AstroTalk: Behind the news headlines of April June 2018

Size: px
Start display at page:

Download "AstroTalk: Behind the news headlines of April June 2018"

Transcription

1 AstroTalk: Behind the news headlines of April June 2018 Richard de Grijs ( 锐何思 ) (Macquarie University, Sydney, Australia) Gaia s second data release: a genuine treasure trove for star hunters In April of this year, the much-awaited second slew of data from the European Space Agency s Gaia mission was released, providing information on a phenomenal 1.7 billion stars the richest star catalogue to date. To put that vast number into context, if you were to count only to one billion at a rate of one count per second, it would take you more than 30 years. The new data will surely keep astronomers busy for even longer. A multitude of discoveries are on the horizon after this much awaited release, which is based on 22 months of charting the sky. The new data include positions, distance indicators and motions of more than one billion stars, along with highprecision measurements of asteroids within our solar system and of stars beyond our own Milky Way Galaxy. The dataset has already revealed previously unseen details about the make-up of the Milky Way s stellar population and about how stars move, essential information for investigating the formation and evolution of our Galaxy. The observations collected by Gaia are redefining the foundations of astronomy, says Günther Hasinger, ESA Director of Science. Gaia is an ambitious mission that relies on a huge human collaboration to make sense of a large volume of highly complex data. It demonstrates the need for longterm projects to guarantee progress in space science and technology and to implement even more daring scientific missions of the coming decades. The new data release pins down the positions of nearly 1.7 billion stars, and with a much greater precision than before. For some of the brightest stars in the survey, the level of precision equates to Earth-bound observers being able to spot a coin lying on the surface of the Moon. With these accurate measurements it is possible to separate the parallax of stars an apparent shift on the sky caused by Earth s annual orbit around our Sun from their true movements through the Galaxy. The new catalogue lists the parallaxes and velocities across the sky, or proper motions, for more than 1.3 billion stars. From the most accurate parallax measurements, about ten per cent of the total, astronomers can directly estimate distances to individual stars. The second Gaia data release represents a huge leap forward with respect to ESA s Hipparcos satellite, Gaia s predecessor and the first space mission for astrometry, which surveyed some 118,000 stars almost thirty years ago, says Anthony Brown of Leiden University in the Netherlands.

2 The sheer number of stars alone, with their positions and motions, would make Gaia's new catalogue already quite astonishing, adds Brown. But there is more: this unique scientific catalogue includes many other data types, with information about the properties of the stars and other celestial objects, making this release truly exceptional. As well as positions, the data include brightness information of all surveyed stars and colour measurements of nearly all, plus information on how the brightness and colour of half a million variable stars change over time. It also contains the velocities along the line of sight of a subset of seven million stars, the surface temperatures of about a hundred million and the effects of interstellar dust on 87 million. Gaia also observed objects in our solar system: the second data release comprises the positions of more than 14,000 known asteroids, which allows precise determination of their orbits. A much larger asteroid sample will be compiled in Gaia s future releases. Further afield, Gaia closed in on the positions of half a million distant quasars, bright galaxies powered by the activity of the supermassive black holes in their cores. These sources are used to define a reference frame for the celestial coordinates of all objects in the Gaia catalogue, something that is routinely done in radio waves but now for the first time is also possible at optical wavelengths. Major discoveries are expected to come once scientists start exploring Gaia s new release. The new Gaia data are so powerful that exciting results are just jumping at us, says Antonella Vallenari from the Istituto Nazionale di Astrofisica (INAF) and the Astronomical Observatory of Padova, Italy. For example, we have constructed the most detailed Hertzsprung Russell diagram of stars ever made on the full sky and we can already spot some interesting trends. It feels like we are inaugurating a new era of Galactic archaeology. Named after the two astronomers who devised it in the early twentieth century, the Hertzsprung Russell diagram compares the intrinsic brightness of stars with their colour and is a fundamental tool to study populations of stars and their evolution. A new version of this diagram, based on four million stars within five thousand light-years from the Sun selected from the Gaia catalogue, reveals many fine details for the first time. This includes the signature of different types of white dwarfs the dead remnants of stars like our Sun such that a differentiation can be made between those with hydrogen-rich cores and those dominated by helium. Combined with Gaia measurements of star velocities, the diagram enables astronomers to distinguish between various populations of stars of different ages that are located in different regions of the Milky Way, such as the disk and the halo the spherical cloud of stars surrounding the main disk and bulge of

3 our Galaxy and that formed in different ways. Further scrutiny suggests that the fast-moving stars thought to belong to the halo encompass two stellar populations that originated via two different formation scenarios, calling for more detailed investigations. Gaia will greatly advance our understanding of the Universe on all cosmic scales, says Timo Prusti, Gaia project scientist at ESA. Even in the neighbourhood of the Sun, which is the region we thought we understood best, Gaia is revealing new and exciting features. For a subset of stars within a few thousand light-years of the Sun, Gaia has measured the velocity in all three dimensions, revealing patterns in the motions of stars that are orbiting the Galaxy at similar speeds. In fact, the Milky Way has likely formed in part from the merging of many smaller systems. How exactly that happened, is still a puzzle, however. To learn more about the history of formation of the Milky Way, astronomers from the University of Groningen in the Netherlands and the University of California at Riverside in the USA inspected the motions of stars in the Galactic halo. Stars in the halo are more pristine than those in the central regions and the Galactic disk, and they spend most of their time outside of the disk-like structure that gives the Milky Way its name. It is thought that these halo stars are the stars that joined the Milky Way onboard of small galaxies. For this study, a team led by my colleague Amina Helmi, professor of dynamics, structure and formation of the Milky Way at the University of Groningen, combined the vast Gaia dataset with data from the RAVE survey. The researchers discovered that a large fraction of the halo stars travel in groups. Helmi: This indicates that the stars indeed originate from small galaxies that were cannibalised by the Milky Way a very long time ago. The astronomers describe these groups as large flows of stars like flocks of birds traveling together through the Milky Way. We believe there might be tens or even hundreds such flocks. At the moment, we only see small groups with just a few stars, but that is probably because we do not yet have all the necessary data. The team were bewildered of the behaviour of halo stars that spend most of the time in the outskirts of the Milky Way. Surprisingly, more than 70% of those stars appear to be moving in the opposite sense than the vast majority of stars in the Milky Way. Such a high fraction is unexpected in current models. Helmi: One may compare stars from the outer halo with commuters that drive the wrong way. We do not yet quite understand why.

4 These discoveries were made using halo stars that, in their journey through the Milky Way, are by chance currently close to the Sun. Gaia will provide us with data from stars from all over the Milky Way. Helmi: With such data we will get many new insights on how the Milky Way formed and be able to reconstruct its genealogy tree. The team discovered relics of merger events in the Milky Way halo. Five small groups of stars appear to represent mergers with smaller galaxies, while a big blob comprising hundreds of stars appears to be the remnant of a large merger event. Our aim is to study how the Milky Way has evolved, says Helmer Koppelman, a Ph.D. student in Helmi s research group. The idea is that smaller galaxies merge to form larger ones. One of the questions is whether a lot of small galaxies merge, or a few large ones. As most stars in the Milky Way s halo are thought to be remnants of merger events, Koppelman and his colleagues focused on halo stars in the Gaia data. We collected information from stars within 3000 light years of the Sun, as the accuracy of the position and movement is highest for stars that are near us, Koppelman explains. The first step was to filter out the stars from the Milky Way disk. These stars move around the centre of the disk, so are easily identified. What remained were about 6000 halo stars. By calculating their trajectory, Koppelman was able to identify stars with a shared origin. We discovered five small clusters which we believe are remnants of five merger events. However, many of the remaining stars also appeared to have a shared history. These stars form a huge blob with a retrograde movement compared to the disk. This suggests they are the result of a merger with a large galaxy. In fact, we believe that this merger event must have remodelled the disk in our Milky Way. A more detailed study of the nature of this merger is now underway. At this point in time, we can say that our Milky Way was shaped by a massive merger event and some smaller mergers. Koppelman also looked for stars belonging to the Helmi stream, which is named after his Ph.D. supervisor who identified it back in 1999 as the remnant of a merger event. Up to now, fewer than 20 stars belonging to the Helmi stream had been identified. The Gaia data has added over 100 new stars. Further analysis should clarify the nature of the galaxy that produced this stream. We will also be looking at stars beyond 3000 light-years to discover more members

5 of the different streams we identified. Together with simulations of galaxy evolution, this should give us exciting new insights into the evolution of the Milky Way. At Gaia s precision, it is also possible to see the motions of stars within some globular clusters ancient systems of stars bound together by gravity and found in the halo of the Milky Way and within our neighbouring galaxies, the Small and Large Magellanic Clouds. Gaia data were used to derive the orbits of 75 globular clusters and 12 dwarf galaxies that revolve around the Milky Way, providing all-important information to study the past evolution of our Galaxy and its environment, the gravitational forces that are at play, and the distribution of the elusive dark matter that permeates galaxies. Measuring the proper motion of several million stars in the Large Magellanic Cloud, astronomers were able to see an imprint of the stars rotating clockwise around the centre of the galaxy. Gaia is astronomy at its finest, says Fred Jansen, Gaia mission manager at ESA. Scientists will be busy with this data for many years, and we are ready to be surprised by the avalanche of discoveries that will unlock the secrets of our Galaxy. Figure 1: Gaia s all-sky view of our Milky Way Galaxy and neighbouring galaxies, based on measurements of nearly 1.7 billion stars. The map shows the total brightness and colour of stars observed by the ESA satellite in each portion of the sky between July 2014 and May Brighter regions indicate denser concentrations of especially bright stars, while darker regions correspond to patches of the sky where fewer bright stars are observed. The colour representation is obtained by combining the total amount of light with the amount of blue and red light recorded by Gaia in each patch of the sky. The bright horizontal structure that dominates the image is the Galactic plane, the flattened disk that hosts most of the stars in our Galaxy. In the middle of the image, the Galactic centre appears vivid and teeming with stars. Darker regions across the Galactic plane correspond to foreground clouds of interstellar gas and

6 dust, which absorb the light of stars located further away, behind the clouds. Many of these conceal stellar nurseries where new generations of stars are being born. Sprinkled across the image are also many globular and open clusters groupings of stars held together by their mutual gravity, as well as entire galaxies beyond our own. The two bright objects in the lower right of the image are the Large and Small Magellanic Clouds, two dwarf galaxies orbiting the Milky Way. (Credit: Gaia Data Processing and Analysis Consortium (DPAC); A. Moitinho / A. F. Silva / M. Barros / C. Barata, University of Lisbon, Portugal; H. Savietto, Fork Research, Portugal)

7 Figure 2: Gaia s all-sky view of our Milky Way Galaxy and neighbouring galaxies. The maps show the total brightness and colour of stars (top), the total density of stars (middle) and the interstellar dust that fills the Galaxy (bottom). (Credit: Gaia Data Processing and Analysis Consortium (DPAC); Top and middle: A. Moitinho / A. F. Silva / M. Barros / C. Barata, University of Lisbon, Portugal; H. Savietto, Fork Research, Portugal;Bottom: Gaia Coordination Unit 8; M. Fouesneau / C. Bailer-Jones, Max Planck Institute for Astronomy, Heidelberg, Germany)

8 Figure 3: Left panel: different star streams (coloured dots), the Milky Way disk (blue) and in black the rest of the halo stars, in which the horizontal cigar-shaped blob is visible. Right panel: same data, now seen form a 90 degree rotated angle. (Credit: Koppelman et al.) Figure 4: The Milky Way disk is embedded in a roundish halo of stars. The stars (in purple) are from a computer simulation of the remains from a merger with a small galaxy. The arrows indicate the motion of these stars that are now part of the halo. Larger arrows indicate faster motion. The astronomers suspect that tens to hundreds of such flows of stars are criss-crossing the Milky Way. (Credit: Amina Helmi/Jovan Veljanoski/Maarten Breddels/University of Groningen)

9 Figure 5: This image of the Large Magellanic Cloud combines the total density of stars detected by Gaia in each pixel with information about the proper motion of stars their velocity across the sky which is represented as the texture of the image, giving it a fingerprint-like appearance. Measuring the proper motion of several million stars, astronomers were able to see an imprint of the stars rotating clockwise around the centre of the galaxy. The impression of motion is evoked by the swirling nature of the line texture. (Credit: ESA/Gaia/DPAC)

10

Galaxies. CESAR s Booklet

Galaxies. CESAR s Booklet What is a galaxy? Figure 1: A typical galaxy: our Milky Way (artist s impression). (Credit: NASA) A galaxy is a huge collection of stars and interstellar matter isolated in space and bound together by

More information

PDF / WHERE IS THE CENTER OF THE MILKY WAY

PDF / WHERE IS THE CENTER OF THE MILKY WAY 10 April, 2018 PDF / WHERE IS THE CENTER OF THE MILKY WAY Document Filetype: PDF 332.68 KB 0 PDF / WHERE IS THE CENTER OF THE MILKY WAY The center of our galaxy is teeming with black holes, sort of like

More information

The Milky Way Galaxy

The Milky Way Galaxy The Milky Way Galaxy A. Expert - I have done a lot of reading in this area already. B. Above Average - I have learned some information about this topic. C. Moderate - I know a little about this topic.

More information

It is about 100,000 ly across, 2,000 ly thick, and our solar system is located 26,000 ly away from the center of the galaxy.

It is about 100,000 ly across, 2,000 ly thick, and our solar system is located 26,000 ly away from the center of the galaxy. The Galaxies The Milky Way Galaxy Is a spiral galaxy in which our solar system is located. The center of the galaxy lies in the Sagittarius Constellation. It is about 100,000 ly across, 2,000 ly thick,

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

25.2 Stellar Evolution. By studying stars of different ages, astronomers have been able to piece together the evolution of a star.

25.2 Stellar Evolution. By studying stars of different ages, astronomers have been able to piece together the evolution of a star. 25.2 Stellar Evolution By studying stars of different ages, astronomers have been able to piece together the evolution of a star. Star Birth The birthplaces of stars are dark, cool interstellar clouds,

More information

The Milky Way. Mass of the Galaxy, Part 2. Mass of the Galaxy, Part 1. Phys1403 Stars and Galaxies Instructor: Dr. Goderya

The Milky Way. Mass of the Galaxy, Part 2. Mass of the Galaxy, Part 1. Phys1403 Stars and Galaxies Instructor: Dr. Goderya Foundations Chapter of Astronomy 15 13e Our Milky Way Seeds Phys1403 Stars and Galaxies Instructor: Dr. Goderya Selected Topics in Chapter 15 A view our Milky Way? The Size of our Milky Way The Mass of

More information

8/30/2010. Classifying Stars. Classifying Stars. Classifying Stars

8/30/2010. Classifying Stars. Classifying Stars. Classifying Stars Classifying Stars In the early 1900s, Ejnar Hertzsprung and Henry Russell made some important observations. They noticed that, in general, stars with higher temperatures also have brighter absolute magnitudes.

More information

Ch. 25 In-Class Notes: Beyond Our Solar System

Ch. 25 In-Class Notes: Beyond Our Solar System Ch. 25 In-Class Notes: Beyond Our Solar System ES2a. The solar system is located in an outer edge of the disc-shaped Milky Way galaxy, which spans 100,000 light years. ES2b. Galaxies are made of billions

More information

How does the galaxy rotate and keep the spiral arms together? And what really lies at the center of the galaxy?

How does the galaxy rotate and keep the spiral arms together? And what really lies at the center of the galaxy? Ch 14: Mysteries of the Milky Way How does the galaxy rotate and keep the spiral arms together? And what really lies at the center of the galaxy? The Structure of the Galaxy We know that our galaxy has

More information

9.6. Other Components of the Universe. Star Clusters. Types of Galaxies

9.6. Other Components of the Universe. Star Clusters. Types of Galaxies Other Components of the Universe 9.6 The most common type of celestial object astronomers see in space is a star. Most stars appear to be gravitationally bound together into groups, and some groups are

More information

Stars and Galaxies 1

Stars and Galaxies 1 Stars and Galaxies 1 Characteristics of Stars 2 Star - body of gases that gives off great amounts of radiant energy as light and heat 3 Most stars look white but are actually different colors Antares -

More information

ASTR 200 : Lecture 22 Structure of our Galaxy

ASTR 200 : Lecture 22 Structure of our Galaxy ASTR 200 : Lecture 22 Structure of our Galaxy 1 The 'Milky Way' is known to all cultures on Earth (perhaps, unfortunately, except for recent city-bound dwellers) 2 Fish Eye Lens of visible hemisphere (but

More information

Directed Reading A. Section: The Life Cycle of Stars TYPES OF STARS THE LIFE CYCLE OF SUNLIKE STARS A TOOL FOR STUDYING STARS.

Directed Reading A. Section: The Life Cycle of Stars TYPES OF STARS THE LIFE CYCLE OF SUNLIKE STARS A TOOL FOR STUDYING STARS. Skills Worksheet Directed Reading A Section: The Life Cycle of Stars TYPES OF STARS (pp. 444 449) 1. Besides by mass, size, brightness, color, temperature, and composition, how are stars classified? a.

More information

Beyond Our Solar System Chapter 24

Beyond Our Solar System Chapter 24 Beyond Our Solar System Chapter 24 PROPERTIES OF STARS Distance Measuring a star's distance can be very difficult Stellar parallax Used for measuring distance to a star Apparent shift in a star's position

More information

This Week in Astronomy

This Week in Astronomy Homework #8 Due Wednesday, April 18, 11:59PM Covers Chapters 15 and 16 Estimated time to complete: 40 minutes Read chapters, review notes before starting This Week in Astronomy Credit: NASA/JPL-Caltech

More information

5) Which stage lasts the longest? a) viii b) I c) iv d) iii e) vi

5) Which stage lasts the longest? a) viii b) I c) iv d) iii e) vi 1) Which of the following statements about globular clusters is false? a) Globular cluster stars are very metal- poor relative to the Sun. b) Globular cluster stars are more than 12 billion years old.

More information

Chapter 30. Galaxies and the Universe. Chapter 30:

Chapter 30. Galaxies and the Universe. Chapter 30: Chapter 30 Galaxies and the Universe Chapter 30: Galaxies and the Universe Chapter 30.1: Stars with varying light output allowed astronomers to map the Milky Way, which has a halo, spiral arm, and a massive

More information

Chapter 14 The Milky Way Galaxy

Chapter 14 The Milky Way Galaxy Chapter 14 The Milky Way Galaxy Spiral Galaxy M81 - similar to our Milky Way Galaxy Our Parent Galaxy A galaxy is a giant collection of stellar and interstellar matter held together by gravity Billions

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 25 Beyond Our Solar System 25.1 Properties of Stars Characteristics of Stars A constellation is an apparent group of stars originally named for mythical

More information

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds.

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. Image taken from the European Southern Observatory in Chile

More information

Star systems like our Milky Way. Galaxies

Star systems like our Milky Way. Galaxies Galaxies Star systems like our Milky Way Galaxies Contain a few thousand to tens of billions of stars,as well as varying amounts of gas and dust Large variety of shapes and sizes Gas and Dust in

More information

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye Our Galaxy Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust Held together by gravity! The Milky Way with the Naked Eye We get a special view of our own galaxy because we are part of it!

More information

Name Date Period. 10. convection zone 11. radiation zone 12. core

Name Date Period. 10. convection zone 11. radiation zone 12. core 240 points CHAPTER 29 STARS SECTION 29.1 The Sun (40 points this page) In your textbook, read about the properties of the Sun and the Sun s atmosphere. Use each of the terms below just once to complete

More information

Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars

Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars Stars & Galaxies Chapter 27 Modern Earth Science Chapter 27, Section 1 27.1 Characteristics of Stars Composition & Temperature Scientists use the following tools to study stars Telescope Observation Spectral

More information

Stars & Galaxies. Chapter 27 Modern Earth Science

Stars & Galaxies. Chapter 27 Modern Earth Science Stars & Galaxies Chapter 27 Modern Earth Science Chapter 27, Section 1 27.1 Characteristics of Stars How do astronomers determine the composition and surface temperature of a star? Composition & Temperature

More information

Review of Lecture 15 3/17/10. Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath

Review of Lecture 15 3/17/10. Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath A2020 Disk Component: stars of all ages, many gas clouds Review of Lecture 15 Spheroidal Component: bulge & halo, old

More information

Our Solar System: A Speck in the Milky Way

Our Solar System: A Speck in the Milky Way GALAXIES Lesson 2 Our Solar System: A Speck in the Milky Way The Milky Way appears to be curved when we view it but in reality it is a straight line. It is curved due to the combination of pictures taken

More information

Galaxy Classification

Galaxy Classification Galaxies Galaxies are collections of billons of stars; our home galaxy, the Milky Way, is a typical example. Stars, gas, and interstellar dust orbit the center of the galaxy due to the gravitational attraction

More information

ANSWER KEY. Stars, Galaxies, and the Universe. Telescopes Guided Reading and Study. Characteristics of Stars Guided Reading and Study

ANSWER KEY. Stars, Galaxies, and the Universe. Telescopes Guided Reading and Study. Characteristics of Stars Guided Reading and Study Stars, Galaxies, a the Universe Stars, Galaxies, and the Universe Telescopes Use Target Reading Skills Check student definitions for accuracy. 1. Electromagneticradiationisenergythatcan travel through

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 4 Stellar orbits and dark matter 1 Using Kepler s laws for stars orbiting the center of a galaxy We will now use Kepler s laws of gravitation on much larger scales. We will study

More information

Astronomy 102: Stars and Galaxies Examination 3 Review Problems

Astronomy 102: Stars and Galaxies Examination 3 Review Problems Astronomy 102: Stars and Galaxies Examination 3 Review Problems Multiple Choice Questions: The first eight questions are multiple choice. Except where explicitly noted, only one answer is correct for each

More information

Figure 19.19: HST photo called Hubble Deep Field.

Figure 19.19: HST photo called Hubble Deep Field. 19.3 Galaxies and the Universe Early civilizations thought that Earth was the center of the universe. In the sixteenth century, we became aware that Earth is a small planet orbiting a medium-sized star.

More information

Module 3: Astronomy The Universe Topic 2 Content: The Milky Way Galaxy Presentation Notes

Module 3: Astronomy The Universe Topic 2 Content: The Milky Way Galaxy Presentation Notes On a clear night, you can go outside and view the Moon and the stars scattered throughout the night sky. At times, you can also see neighboring planets. When you look at the sky and these objects, almost

More information

Lecture Outlines. Chapter 25. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 25. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 25 Astronomy Today 7th Edition Chaisson/McMillan Chapter 25 Galaxies and Dark Matter Units of Chapter 25 25.1 Dark Matter in the Universe 25.2 Galaxy Collisions 25.3 Galaxy Formation

More information

Tristan Cantat-Gaudin

Tristan Cantat-Gaudin Open Clusters in the Milky Way with Gaia ICCUB Winter Meeting 1-2 Feb 2018, Barcelona Tristan Cantat-Gaudin Carme Jordi, Antonella Vallenari, Laia Casamiquela, and Gaia people in Barcelona and around the

More information

Chapter Introduction Lesson 1 The View from Earth Lesson 2 The Sun and Other Stars Lesson 3 Evolution of Stars Lesson 4 Galaxies and the Universe

Chapter Introduction Lesson 1 The View from Earth Lesson 2 The Sun and Other Stars Lesson 3 Evolution of Stars Lesson 4 Galaxies and the Universe Chapter Introduction Lesson 1 The View from Earth Lesson 2 The Sun and Other Stars Lesson 3 Evolution of Stars Lesson 4 Galaxies and the Universe Chapter Wrap-Up What makes up the universe and how does

More information

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

More information

Chapter 15 The Milky Way Galaxy. The Milky Way

Chapter 15 The Milky Way Galaxy. The Milky Way Chapter 15 The Milky Way Galaxy The Milky Way Almost everything we see in the night sky belongs to the Milky Way We see most of the Milky Way as a faint band of light across the sky From the outside, our

More information

Finding Black Holes Left Behind by Single Stars

Finding Black Holes Left Behind by Single Stars Finding Black Holes Left Behind by Single Stars Finding Black Holes "Yesterday upon the stair I met a man who wasn't there. He wasn't there again today. I wish that man would go away." Hughes Mearns (1875-1965)

More information

Universe Now. 9. Interstellar matter and star clusters

Universe Now. 9. Interstellar matter and star clusters Universe Now 9. Interstellar matter and star clusters About interstellar matter Interstellar space is not completely empty: gas (atoms + molecules) and small dust particles. Over 10% of the mass of the

More information

The Milky Way Galaxy and Interstellar Medium

The Milky Way Galaxy and Interstellar Medium The Milky Way Galaxy and Interstellar Medium Shape of the Milky Way Uniform distribution of stars in a band across the sky lead Thomas Wright, Immanuel Kant, and William Herschel in the 18th century to

More information

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath Review: Creating Stellar Remnants Binaries may be destroyed in white dwarf supernova Binaries be converted into black holes Review: Stellar

More information

The Milky Way Galaxy (ch. 23)

The Milky Way Galaxy (ch. 23) The Milky Way Galaxy (ch. 23) [Exceptions: We won t discuss sec. 23.7 (Galactic Center) much in class, but read it there will probably be a question or a few on it. In following lecture outline, numbers

More information

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of?

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of? Some thoughts The Milky Way Galaxy How big is it? What does it look like? How did it end up this way? What is it made up of? Does it change 2 3 4 5 This is not a constant zoom The Milky Way Almost everything

More information

The Ecology of Stars

The Ecology of Stars The Ecology of Stars We have been considering stars as individuals; what they are doing and what will happen to them Now we want to look at their surroundings And their births 1 Interstellar Matter Space

More information

Lecture Outlines. Chapter 23. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 23. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 23 Astronomy Today 8th Edition Chaisson/McMillan Chapter 23 The Milky Way Galaxy Units of Chapter 23 23.1 Our Parent Galaxy 23.2 Measuring the Milky Way Discovery 23-1 Early Computers

More information

Active Galaxies and Galactic Structure Lecture 22 April 18th

Active Galaxies and Galactic Structure Lecture 22 April 18th Active Galaxies and Galactic Structure Lecture 22 April 18th FINAL Wednesday 5/9/2018 6-8 pm 100 questions, with ~20-30% based on material covered since test 3. Do not miss the final! Extra Credit: Thursday

More information

Chapter 23 The Milky Way Galaxy Pearson Education, Inc.

Chapter 23 The Milky Way Galaxy Pearson Education, Inc. Chapter 23 The Milky Way Galaxy The Milky Way is our own galaxy viewed from the inside. It is a vast collection of more than 200 billion stars, planets, nebulae, clusters, dust and gas. Our own sun and

More information

STARS AND GALAXIES STARS

STARS AND GALAXIES STARS STARS AND GALAXIES STARS enormous spheres of plasma formed from strong gravitational forces PLASMA the most energetic state of matter; responsible for the characteristic glow emitted by these heavenly

More information

3 The lives of galaxies

3 The lives of galaxies Discovering Astronomy : Galaxies and Cosmology 24 3 The lives of galaxies In this section, we look at how galaxies formed and evolved, and likewise how the large scale pattern of galaxies formed. But before

More information

Bright Quasar 3C 273 Thierry J-L Courvoisier. Encyclopedia of Astronomy & Astrophysics P. Murdin

Bright Quasar 3C 273 Thierry J-L Courvoisier. Encyclopedia of Astronomy & Astrophysics P. Murdin eaa.iop.org DOI: 10.1888/0333750888/2368 Bright Quasar 3C 273 Thierry J-L Courvoisier From Encyclopedia of Astronomy & Astrophysics P. Murdin IOP Publishing Ltd 2006 ISBN: 0333750888 Institute of Physics

More information

Question 1. Question 2. Correct. Chapter 16 Homework. Part A

Question 1. Question 2. Correct. Chapter 16 Homework. Part A Chapter 16 Homework Due: 11:59pm on Thursday, November 17, 2016 To understand how points are awarded, read the Grading Policy for this assignment. Question 1 Following are a number of distinguishing characteristics

More information

M31 - Andromeda Galaxy M110 M32

M31 - Andromeda Galaxy M110 M32 UNIT 4 - Galaxies XIV. The Milky Way galaxy - a huge collection of millions or billions of stars, gas, and dust, isolated in space and held together by its own gravity M110 M31 - Andromeda Galaxy A. Structure

More information

TEK 8 Test Review. 15. Galaxies are best described as -

TEK 8 Test Review. 15. Galaxies are best described as - TEK 8 Test Review 1. List the three subatomic particles and give each of their masses. 2. Describe and draw an illustration (Bohr Model) of the most common element in the Universe. 3. Describe and draw

More information

Galaxies and Star Systems

Galaxies and Star Systems Chapter 5 Section 5.1 Galaxies and Star Systems Galaxies Terms: Galaxy Spiral Galaxy Elliptical Galaxy Irregular Galaxy Milky Way Galaxy Quasar Black Hole Types of Galaxies A galaxy is a huge group of

More information

In the centre of the galaxies is where most of the stars are concentrated. Each object from a galaxy moves because of the others attraction.

In the centre of the galaxies is where most of the stars are concentrated. Each object from a galaxy moves because of the others attraction. What is a galaxy? During the major part of our history, human beings could observe the galaxies as vague smears in the night sky. However, we know that galaxies are enormous accumulation of stars, gas

More information

The Milky Way Galaxy is Heading for a Major Cosmic Collision

The Milky Way Galaxy is Heading for a Major Cosmic Collision The Milky Way Galaxy is Heading for a Major Cosmic Collision Roeland van der Marel (STScI) [based on work with a team of collaborators reported in the Astrophysical Journal July 2012] Hubble Science Briefing

More information

[FILE] MILKY WAY AT HOME EBOOK

[FILE] MILKY WAY AT HOME EBOOK 29 May, 2018 [FILE] MILKY WAY AT HOME EBOOK Document Filetype: PDF 244.76 KB 0 [FILE] MILKY WAY AT HOME EBOOK The galaxy contains about 400 billion stars, with a 4-billion-solar-mass black hole at its

More information

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015 BROCK UNIVERSITY Page 1 of 9 Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015 Number of hours: 50 min Time of Examination: 18:00 18:50

More information

Introduction to the Universe. What makes up the Universe?

Introduction to the Universe. What makes up the Universe? Introduction to the Universe What makes up the Universe? Objects in the Universe Astrophysics is the science that tries to make sense of the universe by - describing the Universe (Astronomy) - understanding

More information

Chapter 1 Our Place in the Universe

Chapter 1 Our Place in the Universe Chapter 1 Our Place in the Universe 1.1 Our Modern View of the Universe Topics we will explore: What is our place in the universe? How did we come to be? How can we know what the universe was like in the

More information

Results better than Quiz 5, back to normal Distribution not ready yet, sorry Correct up to 4 questions, due Monday, Apr. 26

Results better than Quiz 5, back to normal Distribution not ready yet, sorry Correct up to 4 questions, due Monday, Apr. 26 Brooks observing April 19-22: 9:00 PM to at least 10:15 PM Tonight is a go! April 26-29: 9:30 PM to at least 10:45 PM Regular Friday evening public observing after planetarium shows also an option Begins

More information

Properties of Stars. Characteristics of Stars

Properties of Stars. Characteristics of Stars Properties of Stars Characteristics of Stars A constellation is an apparent group of stars originally named for mythical characters. The sky contains 88 constellations. Star Color and Temperature Color

More information

Abstracts of Powerpoint Talks - newmanlib.ibri.org - Stars & Galaxies. Robert C. Newman

Abstracts of Powerpoint Talks - newmanlib.ibri.org - Stars & Galaxies. Robert C. Newman Stars & Galaxies Robert C. Newman Stars & Galaxies Here we want to start with stars, looked at from two different perspectives: What they look like from earth What we know about them from astronomy and

More information

The Universe. is space and everything in it.

The Universe. is space and everything in it. The Universe is space and everything in it. Galaxies A galaxy is a supercluster of stars, gas, and dust that are held together by gravity. There are three main types of galaxies: Irregular Elliptical Spiral

More information

Structure of the Milky Way. Structure of the Milky Way. The Milky Way

Structure of the Milky Way. Structure of the Milky Way. The Milky Way Key Concepts: Lecture 29: Our first steps into the Galaxy Exploration of the Galaxy: first attempts to measure its structure (Herschel, Shapley). Structure of the Milky Way Initially, star counting was

More information

Study Guide Chapter 2

Study Guide Chapter 2 Section: Stars Pages 32-38 Study Guide Chapter 2 Circle the letter of the best answer for each question. 1. What do scientists study to learn about stars? a. gravity c. space b. starlight d. colors COLOR

More information

Revision Guide for Chapter 12

Revision Guide for Chapter 12 Revision Guide for Chapter 12 Contents Student s Checklist Revision Notes The speed of light... 4 Doppler effect... 4 Expansion of the Universe... 5 Microwave background radiation... 5 Galaxy... 6 Summary

More information

Chapter 15 The Milky Way Galaxy

Chapter 15 The Milky Way Galaxy Chapter 15 The Milky Way Galaxy Guidepost This chapter plays three parts in our cosmic drama. First, it introduces the concept of a galaxy. Second, it discusses our home, the Milky Way Galaxy, a natural

More information

The Universe and Galaxies. Adapted from:

The Universe and Galaxies. Adapted from: The Universe and Galaxies Adapted from: http://www.west-jefferson.k12.oh.us/earthandspacescience.aspx Astronomy The study of objects and matter outside the Earth s atmosphere and of their physical and

More information

IB Physics - Astronomy

IB Physics - Astronomy Solar System Our Solar System has eight planets. The picture below shows their relative sizes, but NOT their relative distances. A planet orbits the sun, and has gravitationally cleared its orbital area

More information

CST Prep- 8 th Grade Astronomy

CST Prep- 8 th Grade Astronomy CST Prep- 8 th Grade Astronomy Chapter 15 (Part 1) 1. The theory of how the universe was created is called the 2. Which equation states that matter and energy are interchangeable? 3. All matter in the

More information

GraspIT Questions AQA GCSE Physics Space physics

GraspIT Questions AQA GCSE Physics Space physics A. Solar system: stability of orbital motions; satellites (physics only) 1. Put these astronomical objects in order of size from largest to smallest. (3) Fill in the boxes in the correct order. the Moon

More information

Beyond the Book. FOCUS Book

Beyond the Book. FOCUS Book FOCUS Book You have learned that a nebula can turn into a star, and that the star can turn into a new nebula. Now design a comic, timeline, flowchart, or cycle diagram to explain this process. Include

More information

Chapter 25: Galaxy Clusters and the Structure of the Universe

Chapter 25: Galaxy Clusters and the Structure of the Universe Chapter 25: Galaxy Clusters and the Structure of the Universe Distribution of galaxies Evolution of galaxies Study of distant galaxies Distance derived from redshift Hubble s constant age of the Universe:

More information

Stars. 1.1 A Modern View of the Universe. What Objects Do We Find in The Universe? 8/12/2010. Our goals for learning:

Stars. 1.1 A Modern View of the Universe. What Objects Do We Find in The Universe? 8/12/2010. Our goals for learning: 1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? How did we come to be? How can we know what the universe was like in the past? Can we see the entire universe?

More information

How did the universe form? 1 and 2

How did the universe form? 1 and 2 Galaxies How did the universe form? 1 and 2 Galaxies Astronomers estimate that 40 billion galaxies exist in the observable universe The universe may contain over 100 billion galaxies Even a modest-sized

More information

TEACHER BACKGROUND INFORMATION

TEACHER BACKGROUND INFORMATION TEACHER BACKGROUND INFORMATION (The Universe) A. THE UNIVERSE: The universe encompasses all matter in existence. According to the Big Bang Theory, the universe was formed 10-20 billion years ago from a

More information

The phenomenon of gravitational lenses

The phenomenon of gravitational lenses The phenomenon of gravitational lenses The phenomenon of gravitational lenses If we look carefully at the image taken with the Hubble Space Telescope, of the Galaxy Cluster Abell 2218 in the constellation

More information

TAKE A LOOK 2. Identify This star is in the last stage of its life cycle. What is that stage?

TAKE A LOOK 2. Identify This star is in the last stage of its life cycle. What is that stage? CHAPTER 15 2 SECTION Stars, Galaxies, and the Universe The Life Cycle of Stars BEFORE YOU READ After you read this section, you should be able to answer these questions: How do stars change over time?

More information

Unit 7 Review Guide: The Universe

Unit 7 Review Guide: The Universe Unit 7 Review Guide: The Universe Light Year: Unit of distance used to measure the great vastness of space. Galaxy: Large group of stars, gas, and dust held together by gravity. Spiral Galaxy: Galaxy in

More information

UNIT 3: Astronomy Chapter 26: Stars and Galaxies (pages )

UNIT 3: Astronomy Chapter 26: Stars and Galaxies (pages ) CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be turned in to your teacher

More information

Chapter 19: Our Galaxy

Chapter 19: Our Galaxy Chapter 19 Lecture Chapter 19: Our Galaxy Our Galaxy 19.1 The Milky Way Revealed Our goals for learning: What does our galaxy look like? How do stars orbit in our galaxy? What does our galaxy look like?

More information

Test ABCDE. 1. What is the oldest era on the geological timescale? A. Precambrian B. Paleozoic C. Mesozoic D. Cenozoic

Test ABCDE. 1. What is the oldest era on the geological timescale? A. Precambrian B. Paleozoic C. Mesozoic D. Cenozoic Test - 8.8 ABCDE 1. What is the oldest era on the geological timescale? A. Precambrian B. Paleozoic C. Mesozoic D. Cenozoic 2. A light-year is defined as- F. the distance from Earth to the Sun. G. the

More information

Practice Test: ES-5 Galaxies

Practice Test: ES-5 Galaxies Class: Date: Practice Test: ES-5 Galaxies Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Light Years * The distance between stars and galaxies

More information

Introduction to the Universe

Introduction to the Universe What makes up the Universe? Introduction to the Universe Book page 642-644 Objects in the Universe Astrophysics is the science that tries to make sense of the universe by - describing the Universe (Astronomy)

More information

Universe Celestial Object Galaxy Solar System

Universe Celestial Object Galaxy Solar System ASTRONOMY Universe- Includes all known matter (everything). Celestial Object Any object outside or above Earth s atmosphere. Galaxy- A large group (billions) of stars (held together by gravity). Our galaxy

More information

V. Astronomy Section

V. Astronomy Section EAS 100 Planet Earth Lecture Topics Brief Outlines V. Astronomy Section 1. Introduction, Astronomical Distances, Solar System Learning objectives: Develop an understanding of Earth s position in the solar

More information

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran The Gaia Mission Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany ISYA 2016, Tehran What Gaia should ultimately achieve high accuracy positions, parallaxes, proper motions e.g.

More information

24.1 Hubble s Galaxy Classification

24.1 Hubble s Galaxy Classification Chapter 24 Galaxies Units of Chapter 24 24.1 Hubble s Galaxy Classification 24.2 The Distribution of Galaxies in Space 24.3 Hubble s Law 24.4 XXActive Galactic Nuclei XXRelativistic Redshifts and Look-Back

More information

Galaxies & Introduction to Cosmology

Galaxies & Introduction to Cosmology Galaxies & Introduction to Cosmology Other Galaxies: How many are there? Hubble Deep Field Project 100 hour exposures over 10 days Covered an area of the sky about 1/100 the size of the full moon Probably

More information

What is the solar system?

What is the solar system? Notes Astronomy What is the solar system? 11.1 Structure of the Solar System Our solar system includes planets and dwarf planets, their moons, a star called the Sun, asteroids and comets. Planets, dwarf

More information

The Milky Way: Home to Star Clusters

The Milky Way: Home to Star Clusters Chapter 2 The Milky Way: Home to The Milky Our Galaxy, the Milky Way, is something of a paradox. It is just one of the many billions of galaxies scattered throughout the Universe, a large, but quite normal

More information

Directions: For numbers 1-30 please choose the letter that best fits the description.

Directions: For numbers 1-30 please choose the letter that best fits the description. Directions: For numbers 1-30 please choose the letter that best fits the description. 1. The main force responsible for the formation of the universe is: a. Gravity b. Frictional force c. Magnetic force

More information

1UNIT. The Universe. What do you remember? Key language. Content objectives

1UNIT. The Universe. What do you remember? Key language. Content objectives 1UNIT The Universe What do you remember? What are the points of light in this photo? What is the difference between a star and a planet? a moon and a comet? Content objectives In this unit, you will Learn

More information

(Astronomy for Dummies) remark : apparently I spent more than 1 hr giving this lecture

(Astronomy for Dummies) remark : apparently I spent more than 1 hr giving this lecture (Astronomy for Dummies) remark : apparently I spent more than 1 hr giving this lecture A.D. 125? Ptolemy s geocentric model Planets ( ) wander among stars ( ) For more info: http://aeea.nmns.edu.tw/aeea/contents_list/universe_concepts.html

More information

2) On a Hertzsprung-Russell diagram, where would you find red giant stars? A) upper right B) lower right C) upper left D) lower left

2) On a Hertzsprung-Russell diagram, where would you find red giant stars? A) upper right B) lower right C) upper left D) lower left Multiple choice test questions 2, Winter Semester 2015. Based on parts covered after mid term. Essentially on Ch. 12-2.3,13.1-3,14,16.1-2,17,18.1-2,4,19.5. You may use a calculator and the useful formulae

More information

BROCK UNIVERSITY. Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018

BROCK UNIVERSITY. Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018 BROCK UNIVERSITY Page 1 of 9 Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018 Number of hours: 50 min Time of Examination:

More information

How do we measure properties of a star? Today. Some Clicker Questions - #1. Some Clicker Questions - #1

How do we measure properties of a star? Today. Some Clicker Questions - #1. Some Clicker Questions - #1 Today Announcements: HW#8 due Friday 4/9 at 8:00 am. The size of the Universe (It s expanding!) The Big Bang Video on the Big Bang NOTE: I will take several questions on exam 3 and the final from the videos

More information