A Proposal of Nuclear Materials Detection and Inspection Systems in Heavily Shielded Suspicious Objects by Non-destructive Manner.

Size: px
Start display at page:

Download "A Proposal of Nuclear Materials Detection and Inspection Systems in Heavily Shielded Suspicious Objects by Non-destructive Manner."

Transcription

1 Magic Maggiore Technical Reachback Workshop 15 min. (March 28-30, 2017, JRC Ispra, Italy) A Proposal of Nuclear Materials Detection and Inspection Systems in Heavily Shielded Suspicious Objects by Non-destructive Manner Japan Atomic Energy Agency(JAEA) Integrated Support Center for Nuclear Nonproliferation and Nuclear Security (ISCN) Mitsuo KOIZUMI Collaboration of Japan Atomic Energy Agency (JAEA) National Institute for Quantum and Radiological Science and Technology (QST) Joint Research Center (JRC) Supported by Ministry of Education, Culture, Sports, Science and Technology Japan (MEXT)

2 Contents 1. Introduction 2. Secure Detection of Heavily Shielded Suspicious Object 3. Interior Inspection of NMs Part taken out from the Heavily Shielded Objects 4. Summary 1

3 1. Introduction NM : Nuclear Material 2

4 Nuclear Materials under/out of Regulatory Control NM Under Regulatory Control Out of Regulatory Control Situation NMs in nuclear facilities (under control of competent authority) In IAEA member states, NMs are under IAEA safeguards Smuggled NMs (out of control of competent authority) Under nuclear security policy of each state 3

5 NMs Terrors Type RDD Radiological Dispersal Device Nuclear Bomb Other High Radiation Emission Objects Purposes / NMs Purposes:Killing people, causing disruption NMs, RIs :High radiation toxicity isotopes (α-emitters etc.) Purposes:Mass destruction NMs: Special nuclear materials ( 235 U, 239 Pu) Purpose:Insensible high radiation exposure NMs:NMs in criticality(high neutron emission) (JCO type criticality assemblies) RIs: High gamma-ray radiation We need to know the purposes of detected objects for safe handling. 4

6 A Scheme of Strengthening Nuclear Security for NMs out of Regulatory Control Detection Secure Detection Systems of NMs Airports, Harbors, Other places NMs out of Regulatory Control Nuclear Forensic Nuclear Forensics Analytical Systems NF Laboratories Handling of Detected Objects NMs taken out from containers Interior Inspection Systems Dismantlement Systems Adequate Places (Airports, apparent Harbors identification etc.) to NM 5

7 An Example of Heavily Shielded Objects (HSO) containing NM (Just a pure black area by X-ray scanning) Neutron Shield +Neutron Absorber (NM+Mixtures) Heavy Shield (Metal) Heavy Shield (Metal) Neutron Shield Neutron Absorber Shield of gamma-rays from NM / gamma-rays from neutron absorption by surrounding material Moderation of neutrons emitted from NM (inside) / neutrons interrogated from outside Absorption of thermal neutrons 6

8 Present X-ray Scanning Systems for Cargo Containers in Nuclear Security X-ray Scanning Backscatter X-ray imaging Transmission X-ray imaging Purposes Clear imaging for light elements For detection of car and truck bombs / explosives, plastic weapons, and other organic threats / illegal drugs, etc. Imaging for heavy elements For detection of heavy metal items for hiding illegal materials in cargo / heavy weapons etc. 7

9 Present X-ray Cargo Container Scanning System Real Time Backscatter X-ray Imaging Transmission X-ray Imaging ROI (Region of Interest) Imaging with moving 8

10 A Combined Use of X-ray Scanning Systems + Passive Radiation Detectors Not sufficient for secure detection of NM in heavy metal items (heavily-shielded NM) 9

11 2. Secure Detection of Heavily Shielded Suspicious Object HSO MGB MGS ERL LCS NRF NDA(D) ROI Heavily Shielded Object Monochromatic Gamma-ray Beam Monochromatic Gamma-ray Source Energy Recovery Linac Laser Compton Scattering Nuclear Resonance Fluorescence Non-destructive Assay (Detection) Region of Interest 10

12 A Proposal of Secure Detection System of NMs in HSO A combined system X-ray Scanning System + An NRF-based NDD System using Intense MGB X-ray Scanning System An NRF-based NDD System using Intense MGB For detection of suspicious objects (ROI) in cargo containers Pin-point scanning of ROI for detection of NMs (NRF gamma-ray signals of NMs) MGB: Monochromatic Gamma-ray Beam NRF: Nuclear Resonance Fluorescence NDD: Non-destructive Detection 11

13 A Future ERL-LCS Monochromatic Gamma-ray Source Next Generation ERL (350 MeV) 3 loops ~ 25 m Laser Enhancement Cavity 350 MeV electrons High Power Laser Oscillator Electron Beam=350 MeV, 10 ma LCS Gamma-ray (2-3 MeV) ØFlux ~ 1x10 13 ph/s ØΔE/E ~ 0.1% 12

14 Laser Compton Scattering Electrons A Explanation of NRF-based NDA of NM using MGB (Selective NRF Activation of Nuclide) Laser gamma-rays Monochromatic ( & tunable) gamma-ray beam MGB Shielding Material Hidden NM ( 239 Pu) Nuclear Resonance Fluorescence NRF Emission Gamma-rays Detector R. Hajima et al., J. Nuclear Science and Technology (2008) 13

15 NRF Emission Gamma-rays Interrogation Gamma-rays :High Intensity MGB Interior Inspections of HSO by Interrogation of MGB Transmission Gamma-rays Neutron Shield+ Neutron Absorber (NM+Mixtures) Heavy Shield (Metal) Interrogation Gamma-rays (HSO) NRF Emission Gamma-rays Transmission Gamma-rays Bring information of NMs in HSO -Rough characterization of NMs by interrogations of several gamma-rays with specific energies of NM isotopes Bring information of detailed interior structure of HSO -CT imaging with intense monochromatic high-energy gamma-rays 14

16 Rough Characterization of NMs inside of HSO by Interrogation of MGB NRF emission gamma-rays from the isotope of interest (i) Neutron Shield+ Neutron Absorber (NM+Mixtures) (HSO) Heavy Shield (Metal) Interrogation gamma-rays with tuned energy of isotope of interest (i) By changing energy of interrogation gamma-rays tuned to the resonance energy of certain isotope of U/Pu, we are able to count NRF emission gamma-rays from the all isotope of U/Pu. With having counts of NRF emission gamma-rays of all isotopes of U/Pu, we can have information of U/Pu isotopic composition of NM inside the HSO. (Rough characterization of NMs) 15

17 CT Imaging with Intense Monochromatic High-Energy Gamma-rays Detailed information of inner structure of the object Essential for safe dismantlement Gamma-ray Detector Inner Structure of Thick Metal Container Transmission Gamma-rays (HSO) H. Toyokawa, NIMA 545, 469(2005). Interrogation Gamma-rays of high energy; well penetrate into material 16

18 An NRF-based NDD System using Intense MGB For secure (pin-point) detection of NM hidden behind heavy-shield in freight cargo containers Nuclear Material in Heavy Shield 2.4 m Cargo Container 12.2 m Gamma-ray Detectors Next Generation ERL (350 MeV) 2.6 m Moving High Power Laser Oscillator Laser Enhancement Cavity 40Ft Container Max. Weight:30.5 tons 17

19 A Picture of Actual Application of the Proposed System for Secure Detection of NMs (A Combined System of X-ray Scanning with NRF-based NDD) A tunnel for freight container trailers ~15 m ~15 m X-ray Scanning System (Present) To Interior Inspection 1 When X-ray scanning system does not find any ROI in the freight container, then the trailer skips over the NRF based NDD system. 2 When X-ray scanning system finds ROI in the freight container, the trailer is moved to NRF-based NDD system. 3 When signals of NMs are detected, the trailer is moved to interior inspection of detected objects ~20 m NRF-based NDD System using Intense MGB ~35 m 18

20 3. Interior Inspection of NMs Part taken out from the HSO DDA DGS NRTA PGA Differential Die-away Analysis Delayed Gamma-ray Spectroscopy Neutron Resonance Transmission Analysis Prompt Gamma-ray Analysis 19

21 Inspection Procedures after Detection of Heavily Shielded NMs Process Interior inspection of HSO Inspection / Dismantlement Inspection before opening / dismantlement of the objects - Detailed interior structure - Rough characterization of NMs Dismantlement of HSO (taking NMs part out) Interior inspection of NMs Part Safe (remotely operated) dismantlement of HSO at adequate place for taking NMs part out Inspection of NMs part for further dismantlement - Mixed material(explosives etc.) - Characterization of NMs Further Dismantlement for taking NMs out Further safe (remotely operated) dismantlement for taking NMs Out for nuclear forensics 20

22 Rough Explanation of Interior Inspection of NMs Part by Active Neutron NDA (Active neutron NDA techniques (DDA, DGS, NRTA, PGA)) Interrogation Neutrons A D-T Pulsed Neutron Source Neutrons Gamma-rays NMs + Mixtures DDA Induced Fission Neutrons DGA Delayed Gamma-rays (from Fission Products of Induced Fissions) NRTA Transmission Neutrons PGA Neutron Capture Prompt Gamma-rays 21

23 Rough Explanation of Active Neutron NDA (DDA, DGS, NRTA, PGA) NDA Techniques DDA Differential Die-away Analysis DGS Delayed Gamma-ray Spectroscopy NRTA Neutron Resonance Transmission Analysis PGA Prompt Analysis Gamma-ray Rough Explanation For counting / analysis of induced fission neutrons (to quantify fissile mass) from NMs using difference of die-away time of active pulsed neutrons and induced fission neutrons For counting / analysis of specific high energy delayed gamma-rays after induced fissions caused by interrogation of pulsed neutrons (to obtain ratios of fissile isotopes) For counting / analysis of transmitted neutrons through the NMs part using TOF (time of flight) method for quantification of each isotope of NMs For detection of specific prompt gamma-rays generated by (n, γ) reactions of isotopes (For an example; 14 N (n, γ) 15 N ;detection of 14 N in explosives) 22

24 Proposal of an Active NDA System for Interior Inspection of NMs Part (PGA, DDA, DGS, NRTA) 23

25 5. Summary 24

26 Summary - The existence of NM in a suspicious object (in a shield) have to be securely detected. - Before opening the suspicious object, safety should be confirmed. Proposed Sytems NRF-based NDD System using high energy and high intensity MGB Active Neutron NDA system using a D-T Neutron Source Roles Secure detection of NMs in HSO Inspection of inner (explosion) structure of the HSO Rough characterization of NMs (nuclear bomb or not) in the HSO Investigation of mixtures (explosives, toxic materials) in NMs parts / characterization of NMs 25

27 Thank you for your attention. Acknowledgement This work has been supported by a subsidy for strengthening nuclear security of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan. 26

28 ERL-LCS Demo. System for Future ERL-LCS MGS Generation of High Intensity LCS Monochromatic X-rays : Demonstrated With the LCS Demo. System in March 2015 at KEK Tsukuba (Japan) Electron Gun Injector Experiment Rooms Energy Recovery Linac (Super-Conducting Cavity) (9-cell x 2 cavity) 20 MeV electron s LCS Demo. System High Power Laser Oscillator LCS Gamma -rays Laser Enhancement Cavity Basic Technology Demonstration (Electron Beam = 20 MeV, ma) ØLCS X-ray (~ 6.9 kev) Flux ~ 1x10 9 ph/s/ma ØΔE/E ~0.5% 27

29 Characteristic points monochromatic gamma-rays energy tunable gamma-rays high intensity gamma-rays good directivity gamma-rays Characteristic Points of ERL-based LCS MGS gamma-rays with deep penetrability(*) Advantages for inspection / detection Interrogation of gamma-rays within pin-point energy region - Avoiding unnecessary excitation or absorption - Useful for reduction of BGs and obtaining higher accuracy Interrogation of gamma-rays with tunable energies for nuclides in targets - Selection of nuclide by gamma-ray energy in targets - Makes selective measurements possible Interrogation with high intensity - Higher probabilities of reactions to be interrogated - Makes very fast measurements with higher accuracy (even for measurements of low concentration elements) Interrogation within very limited direction - Avoiding attenuation of interrogation X-/gamma rays -Gives measurements freedom for target distance from the source Interrogation with deep penetration -Deep penetration into heavy material reaching to the target isotopes Selective nuclide detection Pin-point detection * For MeV class gamma-rays 28

An introduction to Neutron Resonance Densitometry (Short Summary)

An introduction to Neutron Resonance Densitometry (Short Summary) An introduction to Neutron Resonance Densitometry (Short Summary) H. Harada 1, M. Koizumi 1, H. Tsuchiya 1, F. Kitatani 1, M. Seya 1 B. Becker 2, J. Heyse 2, S. Kopecky 2, C. Paradela 2, P. Schillebeeckx

More information

Research in NDA Techniques for Waste Characterization at the JRC

Research in NDA Techniques for Waste Characterization at the JRC 1 Research in NDA Techniques for Waste Characterization at the JRC Bent Pedersen Nuclear Security Unit Institute for Transuranium Elements Joint Research Centre presented at Annual meeting of LABONET Network

More information

Active Interrogation of SNMs by use of IEC Fusion Neutron Source

Active Interrogation of SNMs by use of IEC Fusion Neutron Source Active Interrogation of SNMs by use of IEC Fusion Neutron Source Kai Masuda 1,T. Masawa 2,Y. Yakahashi 2, T. Yagi 2,K. Inoue 1, T. Kajiwara 1, R. Nakamatsu 1, and LSC-NRF group in JAEA and Kyoto-U. 1 Inst.

More information

MeV photons from inverse Compton scattering and applications for science

MeV photons from inverse Compton scattering and applications for science MeV photons from inverse Compton scattering and applications for science M. Fujiwara @ Saskatoon workshop 22-23, April 2010 1. Coherent Compton Scattering New aspect for inverse Compton Scattering (BCS

More information

Detection of explosives and fissile material based on neutron generators, survey of techniques and methods. M. Bruggeman

Detection of explosives and fissile material based on neutron generators, survey of techniques and methods. M. Bruggeman Detection of explosives and fissile material based on neutron generators, survey of techniques and methods M. Bruggeman TM neutron generators 1 Vienna, IAEA, 13-16 June, 2005 Contents Context Initiating

More information

Verification measurements of alpha active waste

Verification measurements of alpha active waste Verification measurements of alpha active waste Bent Pedersen Nuclear Security Unit Directorate Nuclear Safety and Security JRC 9th Edition of the International Summer School on Nuclear Decommissioning

More information

Development status of non-destructive assay of nuclear material by using laser Compton scattered gamma-rays

Development status of non-destructive assay of nuclear material by using laser Compton scattered gamma-rays Development status of non-destructive assay of nuclear material by using laser Compton scattered gamma-rays Ryoichi Hajima Japan Atomic Energy Agency IZEST Tokyo 2013 Nov. 18, 2013 Collaborators Quantum

More information

Verification measurements of alpha active waste

Verification measurements of alpha active waste Verification measurements of alpha active waste Bent Pedersen Nuclear Security Unit Institute for Transuranium Elements (ITU), JRC Operational Issues in Radioactive Waste Management and Nuclear Decommissioning

More information

INSTRUMENTAL TECHNIQUE FOR THE DETECTION AND IDENTIFICATION OF RADIOACTIVE, FISSILE AND EXTRA HAZARDOUS SUBSTANCES

INSTRUMENTAL TECHNIQUE FOR THE DETECTION AND IDENTIFICATION OF RADIOACTIVE, FISSILE AND EXTRA HAZARDOUS SUBSTANCES 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China INSTRUMENTAL TECHNIQUE FOR THE DETECTION AND IDENTIFICATION OF RADIOACTIVE, FISSILE AND EXTRA HAZARDOUS SUBSTANCES Nikolay

More information

Design of an Integrated Inspection System For Detection of Explosive and Illicit Materials

Design of an Integrated Inspection System For Detection of Explosive and Illicit Materials Design of an Integrated Inspection System For Detection of Explosive and Illicit Materials IAEA 2 nd CRP Meeting, Mumbai, 12 16 November 2007 R. M. Megahid Nuclear Research Centre, Atomic Energy Authority

More information

The Neutronic Check Point: fast neutron transmission measurements to detect explosives in vehicles.

The Neutronic Check Point: fast neutron transmission measurements to detect explosives in vehicles. : fast neutron transmission measurements to detect explosives in vehicles. S. Pesente, G. Nebbia, D. Fabris, M. Lunardon, S. Moretto INFN and Dipartimento di Fisica dell Università di Padova Via Marzolo

More information

Pulsed Neutron Interrogation Test Assembly - PUNITA

Pulsed Neutron Interrogation Test Assembly - PUNITA Pulsed Neutron Interrogation Test Assembly - PUNITA Bent Pedersen Nuclear Security Unit Institute for Transuranium Elements - ITU Joint Research Centre presented at IPNDV WG3 meeting, 12-13 May 2016 JRC,

More information

Applications of Accelerators from Basic Science to Industrial Use

Applications of Accelerators from Basic Science to Industrial Use Applications of Accelerators from Basic Science to Industrial Use December 13 th, 2016 Kiyokazu Sato TOSHIBA Corporation Keihin Product Operations 2016 Toshiba Corporation 1 /23 Contents 1. Applications

More information

Activation Analysis. Characteristic decay mechanisms, α, β, γ Activity A reveals the abundance N:

Activation Analysis. Characteristic decay mechanisms, α, β, γ Activity A reveals the abundance N: 2.5. Isotope analysis and neutron activation techniques The previously discussed techniques of material analysis are mainly based on the characteristic atomic structure of the elements and the associated

More information

CBRNE Long Stand-off Detection Dr. Brandon Blackburn PAC 2011 New York, NY March 2011

CBRNE Long Stand-off Detection Dr. Brandon Blackburn PAC 2011 New York, NY March 2011 CBRNE Long Stand-off Detection Dr. Brandon Blackburn PAC 2011 March 2011 Copyright 2010 Raytheon Company. All rights reserved. Page 1 CBRNE Stand-off Detection Why long stand-off? Rationale for using accelerators

More information

SCANNING OF CARGO CONTAINERS BY GAMMA-RAY AND FAST NEUTRON RADIOGRAPHY

SCANNING OF CARGO CONTAINERS BY GAMMA-RAY AND FAST NEUTRON RADIOGRAPHY Armenian Journal of Physics, 2012, vol. 5, issue 1, pp. 1-7 SCANNING OF CARGO CONTAINERS BY GAMMA-RAY AND FAST NEUTRON RADIOGRAPHY A. M. Yousri*, A. M. Osman, W. A. Kansouh, A. M. Reda*, I. I. Bashter*,

More information

Quartz-Crystal Spectrometer for the Analysis of Plutonium K X-Rays

Quartz-Crystal Spectrometer for the Analysis of Plutonium K X-Rays Quartz-Crystal Spectrometer for the Analysis of Plutonium K X-Rays Alison V. Goodsell, William S. Charlton alisong@tamu.edu, charlton@ne.tamu.edu Nuclear Security Science & Policy Institute Texas A&M University,

More information

Neutron Based Techniques for the Detection of Illicit Materials and Explosives

Neutron Based Techniques for the Detection of Illicit Materials and Explosives Neutron Based Techniques for the Detection of Illicit Materials and Explosives R. E. Mayer, A. Tartaglione, J. Blostein,, C. Sepulveda Soza M. Schneebeli,, P. D Avanzo,, L. Capararo Neutron Physics Group

More information

Department of Chemistry, University of Rochester, Rochester, N.Y POC:

Department of Chemistry, University of Rochester, Rochester, N.Y POC: A Mobile Accelerator-Based Neutron Diagnostics Instrument W. Udo Schröder and Jan Tōke Department of Chemistry, University of Rochester, Rochester, N.Y. 14627 POC: schroeder@chem.rochester.edu Project

More information

Distinguishing fissions of 232 Th, 237 Np and 238 U with beta-delayed gamma rays

Distinguishing fissions of 232 Th, 237 Np and 238 U with beta-delayed gamma rays Distinguishing fissions of 232, 237 and 238 with beta-delayed gamma rays A. Iyengar 1, E.B. Norman 1, C. Howard 1, C. Angell 1, A. Kaplan 1, J. J. Ressler 2, P. Chodash 1, E. Swanberg 1, A. Czeszumska

More information

Chapter 3: Neutron Activation and Isotope Analysis

Chapter 3: Neutron Activation and Isotope Analysis Chapter 3: Neutron Activation and Isotope Analysis 3.1. Neutron Activation Techniques 3.2. Neutron Activation of Paintings 3.3. From Qumran to Napoleon 3.4. Neutron Activation with Accelerators 3.5. Isotope

More information

INTERNATIONAL ATOMIC ENERGY AGENCY PROGRAM FOR DETECTION OF ILLICIT MATERIALS

INTERNATIONAL ATOMIC ENERGY AGENCY PROGRAM FOR DETECTION OF ILLICIT MATERIALS INTERNATIONAL ATOMIC ENERGY AGENCY PROGRAM FOR DETECTION OF ILLICIT MATERIALS F. Mulhauser,, K. Baird, P. Colgan, N. Dytlewski, M. Gregoric, and M. Zendel International Atomic Energy Agency Wagramer Strasse

More information

Regulatory Considerations in the Licensing of a Mobile Backscatter X-ray Device used in Security Screening

Regulatory Considerations in the Licensing of a Mobile Backscatter X-ray Device used in Security Screening Regulatory Considerations in the Licensing of a Mobile Backscatter X-ray Device used in Security Screening Jim Scott a* and Leon Railey a a Australian Radiation Protection and Nuclear Safety Agency, Regulatory

More information

POSITION SENSITIVE DETECTION OF CONCEALED SUBSTANCES EMPLOYING PULSED SLOW NEUTRONS

POSITION SENSITIVE DETECTION OF CONCEALED SUBSTANCES EMPLOYING PULSED SLOW NEUTRONS POSITION SENSITIVE DETECTION OF CONCEALED SUBSTANCES EMPLOYING PULSED SLOW NEUTRONS R. E. Mayer A. Tartaglione, J. J. Blostein, M. Schneebeli, P. D Avanzo, L. Capararo Centro Atómico Bariloche and Instituto

More information

Using Fast Neutrons to Detect Explosives and Illicit Materials

Using Fast Neutrons to Detect Explosives and Illicit Materials Using Fast Neutrons to Detect Explosives and Illicit Materials Andy Buffler Department of Physics University of Cape Town, South Africa International Symposium on Utilization of Accelerators, Dubrovnik,

More information

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber CYRIC Annual Report 2001 V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber Kawata N. Baba M. Kato M.*, Miura T.**, and Yamadera A.***, Cyclotron and Radioisotope Center, Tohoku

More information

Emerging Capabilities for Advanced Nuclear Safeguards Measurement Solutions

Emerging Capabilities for Advanced Nuclear Safeguards Measurement Solutions Emerging Capabilities for Advanced Nuclear Safeguards Measurement Solutions Robert McElroy, Stephen Croft, Angela Lousteau, Ram Venkataraman, Presented at the Novel Technologies, Techniques, and Methods

More information

Use of Imaging for Nuclear Material Control and Accountability

Use of Imaging for Nuclear Material Control and Accountability Use of Imaging for Nuclear Material Control and Accountability James A. Mullens, Paul A. Hausladen, Philip Bingham, Daniel E Archer, Brandon Grogan, John T Mihalczo Oak Ridge National Laboratory Abstract

More information

Application of LaBr 3 detector for neutron resonance densitometry

Application of LaBr 3 detector for neutron resonance densitometry Application of LaBr 3 detector for neutron resonance densitometry H. Tsuchiya 1, H. Harada 1, M. Koizumi 1, F. Kitatani 1, J. Takamine 1, M. Kureta 1, H. Iimura 1, B. Becker 2, S. Kopecky 2, P. Schillebeeckx

More information

Application of a Laser-Wakefield Driven Monochromatic Photon Source to Nuclear Resonance Fluorescence

Application of a Laser-Wakefield Driven Monochromatic Photon Source to Nuclear Resonance Fluorescence 2009 IEEE Nuclear Science Symposium Conference Record N04-4 Application of a Laser-Wakefield Driven Monochromatic Photon Source to Nuclear Resonance Fluorescence W.J. Walsh, S.D. Clarke, S.A. Pozzi, IEEE

More information

Neutron emission asymmetries from linearly polarized γ rays on nat Cd, nat Sn, and 181 Ta

Neutron emission asymmetries from linearly polarized γ rays on nat Cd, nat Sn, and 181 Ta Neutron emission asymmetries from linearly polarized γ rays on nat Cd, nat Sn, and 8 Ta Clarke Smith, Gerald Feldman, and the HIγS Collaboration George Triangle C. Smith, G. Feldman (GWU) Washington University

More information

Neutron and Gamma Ray Imaging for Nuclear Materials Identification

Neutron and Gamma Ray Imaging for Nuclear Materials Identification Neutron and Gamma Ray Imaging for Nuclear Materials Identification James A. Mullens John Mihalczo Philip Bingham Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6010 865-574-5564 Abstract This

More information

Correlations in Prompt Neutrons and Gamma Rays from Fission

Correlations in Prompt Neutrons and Gamma Rays from Fission Correlations in Prompt Neutrons and Gamma Rays from Fission S. A. Pozzi 1, B. Wieger 1, M. J. Marcath 1, S. Ward 1, J. L. Dolan 1, T. H. Shin 1, S. D. Clarke 1, M. Flaska 1, E. W. Larsen 1, A. Enqvist

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

TECHNICAL WORKING GROUP ITWG GUIDELINE ON IN-FIELD APPLICATIONS OF HIGH- RESOLUTION GAMMA SPECTROMETRY FOR ANALYSIS OF SPECIAL NUCLEAR MATERIAL

TECHNICAL WORKING GROUP ITWG GUIDELINE ON IN-FIELD APPLICATIONS OF HIGH- RESOLUTION GAMMA SPECTROMETRY FOR ANALYSIS OF SPECIAL NUCLEAR MATERIAL NUCLE A R FORENSIC S INTERN ATION A L TECHNICAL WORKING GROUP ITWG GUIDELINE ON IN-FIELD APPLICATIONS OF HIGH- RESOLUTION GAMMA SPECTROMETRY FOR ANALYSIS OF SPECIAL NUCLEAR MATERIAL This document was designed

More information

Spawning Neutrons, Protons, Electrons and Photons from Universities to Society

Spawning Neutrons, Protons, Electrons and Photons from Universities to Society Spawning Neutrons, Protons, Electrons and Photons from Universities to Society Chuanxiang Tang* *Tang.xuh@tsinghua.edu.cn Department of Engineering Physics, Tsinghua U. UCANS-I, THU, Beijing, Aug. 16,

More information

WM2010 Conference, March 7-11, 2010, Phoenix, AZ

WM2010 Conference, March 7-11, 2010, Phoenix, AZ Nondestructive Determination of Plutonium Mass in Spent Fuel: Preliminary Modeling Results using the Passive Neutron Albedo Reactivity Technique - 10413 L. G. Evans, S. J. Tobin, M. A. Schear, H. O. Menlove,

More information

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose Introduction to Radiological Sciences Neutron Detectors Neutron counting Theory of operation Slow neutrons Fast neutrons Types of detectors Source calibration Survey for Dose 2 Neutrons, what are they?

More information

ISU Physics: Overview

ISU Physics: Overview ISU Physics: Overview Steve Shropshire Department of Physics Idaho State University Slides prepared by Dan Dale ISU s Dept. of Physics Mission: Education and Research in Nuclear Science. ISU Campus: Idaho

More information

Principles and Applications of Neutron Based Inspection Techniques. Tsahi Gozani Rapiscan Laboratories 520Almanor Ave, Sunnyvale, CA

Principles and Applications of Neutron Based Inspection Techniques. Tsahi Gozani Rapiscan Laboratories 520Almanor Ave, Sunnyvale, CA Principles and Applications of Neutron Based Inspection Techniques Tsahi Gozani Rapiscan Laboratories 520Almanor Ave, Sunnyvale, CA Presentation to the International Topical meeting on Nuclear Research

More information

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy Thomas Niedermayr, I. D. Hau, S. Terracol, T. Miyazaki, S. E. Labov and S. Friedrich Former colleagues: M. F. Cunningham, J. N.

More information

MCNP Simulations of Fast Neutron Scattering by Various Elements and their Compounds in View of Elaboration of a Single Shot Inspection System

MCNP Simulations of Fast Neutron Scattering by Various Elements and their Compounds in View of Elaboration of a Single Shot Inspection System MCNP Simulations of Fast Neutron Scattering by Various Elements and their Compounds in View of Elaboration of a Single Shot Inspection System Urszula Wiacek a, Krzysztof Drozdowicz a, Vladimir Gribkov

More information

Active Interrogation of SNMs by use of IEC Fusion Neutron Generator

Active Interrogation of SNMs by use of IEC Fusion Neutron Generator Active Interrogation of SNMs by use of IEC Fusion Neutron Generator Kai Masuda 1, T. Masawa 2, Y. Yakahashi 2, T. Yagi 2, R. Nakamatsu 1, S. Fushimoto 3 1 Inst. Advanced Energy, Kyoto Univ. 2 Research

More information

A Monte Carlo Simulation for Estimating of the Flux in a Novel Neutron Activation System using 252 Cf Source

A Monte Carlo Simulation for Estimating of the Flux in a Novel Neutron Activation System using 252 Cf Source IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 7, Issue 3 Ver. II (May. - Jun. 2015), PP 80-85 www.iosrjournals.org A Monte Carlo Simulation for Estimating of the Flux in a Novel Neutron

More information

Digital simulation of neutron and gamma measurement devices

Digital simulation of neutron and gamma measurement devices 3Security of radioactive materials and transport 3 2 Digital simulation of neutron and gamma measurement devices A.-L. WEBER (IRSN) 1 - Maximum activity that a radioactive element can present without being

More information

Integrated Waste Assay System (IWAS)

Integrated Waste Assay System (IWAS) Features Combines multiple assay techniques Quantitative and isotopic gamma-ray analysis Passive neutron multiplicity coincidence counting Active neutron interrogation using Differential Die-Away Technique

More information

DESIGN AND PERFORMANCE OF THE INTEGRATED WASTE ASSAY SYSTEM (IWAS)

DESIGN AND PERFORMANCE OF THE INTEGRATED WASTE ASSAY SYSTEM (IWAS) DESIGN AND PERFORMANCE OF THE INTEGRATED WASTE ASSAY SYSTEM (IWAS) Robert D. McElroy, Jr., Stephen Croft, Brian Young, Ludovic Bourva Canberra Industries, Inc., Meriden, CT USA ABSTRACT The Integrated

More information

Am cross section measurements at GELINA. S. Kopecky EC JRC IRMM Standards for Nuclear Safety, Security and Safeguards (SN3S)

Am cross section measurements at GELINA. S. Kopecky EC JRC IRMM Standards for Nuclear Safety, Security and Safeguards (SN3S) 241 Am cross section measurements at GELINA S. Kopecky EC JRC IRMM Standards for Nuclear Safety, Security and Safeguards (SN3S) TOF - Facility GELINA Pulsed white neutron source (10 mev < E n < 20 MeV)

More information

Status of J-PARC Transmutation Experimental Facility

Status of J-PARC Transmutation Experimental Facility Status of J-PARC Transmutation Experimental Facility 10 th OECD/NEA Information Exchange Meeting for Actinide and Fission Product Partitioning and Transmutation 2008.10.9 Japan Atomic Energy Agency Toshinobu

More information

Fast neutron inelastic scattering Roland Beyer, Forschungszentrum Dresden-Rossendorf

Fast neutron inelastic scattering Roland Beyer, Forschungszentrum Dresden-Rossendorf Fast neutron inelastic scattering Roland Beyer, Forschungszentrum Dresden-Rossendorf Institute of Radiation Physics Roland Beyer www.fzd.de Member of the Leibniz Association Data needs for transmutation

More information

W. Udo Schröder Departments of Chemistry & of Physics and Astronomy

W. Udo Schröder Departments of Chemistry & of Physics and Astronomy W. Udo Schröder Departments of Chemistry & of Physics and Astronomy ANSEL Faculty Instructors ACS NuSci Acad Infrastructure 2 Prof. Frank Wolfs Prof. Udo Schrőder Research: Large Underground Xenon (LUX)

More information

Atomic and Nuclear Analytical Methods

Atomic and Nuclear Analytical Methods H.R. Verma Atomic and Nuclear Analytical Methods XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques With 128 Figures and 24 Tables Springer Contents 1 X-ray Fluorescence (XRF) and Particle-Induced

More information

BWXT Y-12 Y-12. A BWXT/Bechtel Enterprise SMALL, PORTABLE, LIGHTWEIGHT DT NEUTRON GENERATOR FOR USE WITH NMIS

BWXT Y-12 Y-12. A BWXT/Bechtel Enterprise SMALL, PORTABLE, LIGHTWEIGHT DT NEUTRON GENERATOR FOR USE WITH NMIS BWXT Y-12 A BWXT/Bechtel Enterprise Report No.: Y/LB-16,078 (Paper) SMALL, PORTABLE, LIGHTWEIGHT DT NEUTRON GENERATOR FOR USE WITH NMIS J. Reichardt J. T. Mihalczo R. B. Oberer L. G. Chiang J. K. Mattingly

More information

A New MCNPX PTRAC Coincidence Capture File Capability: A Tool for Neutron Detector Design

A New MCNPX PTRAC Coincidence Capture File Capability: A Tool for Neutron Detector Design Abstract A New MCNPX PTRAC Coincidence Capture File Capability: A Tool for Neutron Detector Design L. G. Evans, M.A. Schear, J. S. Hendricks, M.T. Swinhoe, S.J. Tobin and S. Croft Los Alamos National Laboratory

More information

RDCH 702 Lecture 8: Accelerators and Isotope Production

RDCH 702 Lecture 8: Accelerators and Isotope Production RDCH 702 Lecture 8: Accelerators and Isotope Production Particle generation Accelerator Direct Voltage Linear Cyclotrons Synchrotrons Photons * XAFS * Photonuclear Heavy Ions Neutrons sources Fission products

More information

Atomic & Nuclear Physics

Atomic & Nuclear Physics Atomic & Nuclear Physics Life and Atoms Every time you breathe you are taking in atoms. Oxygen atoms to be exact. These atoms react with the blood and are carried to every cell in your body for various

More information

Detection of Highly Enriched Uranium Using a Pulsed IEC Fusion Device

Detection of Highly Enriched Uranium Using a Pulsed IEC Fusion Device Detection of Highly Enriched Uranium Using a Pulsed IEC Fusion Device R.F. Radel, R.P. Ashley, G.L. Kulcinski, and the UW-IEC Team US-Japan Workshop May 23, 2007 Outline Motivation for pulsed IEC research

More information

TIIVISTELMÄRAPORTTI (SUMMARY REPORT)

TIIVISTELMÄRAPORTTI (SUMMARY REPORT) 2014/2500-0002M ISSN 1797-3457 (verkkojulkaisu) ISBN (PDF) 978-951-25-2627-7 978-951- TIIVISTELMÄRAPORTTI (SUMMARY REPORT) Detection of CBRNE materials using active neutron interrogation (CBRNE-aineiden

More information

nuclear material in cargo containers via active neutron interrogation

nuclear material in cargo containers via active neutron interrogation Eric B. Norman Lawrence Livermore National Laboratory Eric B. Norman Lawrence Livermore National Laboratory Detecting well-shielded nuclear material in cargo containers via active neutron interrogation

More information

Interaction of Ionizing Radiation with Matter

Interaction of Ionizing Radiation with Matter Type of radiation charged particles photonen neutronen Uncharged particles Charged particles electrons (β - ) He 2+ (α), H + (p) D + (d) Recoil nuclides Fission fragments Interaction of ionizing radiation

More information

Applications of Terahertz Radiation (T-ray) Yao-Chang Lee, National Synchrotron Research Radiation Center

Applications of Terahertz Radiation (T-ray) Yao-Chang Lee, National Synchrotron Research Radiation Center Applications of Terahertz Radiation (T-ray) Yao-Chang Lee, yclee@nsrrc.org.tw National Synchrotron Research Radiation Center Outline Terahertz radiation (THz) or T-ray The Interaction between T-ray and

More information

Challenges in Nuclear Nonproliferation: The Role of Nuclear Science and Scientists (alternate title: John Huizenga and Nuclear Nonproliferation)

Challenges in Nuclear Nonproliferation: The Role of Nuclear Science and Scientists (alternate title: John Huizenga and Nuclear Nonproliferation) Challenges in Nuclear Nonproliferation: The Role of Nuclear Science and Scientists (alternate title: John Huizenga and Nuclear Nonproliferation) Bill Johnson Los Alamos National Laboratory 21 April 2006

More information

Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers

Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers Zsolt Révay Institute of Isotopes, Budapest, Hungary Dept. of Nuclear

More information

for (n,f) of MAs 1. Introduction

for (n,f) of MAs 1. Introduction Cross-section measurement for neutron-induced fission of minor actinides with lead slowing-down spectrometer at KURRI (Kyoto U. Research Reactor Institute) Tohoku Univ. K. Hirose, T. Ohtsuki, N. Iwasa

More information

Control of the fission chain reaction

Control of the fission chain reaction Control of the fission chain reaction Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 April 8, 2011 NUCS 342 (Lecture 30) April 8, 2011 1 / 29 Outline 1 Fission chain reaction

More information

Convertible source system of thermal neutron and X-ray at Hokkaido University electron linac facility

Convertible source system of thermal neutron and X-ray at Hokkaido University electron linac facility IL NUOVO CIMENTO 38 C (2015) 187 DOI 10.1393/ncc/i2015-15187-9 Colloquia: UCANS-V Convertible source system of thermal neutron and X-ray at Hokkaido University electron linac facility T. Kamiyama( ), K.

More information

Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center. Michal Mocko

Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center. Michal Mocko Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center Michal Mocko G. Muhrer, F. Tovesson, J. Ullmann International Topical Meeting on Nuclear Research Applications and Utilization

More information

Photoneutron Interrogation of Uranium Samples by a 4 MeV LINAC. A Feasibility Study

Photoneutron Interrogation of Uranium Samples by a 4 MeV LINAC. A Feasibility Study Photoneutron Interrogation of Uranium Samples by a 4 MeV LINAC. A Feasibility Study L. Lakosi, C. T. Nguyen, J. Bagi Institute of Isotopes, Hungarian Academy of Sciences P. O. Box 77, H-1525 Budapest,

More information

Verification of fissile materials

Verification of fissile materials Verification of fissile materials Naeem U. H. Syed, Alexander Bürger, Styrkaar Hustveit, Ole Reistad,Tonje Sekse GammaSem seminar 2010 28/09/2010-29/09/2010 Overview Introduction Background The Black Sea

More information

This paper should be understood as an extended version of a talk given at the

This paper should be understood as an extended version of a talk given at the This paper should be understood as an extended version of a talk given at the Abstract: 1 st JINA workshop at Gull Lake, 2002. Recent experimental developments at LANL (Los Alamos, NM, USA) and CERN (Geneva,

More information

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Preview Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Section 1 The Nucleus Lesson Starter Nuclear reactions result in much larger energy

More information

Compton Scattering Effect and Physics of Compton Photon Beams. Compton Photon Sources around the World, Present and Future

Compton Scattering Effect and Physics of Compton Photon Beams. Compton Photon Sources around the World, Present and Future !!! #! ! # Compton Scattering Effect and Physics of Compton Photon Beams Compton Photon Sources around the World, Present and Future Compton X-ray Sources: Facilities, Projects and Experiments Compton

More information

Development of Cs 2 Te photocathode RF gun system for compact THz SASE-FEL

Development of Cs 2 Te photocathode RF gun system for compact THz SASE-FEL Development of Cs 2 Te photocathode RF gun system for compact THz SASE-FEL R. Kuroda, H. Ogawa, N. Sei, H. Toyokawa, K. Yagi-Watanabe, M. Yasumoto, M. Koike, K. Yamada, T. Yanagida*, T. Nakajyo*, F. Sakai*

More information

WM 07 Conference, February 25 March 01, 2007, Tucson, AZ

WM 07 Conference, February 25 March 01, 2007, Tucson, AZ Design and Construction of a High Energy X-Ray R&D Facility, and the Development and Optimization of Real Time Radioisotopic Characterization of Remote Handled Waste at MeV Energies. S. Halliwell, V.J.Technologies

More information

Detection of Neutron Sources in Cargo Containers

Detection of Neutron Sources in Cargo Containers Science and Global Security, 14:145 149, 2006 Copyright C Taylor & Francis Group, LLC ISSN: 0892-9882 print / 1547-7800 online DOI: 10.1080/08929880600993063 Detection of Neutron Sources in Cargo Containers

More information

Basic physics of nuclear medicine

Basic physics of nuclear medicine Basic physics of nuclear medicine Nuclear structure Atomic number (Z): the number of protons in a nucleus; defines the position of an element in the periodic table. Mass number (A) is the number of nucleons

More information

TECHNICAL WORKING GROUP ITWG GUIDELINE ON LABORATORY APPLICATIONS OF HIGH-RESOLUTION GAMMA SPECTROMETRY

TECHNICAL WORKING GROUP ITWG GUIDELINE ON LABORATORY APPLICATIONS OF HIGH-RESOLUTION GAMMA SPECTROMETRY NUCLE A R FORENSIC S INTERN ATION A L TECHNICAL WORKING GROUP ITWG GUIDELINE ON LABORATORY APPLICATIONS OF HIGH-RESOLUTION GAMMA SPECTROMETRY This document was designed and printed at Lawrence Livermore

More information

TIIVISTELMÄRAPORTTI (SUMMARY REPORT)

TIIVISTELMÄRAPORTTI (SUMMARY REPORT) 2015/2500M-0019 ISSN 1797-3457 (verkkojulkaisu) ISBN 978-951-25-2741-0 (PDF) TIIVISTELMÄRAPORTTI (SUMMARY REPORT) Detection of CBRNE materials using active neutron interrogation phase 2 (CBRNE-aineiden

More information

MCRT L8: Neutron Transport

MCRT L8: Neutron Transport MCRT L8: Neutron Transport Recap fission, absorption, scattering, cross sections Fission products and secondary neutrons Slow and fast neutrons Energy spectrum of fission neutrons Nuclear reactor safety

More information

Laser Compton Scattering Gamma-Ray Experiments for Supernova Neutrino Process )

Laser Compton Scattering Gamma-Ray Experiments for Supernova Neutrino Process ) Laser Compton Scattering Gamma-Ray Experiments for Supernova Neutrino Process ) Takehito HAYAKAWA 1,2), Shuji MIYAMOTO 3), Takayasu MOCHIZUKI 3), Ken HORIKAWA 3), Sho AMANO 3), Dazhi LI 4), Kazuo IMAZAKI

More information

Tadafumi Sano, Jun-ichi Hori, Yoshiyuki Takahashi, Hironobu Unesaki, and Ken Nakajima

Tadafumi Sano, Jun-ichi Hori, Yoshiyuki Takahashi, Hironobu Unesaki, and Ken Nakajima Chapter 4 Development of Nondestructive Assay of Fuel Debris of Fukushima Daiichi NPP (2): Numerical Validation for the Application of a Self-Indication Method Tadafumi Sano, Jun-ichi Hori, Yoshiyuki Takahashi,

More information

FAST NEUTRON MULTIPLICITY COUNTER

FAST NEUTRON MULTIPLICITY COUNTER FAST NEUTRON MULTIPLICITY COUNTER Di Fulvio A. 1, Shin T. 1, Sosa C. 1, Tyler J. 1, Supic L. 1, Clarke S. 1, Pozzi S. 1, Chichester D. 2 1 Department of Nuclear Engineering and Radiological Science of

More information

Chapter Four (Interaction of Radiation with Matter)

Chapter Four (Interaction of Radiation with Matter) Al-Mustansiriyah University College of Science Physics Department Fourth Grade Nuclear Physics Dr. Ali A. Ridha Chapter Four (Interaction of Radiation with Matter) Different types of radiation interact

More information

WM 05 Conference, February 27 - March 3, 2005, Tucson, AZ INTEGRATED WASTE ASSAY SYSTEM (IWAS) AND ANALYSIS ENHANCEMENTS

WM 05 Conference, February 27 - March 3, 2005, Tucson, AZ INTEGRATED WASTE ASSAY SYSTEM (IWAS) AND ANALYSIS ENHANCEMENTS INTEGRATED WASTE ASSAY SYSTEM (IWAS) AND ANALYSIS ENHANCEMENTS R.D. McElroy, Jr. and S. Croft Canberra Industries, Inc. ABSTRACT The Integrated Waste Assay System (IWAS) is a hybrid waste assay system

More information

The Use of Neutron Generators for the Detection of Illicit Materials in the Sea Transportation System

The Use of Neutron Generators for the Detection of Illicit Materials in the Sea Transportation System The Use of Neutron Generators for the Detection of Illicit Materials in the Sea Transportation System G. Nebbia 1), M. Lunardon 1), S. Moretto 1), S. Pesente 1), G. Viesti 1), A. Fontana 2), A. Zenoni

More information

Plasma Accelerator for Detection of Hidden Objects by Using Nanosecond Impulse Neutron Inspection System (NINIS)

Plasma Accelerator for Detection of Hidden Objects by Using Nanosecond Impulse Neutron Inspection System (NINIS) Plasma Accelerator for Detection of Hidden Objects by Using Nanosecond Impulse Neutron Inspection System (NINIS) Cooperation Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland Institute

More information

Photofission of 238-U Nuclei

Photofission of 238-U Nuclei Photofission of 238-U Nuclei International Thorium Energy Conference - ThEC18, 29-31st of October 2018, Belgium İsmail Boztosun This research has been supported by TÜBİTAK with grant number 114F220 Motivations

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Exam 1 Review 1 Chapter 1 - Fundamentals 2 Nuclear units Elementary particles/particle physics Isotopic nomenclature Atomic weight/number density

More information

H. Ohgaki, Member, IEEE, I. Daito, H. Zen, T. Kii, K. Masuda, T. Misawa, R. Hajima, T. Hayakawa, T. Shizuma, M. Kando, and S. Fujimoto I.

H. Ohgaki, Member, IEEE, I. Daito, H. Zen, T. Kii, K. Masuda, T. Misawa, R. Hajima, T. Hayakawa, T. Shizuma, M. Kando, and S. Fujimoto I. Nondestructive Inspection System for Special Nuclear Material Using Inertial Electrostatic Confinement Fusion Neutrons and Laser Compton Scattering Gamma-rays H. Ohgaki, Member, IEEE, I. Daito, H. Zen,

More information

Correlations in Prompt Neutrons and Gamma Rays from Fission

Correlations in Prompt Neutrons and Gamma Rays from Fission Correlations in Prompt Neutrons and Gamma Rays from Fission S. A. Pozzi 1, M. J. Marcath 1, T. H. Shin 1, Angela Di Fulvio 1, S. D. Clarke 1, E. W. Larsen 1, R. Vogt 2,3, J. Randrup 4, R. C. Haight 5,

More information

Using Neutron Generator with APT/NNA for Detection of Explosives

Using Neutron Generator with APT/NNA for Detection of Explosives Using Neutron Generator with APT/NNA for Detection of Explosives A.V. Kuznetsov, A.V. Evsenin, I.Yu. Gorshkov, O.I. Osetrov, D.N. Vakhtin V.G. Khlopin Radium Institute, Saint-Petersburg, Russia Email contact

More information

Active Mode Calibration of the Combined Thermal Epithermal Neutron (CTEN) System

Active Mode Calibration of the Combined Thermal Epithermal Neutron (CTEN) System Active Mode Calibration of the Combined Thermal Epithermal Neutron (CTEN) System John M. Veilleux Los Alamos National Laboratory, Los Alamos, NM 87545, email: veilleux@lanl.gov October 2, 21 ABSTRACT The

More information

THE SLOWPOKE-2 NUCLEAR REACTOR AT THE ROYAL MILITARY COLLEGE OF CANADA: APPLICATIONS FOR THE CANADIAN ARMED FORCES

THE SLOWPOKE-2 NUCLEAR REACTOR AT THE ROYAL MILITARY COLLEGE OF CANADA: APPLICATIONS FOR THE CANADIAN ARMED FORCES THE SLOWPOKE-2 NUCLEAR REACTOR AT THE ROYAL MILITARY COLLEGE OF CANADA: APPLICATIONS FOR THE CANADIAN ARMED FORCES P.C. Hungler 1, M. T. Andrews 1, D.G. Kelly 1 and K.S. Nielsen 1 1 Royal Military College

More information

Nuclear Data Uncertainty Quantification for Applications in Energy, Security, and Isotope Production

Nuclear Data Uncertainty Quantification for Applications in Energy, Security, and Isotope Production Nuclear Data Uncertainty Quantification for Applications in Energy, Security, and Isotope Production I. Gauld M. Williams M. Pigni L. Leal Oak Ridge National Laboratory Reactor and Nuclear Systems Division

More information

THE INSTALLATION FOR EXPERIMENTAL NEUTRON SPECTRA RESEARCH IN REACTOR MATERIALS COMPOSITIONS Hliustin D.V. Institute for Nuclear Research, Moscow,

THE INSTALLATION FOR EXPERIMENTAL NEUTRON SPECTRA RESEARCH IN REACTOR MATERIALS COMPOSITIONS Hliustin D.V. Institute for Nuclear Research, Moscow, THE INSTALLATION FOR EXPERIMENTAL NEUTRON SPECTRA RESEARCH IN REACTOR MATERIALS COMPOSITIONS Hliustin D.V. Institute for Nuclear Research, Moscow, Russia Classical neutron spectrum of fast breeder reactors

More information

Fissile material experiments at the Device Assembly Facility

Fissile material experiments at the Device Assembly Facility Fissile material experiments at the Device Assembly Facility CVT Workshop October 20, 2016 Michael Hamel 1, Pete Chapman 2, Michael Streicher 1 1 University of Michigan 2 North Carolina State University

More information

Nuclear Physics. AP Physics B

Nuclear Physics. AP Physics B Nuclear Physics AP Physics B Nuclear Physics - Radioactivity Before we begin to discuss the specifics of radioactive decay we need to be certain you understand the proper NOTATION that is used. To the

More information

Author(s) Tatsuzawa, Ryotaro; Takaki, Naoyuki. Citation Physics Procedia (2015), 64:

Author(s) Tatsuzawa, Ryotaro; Takaki, Naoyuki. Citation Physics Procedia (2015), 64: Title Fission Study of Actinide Nuclei Us Reactions Nishio, Katsuhisa; Hirose, Kentaro; Author(s) Hiroyuki; Nishinaka, Ichiro; Orland James; Tsukada, Kazuaki; Chiba, Sat Tatsuzawa, Ryotaro; Takaki, Naoyuki

More information

Shielded Scintillator for Neutron Characterization

Shielded Scintillator for Neutron Characterization Shielded Scintillator for Neutron Characterization A Thesis Submitted in Partial Fulfillment of the Requirements for Graduation with Research Distinction in Engineering Physics By Patrick X. Belancourt

More information

Principles of neutron TOF cross section measurements

Principles of neutron TOF cross section measurements Principles of neutron TOF cross section measurements J. Heyse, C. Paradela, P. Schillebeeckx EC JRC IRMM Standards for Nuclear Safety, Security and Safeguards (SN3S) H.I. Kim Korea Atomic Energy Research

More information