VISION SPACE DEBRIS CHASER CONSTELLATION Constellation management Application to SSO debris Inclination between 98 and 99.5 Altitude between 750 km and 850 km Constellation of 38 Cubesats Low-thrust

More information

LAUNCHES AND LAUNCH VEHICLES. Dr. Marwah Ahmed

LAUNCHES AND LAUNCH VEHICLES. Dr. Marwah Ahmed LAUNCHES AND LAUNCH VEHICLES Dr. Marwah Ahmed Outlines 2 Video (5:06 min) : https://youtu.be/8t2eyedy7p4 Introduction Expendable Launch Vehicles (ELVs) Placing Satellite into GEO Orbit Introduction 3 Introduction

More information

Deorbiting Upper-Stages in LEO at EOM using Solar Sails

Deorbiting Upper-Stages in LEO at EOM using Solar Sails Deorbiting Upper-Stages in LEO at EOM using Solar Sails Alexandru IONEL* *Corresponding author INCAS National Institute for Aerospace Research Elie Carafoli, B-dul Iuliu Maniu 220, Bucharest 061126, Romania,

More information

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010 Orbit Design Marcelo Suárez Orbit Design Requirements The following Science Requirements provided drivers for Orbit Design: Global Coverage: the entire extent (100%) of the ice-free ocean surface to at

More information

SAFETY AND RISK ANALYSIS CAPABILITIES OF ASTOS

SAFETY AND RISK ANALYSIS CAPABILITIES OF ASTOS SAFETY AND RISK ANALYSIS CAPABILITIES OF ASTOS S. Weikert (1), T. Scholz (2), F. Cremaschi (3) (1) Astos Solutions GmbH, Meitnerstr. 10, 70563 Stuttgart, Germany, Email: sven.weikert@astos.de (2) Astos

More information

COLLISION RISK ASSESSMENT AND MITIGATION STRATEGY FOR THE GSOC GEO SATELLITES

COLLISION RISK ASSESSMENT AND MITIGATION STRATEGY FOR THE GSOC GEO SATELLITES COLLISION RISK ASSESSMENT AND MITIGATION STRATEGY FOR THE GSOC GEO SATELLITES Saika Aida (1), Michael Kirschner (2), Florian Meissner (3) (1) DLR German Space Operations Center (GSOC), Münchner Str.20,

More information

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit Ryan Tyler, D.J. McComas, Howard Runge, John Scherrer, Mark Tapley 1 IBEX Science Requirements IBEX

More information

DE-ORBITATION STUDIES AND OPERATIONS FOR SPIRALE GTO SATELLITES

DE-ORBITATION STUDIES AND OPERATIONS FOR SPIRALE GTO SATELLITES DE-ORBITATION STUDIES AND OPERATIONS FOR SPIRALE GTO SATELLITES François BONAVENTURE (1), Slim LOCOCHE (2), Anne-Hélène GICQUEL (3) (1) Tel. (+33) (0)5 62 19 74 27, E-mail. francois.bonaventure@astrium.eads.net

More information

Sub-millimeter size debris monitoring system with IDEA OSG 1

Sub-millimeter size debris monitoring system with IDEA OSG 1 Sub-millimeter size debris monitoring system with IDEA OSG 1 Masahiko Uetsuhara, Mitsunobu Okada, Yasunori Yamazaki, Astroscale Pte. Ltd. Toshiya Hanada Kyushu University ABSTRACT The 20-kg class microsatellite

More information

Proposed Series of Orbital Debris Remediation Activities

Proposed Series of Orbital Debris Remediation Activities Proposed Series of Orbital Debris Remediation Activities Darren McKnight (1), Kris Walbert (2) (1) Integrity Applications, 15020 Conference Center Dr, Chantilly, VA US 20151; Email:dmcknight@integrity-apps.com

More information

Space Systems Space Debris Mitigation

Space Systems Space Debris Mitigation ISO 2006 All rights reserved ISO TC 20/SC 14 N 24113 Date: 2009-03-03 ISO/CD 24113-6.1 ISO TC 20/SC 14/WG 3 Secretariat: ANSI Space Systems Space Debris Mitigation Systèmes spatiaux Mitigation des Débris

More information

Velocity Perturbations Analysis of the Explosive Fragmentation of Briz-M Rocket Body (38746)

Velocity Perturbations Analysis of the Explosive Fragmentation of Briz-M Rocket Body (38746) Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 3, Number 2 (213), pp. 47-56 Research India Publications http://www.ripublication.com/aasa.htm Velocity Perturbations Analysis of the

More information

CONCEPTUAL DESIGN OF A SPACE VEHICLE FOR ORBITAL DEBRIS PROTECTION

CONCEPTUAL DESIGN OF A SPACE VEHICLE FOR ORBITAL DEBRIS PROTECTION CONCEPTUAL DESIGN OF A SPACE VEHICLE FOR ORBITAL DEBRIS PROTECTION 4162 Thesis Submitted by: Student #: Thesis Advisor: Date Submitted: Daniel Thomson 7753146 Dr. Igor Telichev 10/18/2013 Department of

More information

QB50 Proposed Deployment ConOps. Dan Oltrogge Center for Space Standards and Innovation Co-Lead, QB50 Orbit Dynamics Working Group

QB50 Proposed Deployment ConOps. Dan Oltrogge Center for Space Standards and Innovation Co-Lead, QB50 Orbit Dynamics Working Group QB50 Proposed Deployment ConOps Dan Oltrogge Center for Space Standards and Innovation Co-Lead, QB50 Orbit Dynamics Working Group 25 Apr 2014 Proposed QB50 Deployment ConOps Want to develop and characterize

More information

Current issues in Space Situational Awareness (SSA) and Space Traffic Management (STM)

Current issues in Space Situational Awareness (SSA) and Space Traffic Management (STM) Current issues in Space Situational Awareness (SSA) and Space Traffic Management (STM) Satellite and Space Missions Berlin Germany, July 21-23, 2016 Dr. Mark A. Skinner Copyright 2011 Boeing. All rights

More information

A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network

A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network JIANG Hai University of Chinese Academy of Sciences National Astronomical Observatories, Chinese Academy of Sciences

More information

Accuracy Assessment of SGP4 Orbit Information Conversion into Osculating Elements

Accuracy Assessment of SGP4 Orbit Information Conversion into Osculating Elements Accuracy Assessment of SGP4 Orbit Information Conversion into Osculating Elements Saika Aida (1), Michael Kirschner (2) (1) DLR German Space Operations Center (GSOC), Oberpfaffenhofen, 82234 Weßling, Germany,

More information

Ball Aerospace & Technologies Corp. & L Garde Inc.

Ball Aerospace & Technologies Corp. & L Garde Inc. Ball Aerospace & Technologies Corp. & L Garde Inc. Rapid De-Orbit of LEO Space Vehicles Using Towed owed Rigidizable Inflatable nflatable Structure tructure (TRIS) Technology: Concept and Feasibility Assessment

More information

INDEMN. A long-term collision risk prediction tool for constellation design. Romain Lucken, Damien Giolito,

INDEMN. A long-term collision risk prediction tool for constellation design. Romain Lucken, Damien Giolito, INDEMN A long-term collision risk prediction tool for constellation design Romain Lucken, Damien Giolito, romain.lucken@sharemyspace.global 5th European Workshop on Space Debris Modeling and Remediation

More information

Assessment and Categorization of TLE Orbit Errors for the US SSN Catalogue

Assessment and Categorization of TLE Orbit Errors for the US SSN Catalogue Assessment and Categorization of TLE Orbit Errors for the US SSN Catalogue Tim Flohrer Aboa Space Research Oy (ASRO) at Space Debris Office, ESA/ESOC, Darmstadt, Germany Tim.Flohrer@esa.int Holger Krag

More information