1b. The Earth Moves. Planetary Motion (Part 2) C. Heliocentric Models. C. Heliocentric Models. 1) The Revolution. 2) Tycho and Kepler

Size: px
Start display at page:

Download "1b. The Earth Moves. Planetary Motion (Part 2) C. Heliocentric Models. C. Heliocentric Models. 1) The Revolution. 2) Tycho and Kepler"

Transcription

1 Planetary Motion (Part ) C. Heliocentric Models I CAN easily conceive, most Holy Father, that as soon as some people learn that in this book which I have written concerning the revolutions of the heavenly bodies, I ascribe certain motions to the Earth, they will cry out at once that I and my theory should be rejected. Therefore, when I considered this carefully, the contempt which I had to fear because of the novelty and apparent absurdity of my view, nearly induced me to abandon utterly the work I had begun. [excerpt from Dedication of the evolutions of the Heavenly Bodies to Pope Paul III, by Nicolaus Copernicus 1543] 9 C. Heliocentric Models 1) The evolution ) Tycho and Kepler 3) Newton and Halley The evolution 31 1b. The Earth Moves 3 a) Aristarchus of Samos ( BC) had calculated that the sun was much bigger than the earth. He proposed that therefore it was more important and should be the center of the solar system. However, parallax of stars was not observed, and it seemed silly to say the earth moved. Copernicus (1543 AD) shows that the complex motion of the planets can be more simply explained if the sun is at rest, and the earth revolves around it ( heliocentric theory ). However, he doesn t really address the issue of why falling bodies don t fall sideways if the earth is moving. Nicolaus Copernicus ( AD) Geocentric Theory of the universe 1b. Copernican System The only thing that orbits the earth is the moon. Much simpler than geocentric model (which needs 5 deferents and 5 epicycles) 33 1c. etrograde Motion The Earth travels around the Sun in a smaller orbit than Mars, and moves more rapidly than Mars. Consequently, as the Earth overtakes and passes this slower-moving planet, Mars appears for a few months to fall behind and move backward with respect to the background stars. 34 Fig 1-15, p.34 1

2 One of the most important books ever Nicolaus Copernicus On the evolution of Heavenly Spheres (1543) 35 The 1000 Zlotych bill features Copernicus. Due to inflation, it 36 was worth about 10 cents USD when I was last in Poland 1d. Synodic vs Sidereal The synodic period of a planet is the time that elapses between two successive configurations, as seen from Earth - from one opposition to the next, for instance, or from one conjunction to the next. Because the Earth moves while the planet is moving, a planet's synodic period is not equal to its sidereal period (the time to complete one orbit around the Sun). 37 a. Galileo Galilei ( ) A contemporary of Kepler Galileo was one of the very first scientists to do experiments to understand Nature 38 He was the first astronomer to use a telescope (in 1610) to study the sky. a.1 Inventor of Telescope? 39 a. Mountains of the Moon Hans Lippershey invented the telescope 1609 Galileo made his own, and let everyone think that he invented it (won an award!) Galileo s drawings of the Moon with his telescope, 1610 He measured the heights of mountains from the shadows cast and found them to be about same size as mountains on the earth!

3 a.3 Milky Way made of stars 41 a.4 Jupiter has Moons 4 The Milky Way appears as a faint milky white across the sky. With his telescope, Galileo could magnify it and show it was made of stars! Galileo saw four little stars moving with Jupiter across the sky, and changing their positions every night. He quickly and correctly concluded that they are in orbit around Jupiter. This confirmed the Copernican view that the Earth is NOT the center of all motion in the Universe. 43 Saw spots on the sun that moved, interpreted that the sun rotates in 8 days a.6 Venus Has Phases 44 Galileo saw that Venus was bigger at crescent and smaller when full. a.6 Venus Phases Prove Heliocentric 45 Galileo saw that the phases were inconsistent with the geocentric model, proved Venus goes around the sun! b. Aristotle s Physics Natural state is rest continuation of motion depends on continued action of a force [e.g. the prime mover (god) must continue to push the moon] 46 Antiperistasis: To explain how a ball rolls when no-one is pushing it: as ball rolls, it leaves empty space behind it. Nature abhors a vacuum, so air rushes in to fill the space vacated by the ball, hence continues to push the ball along, but it will eventually stop. Aristotle: 384 BC-3 BC 3

4 b. Natural Motion is Straight 47 b. Galileo s Law of Inertia 48 Giambattista Benedetti Bodies at rest tend to stay at rest Natural motion is straight, not circular When projectile released from a sling, it goes straight. Bodies in uniform motion will tend to stay in uniform motion His work influences Galileo Unless acted upon by an outside force If string breaks, ball goes straight natural state IS motion Galileo Galilei Demo: Play 11:35-14:5 of MU #4: b. Galileo: no absolute motion 49 Galileo: (163) Motion is relative. A ball dropped from the crow s nest will hit at the base of the ship s mast, even if the ship is moving. Hence, there is no absolute measure of motion (or rest). b Aristotle and Falling Motion the rate of falling is proportional to the weight and inversely proportional to the density of the medium 50 the peripatetics (followers of Aristotle) postulated that the speed was proportional to the distance fallen. x v x t Aristotle: 384 BC-3 BC Galileo shows that this must be wrong, for an object starting at zero speed would never acquire any speed! Demo: Play 11:35-0:3 of MU #4: a.8 Galileo s Experiment at Pisa 1590 Galileo s Principle: All bodies fall at the same rate, regardless of mass 51 a.8 Law of Falling 5 "Men are like wine flasks," he once said to a group of students. "...look at...bottles with the handsome labels. When you taste them, they are full of air or perfume or rouge. These are bottles fit only to pee into!" -Galileo expressing what he thought of the other faculty members of the University of Pisa. Needless to say, his teaching contract was not renewed! Aristotle: Heavier balls will fall faster Galileo: They fall at the same rate! 4

5 b. Tycho 53 b. Tycho Brahe s Uraniborg Observatory 54 Tycho Brahe measuring star positions (without a telescope) Measurements of position of Mars showed deviations from Copernican model! He built a big observatory with gigantic protractors (no telescopes yet!) b.3 Tycho Brahe ( ) 55 Because he could not measure any parallax of stars, he concludes the earth is at rest. He suggested a weird hybrid model where planets go around sun, but sun goes around earth c. Johannes Kepler ( ) Tycho at first invited Kepler to help in analysis of his data, but then jealously wouldn t let him have the information. On his deathbed he gave Kepler the data. 56 Kepler used it (particular data on Mars), to develop three laws of planetary motion. c.1 Kepler s 1 st Law: Orbits are Ellipses 1605: Kepler realized that the motion of Mars could not be explained with a circular orbit, or the multiple circles proposed by Ptolemy. He accepted Copernicus view that Mars was in orbit around the Sun, rather than around the Earth. He experimented (mathematically) with orbits of various shapes, and found that Mars orbit best fits an ellipse. 57 Ellipses, circles (parabolas and hyperbolas) are conic sections, studied first by the greeks. But it would NEVE occur to the greeks that an orbit is an ellipse. (why?) 58 Fig -3, p.45 5

6 The Ellipse Highly eccentric Focus Focus Focus Focus An ellipse has two foci. Using a fixed length of string around the foci, one draws an ellipse Fig -4, p.45 Not very eccentric c.1 Kepler s 1 st Law (1605) 61 6 Planet orbits tend to have low eccentricity (nearly circular). Comet orbits tend to be highly eccentric. Law No. 1. Each planet moves around the Sun in an orbit that is an ellipse, with the Sun at one focus (and nothing at the other!) Fig -10, p c. Kepler s nd Law (1609) 64 Kepler also noticed that when Mars is closest to the Sun in its elliptical orbit, it moves faster than when it is farther away. This led him to formulate his Second Law of Planetary Motion. 6

7 c. Kepler s nd Law (Equal areas in Equal Times) c. Kepler s nd Law 66 According to his second law, a planet moves fastest when closest to the Sun (at perihelion) and slowest when farthest from the Sun (at aphelion). As the planet moves, an imaginary line joining the planet and the Sun sweeps out equal amounts of area (shown as colored wedges in the animation) in equal intervals of time. c.3 Kepler s 3 rd Law: Harmonic Law 67 c.3 Kepler s 3 rd Law (1618) 68 Planets closer to the sun move faster. This is consistent with his nd law, that showed a planet will move faster at perihelion. He searched for a relationship between orbital period and distance to the sun. The square of the orbital period (P) is directly proportional to the cube of the semimajor axis of the orbit (a). P = a 3 This law explains the proportions of the sizes of the orbits of the planets and the time that it takes them to make one complete circuit around the Sun. [Note: in physics, the symbol a is also used to represent acceleration. Confused?] Why is it called the harmonic law? Kepler thought the spacing between planets was related to musical intervals. 69 An example of Kepler s third law: The orbit of Mars (ecall: P = a 3 ) Mars orbit period (P) is 1.88 years. P = Kepler s law says that P = a 3, so 3.53 = a 3. So then a = (3.53) 1/3 (the cube root of 3.53), or 1.5. Thus, the semimajor axis (average distance of Mars from the Sun) is 1.5 Astronomical Units. 7

8 c. How large is the AU=Astronomical Unit? The average distance from the Earth to the Sun 400 further than moon 4,000 radius of earth 150,000,000 kilometers, or 93,000,000 miles About 500 light-seconds 71 Measuring the AU Transits of Venus (1761 & 1769) observed from different places on the earth were used by Lalande (1771) to get the first accurate measurement of the AU. 7 But how was this measured? Venus transits happen twice 8 years apart, then over a 100 years till the next! Transit of Venus June 01 If you missed it, there is not another one until 117! Isaac Newton ( ) Epitaph: "Nature and Nature's laws lay hid in night: God said, 'Let Newton be!' and all was light." 73 Isaac Newton ( ) 74 Famous book the Principia, published 1687 Based on work done in 1666 Edmund Halley had to twist his arm to get him to write the book and paid for the publication! 1. Newton s First Law 75. Second law: Force is the cause 76 1 st Law: (adopted from Galileo s laws of inertia), Every body preserves in its state of being at rest or of moving uniformly straight forward, except insofar as it is compelled to change its state by forces impressed. In other words: bodies at rest tend to stay at rest, bodies in motion tend to stay in constant motion, unless compelled to change by an outside force. (a) Statement of Law (from Principia) A change in motion is proportional to the motive force impressed and takes place along the straight line in which that force is impressed. In other words: Force = mass acceleration Force: F is the cause of acceleration (unit: Newtons) Acceleration a is the response to force (unit: meter/sec ) Mass: m is the inertia or resistance to force (unit: kg) 8

9 3. Newton s 3 rd Law of eciprocity (1687) Orbits and Gravity Orbital velocity 78 To any action there is always an opposite and equal reaction: or, the mutual actions of two bodies upon each other are always equal, and directed to contrary parts This means, as much as the earth is pulling on you You are pulling back on the earth the same amount Without this law, energy and momentum would not be conserved in the universe. (a) Galileo proposed that throwing a ball at different speeds causes it to travel farther before it falls to Earth. Throw it fast enough ( orbital velocity ), and as it falls the earth s curve falls underneath it, and it falls forever ( free fall ) By matching the centripetal acceleration of a circular path to the acceleration of gravity he derived the orbital speed (near surface of earth) For Earth (=6000 km), orbital velocity v is 17,500 miles/hr, or 8 km/sec v g 9.8 m s 4b Inverse Square Law Edmond Halley ( ) deduced that Kepler s 3 rd law implies that gravity (of sun) must decrease with square of distance. v P v ac 4 P 3 P 1 a Moon is 60 earth radii away, hence earth s pull on moon is 3600 weaker, orbital speed only 1 km/s 79 4c. Gravity: Newton s 4 th Law (i) The apple tree story "After dinner, the weather being warm, we went into the garden and drank tea, under the shade of some apple trees," wrote Stukeley, in the papers published in 175 and previously available only to academics. "He told me, he was just in the same situation, as when formerly, the notion of gravitation came into his mind. It was occasion'd by the fall of an apple, as he sat in contemplative mood. Why should that apple always descend perpendicularly to the ground, thought he to himself." 80 (ii) The Law of Gravity (1680) Newton s 4 th law: The mutual force between two bodies is proportional to their masses, and inversely proportional to square of distance. Gravitation Constant G measured 100 years later by Cavendish. 81 iii. Newton s Orbit GmM ma F Combining Newton s nd and v GM 4 th laws, we see that the mass a of the orbiting body cancels GM out! v Orbital speed depends only on size of orbit (and mass of planet) 8 9

10 (iv) The Equivalence Principle 83 v. The Newton-Kepler Law 84 Weight is the Force of Gravity on an object Force of field g on mass m is: F=mg In the Principia Newton also deduced Kepler's third law, but in an important new form Equating this force with Newton s second law, we find that the mass cancels ma=mg Hence, (as Galileo said), all bodies fall at same rate! GM g Mass of central body: M = a 3 /P Orbital adius a (in astronomical units) Period P (in years) Mass M in units of solar masses To measure mass of Earth, use moon s orbit Jupiter, use Galilean moons Sun, use orbits of planets Galaxy, use orbits of stars around galaxy Escape velocity 85 Escape Velocity for the planets 86 The velocity of escape, V, from a planet is given by Throw the ball hard enough and it will escape the gravity pull of the Earth V GM How fast do you have to throw it? It depends on which planet you live on G is the universal gravitational constant m is the mass of the planet r is the radius of the planet The escape velocity of Earth is 11 km/sec, or About 5,000 miles per hour. Escape Velocities for the planets, the Sun, and the Moon 87 (e1). Special elativity 88 Object Mass (Earth = 1) adius (Earth = 1) Escape Velocity Sun 330, km/sec Jupiter Saturn Neptune Uranus Venus Mars Mercury Moon Einstein (6 years old) publishes theory of special relativity Speed of light is the same for all observers Motion is relative (Galileo) there is no experiment one can do to determine absolute motion relative to space. Laws of physics must hold in all reference frames which differ only by a constant velocity 10

11 e. Galileo s Experiment at Pisa 1590 Galileo s Principle: all bodies fall at the same rate, regardless of mass 89 e3. The Equivalence Principle eference at rest with Gravity is indistinguishable to a reference frame which is accelerating upward in gravity free environment Strong EEP (Einstein Equivalence Principle) same result, but argued from a different way. He proposed that falling bodies in gravity are equivalent to being in an accelerated frame (e.g. in an accelerating elevator) The apple accelerating downward due to gravity looks the same as an apple at rest in space, with the floor accelerating upward towards it. eferences: Updated 9/4/ Good Java Demo: Galileo interview: Galileo: x 11

II. Motion in 1D. Physics Part 1 MECHANICS Draft (part C incomplete) 1. Aristotle s Physics. A. Principle of Inertia. 2. Inertia

II. Motion in 1D. Physics Part 1 MECHANICS Draft (part C incomplete) 1. Aristotle s Physics. A. Principle of Inertia. 2. Inertia Physics Part 1 MECHANICS Draft (part C incomplete) Topic II. Motion in one Dimension (Kinematics) W. Pezzaglia Updated: 01Aug3 II. Motion in 1D A. Principle of Inertia B. Uniform Motion C. Acceleration

More information

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Gravity Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Simulation Synchronous Rotation https://www.youtube.com/watch?v=ozib_l eg75q Sun-Earth-Moon System https://vimeo.com/16015937

More information

Introduction To Modern Astronomy I

Introduction To Modern Astronomy I ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens

More information

Gravitation and the Motion of the Planets

Gravitation and the Motion of the Planets Gravitation and the Motion of the Planets 1 Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets go around

More information

Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler

Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler Celestial motions The stars: Uniform daily motion about the celestial poles (rising and setting). The Sun: Daily motion around the celestial

More information

Announcements. Topics To Be Covered in this Lecture

Announcements. Topics To Be Covered in this Lecture Announcements! Tonight s observing session is cancelled (due to clouds)! the next one will be one week from now, weather permitting! The 2 nd LearningCurve activity was due earlier today! Assignment 2

More information

Gravitation and the Waltz of the Planets

Gravitation and the Waltz of the Planets Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets

More information

Gravitation and the Waltz of the Planets. Chapter Four

Gravitation and the Waltz of the Planets. Chapter Four Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets

More information

18. Kepler as a young man became the assistant to A) Nicolaus Copernicus. B) Ptolemy. C) Tycho Brahe. D) Sir Isaac Newton.

18. Kepler as a young man became the assistant to A) Nicolaus Copernicus. B) Ptolemy. C) Tycho Brahe. D) Sir Isaac Newton. Name: Date: 1. The word planet is derived from a Greek term meaning A) bright nighttime object. B) astrological sign. C) wanderer. D) nontwinkling star. 2. The planets that were known before the telescope

More information

Astronomy Notes Chapter 02.notebook April 11, 2014 Pythagoras Aristotle geocentric retrograde motion epicycles deferents Aristarchus, heliocentric

Astronomy Notes Chapter 02.notebook April 11, 2014 Pythagoras Aristotle geocentric retrograde motion epicycles deferents Aristarchus, heliocentric Around 2500 years ago, Pythagoras began to use math to describe the world around him. Around 200 years later, Aristotle stated that the Universe is understandable and is governed by regular laws. Most

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Comet Halley Edmund Halley, a friend of Newton s used Newton s math to predict the return of a comet seen at intervals of 76 years. Lecture 3; September 29, 2016 Previously on Astro-1

More information

4. Gravitation & Planetary Motion. Mars Motion: 2005 to 2006

4. Gravitation & Planetary Motion. Mars Motion: 2005 to 2006 4. Gravitation & Planetary Motion Geocentric models of ancient times Heliocentric model of Copernicus Telescopic observations of Galileo Galilei Systematic observations of Tycho Brahe Three planetary laws

More information

PHYS 155 Introductory Astronomy

PHYS 155 Introductory Astronomy PHYS 155 Introductory Astronomy - observing sessions: Sunday Thursday, 9pm, weather permitting http://www.phys.uconn.edu/observatory - Exam - Tuesday March 20, - Review Monday 6:30-9pm, PB 38 Marek Krasnansky

More information

Planetary Orbits: Kepler s Laws 1/18/07

Planetary Orbits: Kepler s Laws 1/18/07 Planetary Orbits: Kepler s Laws Announcements The correct link for the course webpage http://www.lpl.arizona.edu/undergrad/classes/spring2007/giacalone_206-2 The first homework due Jan 25 (available for

More information

Introduction To Modern Astronomy II

Introduction To Modern Astronomy II ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy II Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens

More information

Physics Unit 7: Circular Motion, Universal Gravitation, and Satellite Orbits. Planetary Motion

Physics Unit 7: Circular Motion, Universal Gravitation, and Satellite Orbits. Planetary Motion Physics Unit 7: Circular Motion, Universal Gravitation, and Satellite Orbits Planetary Motion Geocentric Models --Many people prior to the 1500 s viewed the! Earth and the solar system using a! geocentric

More information

9/12/2010. The Four Fundamental Forces of Nature. 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force

9/12/2010. The Four Fundamental Forces of Nature. 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force The Four Fundamental Forces of Nature 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force The Universe is made of matter Gravity the force of attraction between matter

More information

In so many and such important. ways, then, do the planets bear witness to the earth's mobility. Nicholas Copernicus

In so many and such important. ways, then, do the planets bear witness to the earth's mobility. Nicholas Copernicus In so many and such important ways, then, do the planets bear witness to the earth's mobility Nicholas Copernicus What We Will Learn Today What did it take to revise an age old belief? What is the Copernican

More information

Astronomy 1143 Quiz 1 Review

Astronomy 1143 Quiz 1 Review Astronomy 1143 Quiz 1 Review Prof. Pradhan September 7, 2017 I What is Science? 1. Explain the difference between astronomy and astrology. Astrology: nonscience using zodiac sign to predict the future/personality

More information

Chapter 1 The Copernican Revolution

Chapter 1 The Copernican Revolution Chapter 1 The Copernican Revolution The Horse Head nebula in the Orion constellation (Reading assignment: Chapter 1) Learning Outcomes How the geocentric model accounts for the retrograde motion of planets?

More information

ASTR-1010: Astronomy I Course Notes Section III

ASTR-1010: Astronomy I Course Notes Section III ASTR-1010: Astronomy I Course Notes Section III Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use

More information

Most of the time during full and new phases, the Moon lies above or below the Sun in the sky.

Most of the time during full and new phases, the Moon lies above or below the Sun in the sky. 6/16 Eclipses: We don t have eclipses every month because the plane of the Moon s orbit about the Earth is different from the plane the ecliptic, the Earth s orbital plane about the Sun. The planes of

More information

How big is the Universe and where are we in it?

How big is the Universe and where are we in it? Announcements Results of clicker questions from Monday are on ICON. First homework is graded on ICON. Next homework due one minute before midnight on Tuesday, September 6. Labs start this week. All lab

More information

Learning Objectives. one night? Over the course of several nights? How do true motion and retrograde motion differ?

Learning Objectives. one night? Over the course of several nights? How do true motion and retrograde motion differ? Kepler s Laws Learning Objectives! Do the planets move east or west over the course of one night? Over the course of several nights? How do true motion and retrograde motion differ?! What are geocentric

More information

Gat ew ay T o S pace AS EN / AS TR Class # 19. Colorado S pace Grant Consortium

Gat ew ay T o S pace AS EN / AS TR Class # 19. Colorado S pace Grant Consortium Gat ew ay T o S pace AS EN / AS TR 2500 Class # 19 Colorado S pace Grant Consortium Announcements: - Launch Readiness Review Cards - 11 days to launch Announcements: - Launch Readiness Review Cards - 11

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

ASTR 150. Planetarium Shows begin Sept 9th. Register your iclicker! Last time: The Night Sky Today: Motion and Gravity. Info on course website

ASTR 150. Planetarium Shows begin Sept 9th. Register your iclicker! Last time: The Night Sky Today: Motion and Gravity. Info on course website Planetarium Shows begin Sept 9th Info on course website Register your iclicker! Last time: The Night Sky Today: Motion and Gravity ASTR 150 Hang on tight! Most math all semester-- get it over with right

More information

By; Jarrick Serdar, Michael Broberg, Trevor Grey, Cameron Kearl, Claire DeCoste, and Kristian Fors

By; Jarrick Serdar, Michael Broberg, Trevor Grey, Cameron Kearl, Claire DeCoste, and Kristian Fors By; Jarrick Serdar, Michael Broberg, Trevor Grey, Cameron Kearl, Claire DeCoste, and Kristian Fors What is gravity? Gravity is defined as the force of attraction by which terrestrial bodies tend to fall

More information

Earth Science, 13e Tarbuck & Lutgens

Earth Science, 13e Tarbuck & Lutgens Earth Science, 13e Tarbuck & Lutgens Origins of Modern Astronomy Earth Science, 13e Chapter 21 Stanley C. Hatfield Southwestern Illinois College Early history of astronomy Ancient Greeks Used philosophical

More information

7.4 Universal Gravitation

7.4 Universal Gravitation Circular Motion Velocity is a vector quantity, which means that it involves both speed (magnitude) and direction. Therefore an object traveling at a constant speed can still accelerate if the direction

More information

Eclipses and Forces. Jan 21, ) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws

Eclipses and Forces. Jan 21, ) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws Eclipses and Forces Jan 21, 2004 1) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws Review Lots of motion The Moon revolves around the Earth Eclipses Solar Lunar the Sun, Earth and Moon must all be

More information

Gravity and the Orbits of Planets

Gravity and the Orbits of Planets Gravity and the Orbits of Planets 1. Gravity Galileo Newton Earth s Gravity Mass v. Weight Einstein and General Relativity Round and irregular shaped objects 2. Orbits and Kepler s Laws ESO Galileo, Gravity,

More information

History of Astronomy. Historical People and Theories

History of Astronomy. Historical People and Theories History of Astronomy Historical People and Theories Plato Believed he could solve everything through reasoning. Circles and Spheres are good because they are perfect (never ending) and pleasing to the

More information

Johannes Kepler ( ) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it!

Johannes Kepler ( ) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it! Johannes Kepler (1571-1630) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it! Kepler s Life Work Kepler sought a unifying principle

More information

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws Laws of Motion. Laws of Motion

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws Laws of Motion. Laws of Motion Today Planetary Motion Tycho Brahe s Observations Kepler s Laws Laws of Motion Laws of Motion In 1633 the Catholic Church ordered Galileo to recant his claim that Earth orbits the Sun. His book on the

More information

Astronomy- The Original Science

Astronomy- The Original Science Astronomy- The Original Science Imagine that it is 5,000 years ago. Clocks and modern calendars have not been invented. How would you tell time or know what day it is? One way to tell the time is to study

More information

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws of Planetary Motion. Laws of Motion. in physics

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws of Planetary Motion. Laws of Motion. in physics Planetary Motion Today Tycho Brahe s Observations Kepler s Laws of Planetary Motion Laws of Motion in physics Page from 1640 text in the KSL rare book collection That the Earth may be a Planet the seeming

More information

Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009

Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009 Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Mark answer on Scantron.

More information

Occam s Razor: William of Occam, 1340(!)

Occam s Razor: William of Occam, 1340(!) Reading: OpenStax, Chapter 2, Section 2.2 &2.4, Chapter 3, Sections 3.1-3.3 Chapter 5, Section 5.1 Last time: Scales of the Universe Astro 150 Spring 2018: Lecture 2 page 1 The size of our solar system,

More information

Days of the week: - named after 7 Power (moving) objects in the sky (Sun, Moon, 5 planets) Models of the Universe:

Days of the week: - named after 7 Power (moving) objects in the sky (Sun, Moon, 5 planets)   Models of the Universe: Motions of the Planets ( Wanderers ) Planets move on celestial sphere - change RA, Dec each night - five are visible to naked eye Mercury, Venus, Mars, Jupiter, Saturn Days of the week: - named after 7

More information

Physics 12. Unit 5 Circular Motion and Gravitation Part 2

Physics 12. Unit 5 Circular Motion and Gravitation Part 2 Physics 12 Unit 5 Circular Motion and Gravitation Part 2 1. Newton s law of gravitation We have seen in Physics 11 that the force acting on an object due to gravity is given by a well known formula: F

More information

History of Astronomy. PHYS 1411 Introduction to Astronomy. Tycho Brahe and Exploding Stars. Tycho Brahe ( ) Chapter 4. Renaissance Period

History of Astronomy. PHYS 1411 Introduction to Astronomy. Tycho Brahe and Exploding Stars. Tycho Brahe ( ) Chapter 4. Renaissance Period PHYS 1411 Introduction to Astronomy History of Astronomy Chapter 4 Renaissance Period Copernicus new (and correct) explanation for retrograde motion of the planets Copernicus new (and correct) explanation

More information

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Craig Lage New York University - Department of Physics craig.lage@nyu.edu February 24, 2014 1 / 21 Tycho Brahe s Equatorial

More information

ASTR 1010 Spring 2016 Study Notes Dr. Magnani

ASTR 1010 Spring 2016 Study Notes Dr. Magnani The Copernican Revolution ASTR 1010 Spring 2016 Study Notes Dr. Magnani The Copernican Revolution is basically how the West intellectually transitioned from the Ptolemaic geocentric model of the Universe

More information

cosmogony geocentric heliocentric How the Greeks modeled the heavens

cosmogony geocentric heliocentric How the Greeks modeled the heavens Cosmogony A cosmogony is theory about ones place in the universe. A geocentric cosmogony is a theory that proposes Earth to be at the center of the universe. A heliocentric cosmogony is a theory that proposes

More information

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy 2006 Pearson Prentice Hall Lecture Outlines PowerPoint Chapter 21 Earth Science 11e Tarbuck/Lutgens This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Evidence that the Earth does not move: Greek Astronomy. Aristotelian Cosmology: Motions of the Planets. Ptolemy s Geocentric Model 2-1

Evidence that the Earth does not move: Greek Astronomy. Aristotelian Cosmology: Motions of the Planets. Ptolemy s Geocentric Model 2-1 Greek Astronomy Aristotelian Cosmology: Evidence that the Earth does not move: 1. Stars do not exhibit parallax: 2-1 At the center of the universe is the Earth: Changeable and imperfect. Above the Earth

More information

Kepler, Newton, and laws of motion

Kepler, Newton, and laws of motion Kepler, Newton, and laws of motion First: A Little History Geocentric vs. heliocentric model for solar system (sec. 2.2-2.4)! The only history in this course is this progression: Aristotle (~350 BC) Ptolemy

More information

Today. Review. Momentum and Force Consider the rate of change of momentum. What is Momentum?

Today. Review. Momentum and Force Consider the rate of change of momentum. What is Momentum? Today Announcements: HW# is due Wednesday 8:00 am. HW#3 will be due Wednesday Feb.4 at 8:00am Review and Newton s 3rd Law Gravity, Planetary Orbits - Important lesson in how science works and how ultimately

More information

The Scientific Revolution

The Scientific Revolution The Scientific Revolution What is a Revolution? A Revolution is a complete change, or an overthrow of a government, a social system, etc. The Scientific Revolution In the 1500s and 1600s the Scientific

More information

2.4 The Birth of Modern Astronomy

2.4 The Birth of Modern Astronomy 2.4 The Birth of Modern Astronomy Telescope invented around 1600 Galileo built his own, made observations: Moon has mountains and valleys Sun has sunspots, and rotates Jupiter has moons (shown): Venus

More information

Astronomy Lesson 8.1 Astronomy s Movers and Shakers

Astronomy Lesson 8.1 Astronomy s Movers and Shakers 8 Astronomers.notebook Astronomy Lesson 8.1 Astronomy s Movers and Shakers Aristotle 384 322 BCE Heavenly objects must move on circular paths at constant speeds. Earth is motionless at the center of the

More information

If Earth had no tilt, what else would happen?

If Earth had no tilt, what else would happen? A more in depth explanation from last week: If Earth had no tilt, what else would happen? The equator would be much hotter due to the direct sunlight which would lead to a lower survival rate and little

More information

Lecture #5: Plan. The Beginnings of Modern Astronomy Kepler s Laws Galileo

Lecture #5: Plan. The Beginnings of Modern Astronomy Kepler s Laws Galileo Lecture #5: Plan The Beginnings of Modern Astronomy Kepler s Laws Galileo Geocentric ( Ptolemaic ) Model Retrograde Motion: Apparent backward (= East-to-West) motion of a planet with respect to stars Ptolemy

More information

What is a Revolution? A Revolution is a complete change, or an overthrow of a government, a social system, etc.

What is a Revolution? A Revolution is a complete change, or an overthrow of a government, a social system, etc. CW10 p374 Vocab What is a Revolution? A Revolution is a complete change, or an overthrow of a government, a social system, etc. The Scientific Revolution In the 1500s and 1600s the Scientific Revolution

More information

PHYS 160 Astronomy Test #1 Fall 2017 Version B

PHYS 160 Astronomy Test #1 Fall 2017 Version B PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,

More information

Early Theories. Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle

Early Theories. Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle Planetary Motion Early Theories Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle Stars appear to move around Earth Observations showed

More information

Astronomy 101 Exam 2 Form Akey

Astronomy 101 Exam 2 Form Akey Astronomy 101 Exam 2 Form Akey Name: Lab section number: (In the format M0**. See back page; if you get this wrong you may not get your exam back!) Exam time: one hour and twenty minutes Please put bags

More information

Astronomy 101 Exam 2 Form Bkey

Astronomy 101 Exam 2 Form Bkey Astronomy 101 Exam 2 Form Bkey Name: Lab section number: (In the format M0**. See back page; if you get this wrong you may not get your exam back!) Exam time: one hour and twenty minutes Please put bags

More information

Astronomy 101 Exam 2 Form Dkey

Astronomy 101 Exam 2 Form Dkey Astronomy 101 Exam 2 Form Dkey Name: Lab section number: (In the format M0**. See back page; if you get this wrong you may not get your exam back!) Exam time: one hour and twenty minutes Please put bags

More information

Copernican Revolution. ~1500 to ~1700

Copernican Revolution. ~1500 to ~1700 ~1500 to ~1700 Copernicus (~1500) Brahe (~1570) Kepler (~1600) Galileo (~1600) Newton (~1670) The Issue: Geocentric or Heliocentric Which model explains observations the best? Copernicus (~1500) Resurrected

More information

Section 37 Kepler's Rules

Section 37 Kepler's Rules Section 37 Kepler's Rules What is the universe made out of and how do the parts interact? That was our goal in this course While we ve learned that objects do what they do because of forces, energy, linear

More information

Thursday is last Planetarium observing. Nighttime observing starts next week.

Thursday is last Planetarium observing. Nighttime observing starts next week. Homework #2 is due at 11:50am this Friday! Thursday is last Planetarium observing. Solar Observing is happening now! Check out webpage to see if it is canceled due to weather. Nighttime observing starts

More information

Contents: -Information/Research Packet. - Jumbled Image packet. - Comic book cover page. -Comic book pages. -Example finished comic

Contents: -Information/Research Packet. - Jumbled Image packet. - Comic book cover page. -Comic book pages. -Example finished comic Contents: -Information/Research Packet - Jumbled Image packet - Comic book cover page -Comic book pages -Example finished comic Nicolaus Copernicus Nicholas Copernicus was a Polish astronomer who lived

More information

The History of Astronomy. Theories, People, and Discoveries of the Past

The History of Astronomy. Theories, People, and Discoveries of the Past The History of Astronomy Theories, People, and Discoveries of the Past Early man recorded very little history. Left some clues in the form of petrographs. Stone drawings that show eclipses, comets, supernovae.

More information

Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points)

Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points) Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points) Moon Phases Moon is always ½ illuminated by the Sun, and the sunlit side

More information

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 13 Lecture RANDALL D. KNIGHT Chapter 13 Newton s Theory of Gravity IN THIS CHAPTER, you will learn to understand the motion of satellites

More information

Chapter 4. The Origin Of Modern Astronomy. Is okay to change your phone? From ios to Android From Android to ios

Chapter 4. The Origin Of Modern Astronomy. Is okay to change your phone? From ios to Android From Android to ios Chapter 4 The Origin Of Modern Astronomy Slide 14 Slide 15 14 15 Is Change Good or Bad? Do you like Homer to look like Homer or with hair? Does it bother you when your schedule is changed? Is it okay to

More information

5. How did Copernicus s model solve the problem of some planets moving backwards?

5. How did Copernicus s model solve the problem of some planets moving backwards? MODELS OF THE SOLAR SYSTEM Reading Guide: Chapter 27.2 (read text pages 691-694) 1k. Recognize the cumulative nature of scientific evidence. 1n. Know that when an observation does not agree with an accepted

More information

January 19, notes.notebook. Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM

January 19, notes.notebook. Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM 8.1 notes.notebook Claudius Ptolemaeus Second Century AD Jan 5 7:7 AM Copernicus: The Foundation Nicholas Copernicus (Polish, 147 154): Proposed the first modern heliocentric model, motivated by inaccuracies

More information

Lecture 4: Kepler and Galileo. Astronomy 111 Wednesday September 6, 2017

Lecture 4: Kepler and Galileo. Astronomy 111 Wednesday September 6, 2017 Lecture 4: Kepler and Galileo Astronomy 111 Wednesday September 6, 2017 Reminders Online homework #2 due Monday at 3pm Johannes Kepler (1571-1630): German Was Tycho s assistant Used Tycho s data to discover

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016 Why are celestial motions and forces important? They explain the world around us.

More information

Chapter 2. The Rise of Astronomy. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 2. The Rise of Astronomy. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 2 The Rise of Astronomy Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Periods of Western Astronomy Western astronomy divides into 4 periods Prehistoric

More information

5. Universal Laws of Motion

5. Universal Laws of Motion 5. Universal Laws of Motion If I have seen farther than others, it is because I have stood on the shoulders of giants. Sir Isaac Newton (164 177) Physicist Image courtesy of NASA/JPL Sir Isaac Newton (164-177)

More information

The Heliocentric Model of Copernicus

The Heliocentric Model of Copernicus Celestial Mechanics The Heliocentric Model of Copernicus Sun at the center and planets (including Earth) orbiting along circles. inferior planets - planets closer to Sun than Earth - Mercury, Venus superior

More information

How Astronomers Learnt that The Heavens Are Not Perfect

How Astronomers Learnt that The Heavens Are Not Perfect 1 How Astronomers Learnt that The Heavens Are Not Perfect Introduction In this packet, you will read about the discoveries and theories which changed the way astronomers understood the Universe. I have

More information

Astr 2320 Tues. Jan. 24, 2017 Today s Topics Review of Celestial Mechanics (Ch. 3)

Astr 2320 Tues. Jan. 24, 2017 Today s Topics Review of Celestial Mechanics (Ch. 3) Astr 2320 Tues. Jan. 24, 2017 Today s Topics Review of Celestial Mechanics (Ch. 3) Copernicus (empirical observations) Kepler (mathematical concepts) Galileo (application to Jupiter s moons) Newton (Gravity

More information

Early Models of the Universe. How we explained those big shiny lights in the sky

Early Models of the Universe. How we explained those big shiny lights in the sky Early Models of the Universe How we explained those big shiny lights in the sky The Greek philosopher Aristotle (384 322 BCE) believed that the Earth was the center of our universe, and everything rotated

More information

11 Newton s Law of Universal Gravitation

11 Newton s Law of Universal Gravitation Physics 1A, Fall 2003 E. Abers 11 Newton s Law of Universal Gravitation 11.1 The Inverse Square Law 11.1.1 The Moon and Kepler s Third Law Things fall down, not in some other direction, because that s

More information

Chapter 2 The Science of Life in the Universe

Chapter 2 The Science of Life in the Universe In ancient times phenomena in the sky were not understood! Chapter 2 The Science of Life in the Universe The Ancient Greeks The Scientific Method Our ideas must always be consistent with our observations!

More information

Module 3: Astronomy The Universe Topic 6 Content: The Age of Astronomy Presentation Notes

Module 3: Astronomy The Universe Topic 6 Content: The Age of Astronomy Presentation Notes Module 3: Astronomy The Universe The Age of Astronomy was marked by the struggle to understand the placement of Earth in the universe and the effort to understand planetary motion. Behind this struggle

More information

Natural Questions. About 2000 years ago Greek scientists were confused about motion. and developed a theory of motion

Natural Questions. About 2000 years ago Greek scientists were confused about motion. and developed a theory of motion Natural Questions First natural question: Next question: What these things made of? Why and how things move? About 2000 years ago Greek scientists were confused about motion. Aristotle --- First to study

More information

Ast ch 4-5 practice Test Multiple Choice

Ast ch 4-5 practice Test Multiple Choice Ast ch 4-5 practice Test Multiple Choice 1. The distance from Alexandria to Syene is about 500 miles. On the summer solstice the sun is directly overhead at noon in Syene. At Alexandria on the summer solstice,

More information

The following notes roughly correspond to Section 2.4 and Chapter 3 of the text by Bennett. This note focuses on the details of the transition for a

The following notes roughly correspond to Section 2.4 and Chapter 3 of the text by Bennett. This note focuses on the details of the transition for a The following notes roughly correspond to Section 2.4 and Chapter 3 of the text by Bennett. This note focuses on the details of the transition for a geocentric model for understanding the universe to a

More information

3) During retrograde motion a planet appears to be A) dimmer than usual. B) the same brightness as usual C) brighter than usual.

3) During retrograde motion a planet appears to be A) dimmer than usual. B) the same brightness as usual C) brighter than usual. Descriptive Astronomy (ASTR 108) Exam 1 B February 17, 2010 Name: In each of the following multiple choice questions, select the best possible answer. In the line on the scan sheet corresponding to the

More information

1) Kepler's third law allows us to find the average distance to a planet from observing its period of rotation on its axis.

1) Kepler's third law allows us to find the average distance to a planet from observing its period of rotation on its axis. Descriptive Astronomy (ASTR 108) Exam 1 A February 17, 2010 Name: In each of the following multiple choice questions, select the best possible answer. In the line on the scan sheet corresponding to the

More information

towards the modern view

towards the modern view Brief review of last time: Og through Tycho Brahe Early Science 1 Reading: Chap. 2, Sect.2.4, Ch. 3, Sect. 3.1 Homework 3: Due Tomorrow and Mon. Homework 4: Now available, due next recitation cycle, or

More information

Test Bank for Life in the Universe, Third Edition Chapter 2: The Science of Life in the Universe

Test Bank for Life in the Universe, Third Edition Chapter 2: The Science of Life in the Universe 1. The possibility of extraterrestrial life was first considered A) after the invention of the telescope B) only during the past few decades C) many thousands of years ago during ancient times D) at the

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Gravitation 1. Each of five satellites makes a circular orbit about an object that is much more massive than any of the satellites. The mass and orbital radius of each

More information

1. Which of the following correctly lists our cosmic address from small to large?

1. Which of the following correctly lists our cosmic address from small to large? 1. Which of the following correctly lists our cosmic address from small to large? (a) Earth, solar system, Milky Way Galaxy, Local Group, Local Super Cluster, universe (b) Earth, solar system, Milky Way

More information

Unit 2: Celestial Mechanics

Unit 2: Celestial Mechanics Unit 2: Celestial Mechanics The position of the Earth Ptolemy (90 168 AD) Made tables that allowed a user to locate the position of a planet at any past, present, or future date. In order to maintain circular

More information

14.1 Earth Satellites. The path of an Earth satellite follows the curvature of the Earth.

14.1 Earth Satellites. The path of an Earth satellite follows the curvature of the Earth. The path of an Earth satellite follows the curvature of the Earth. A stone thrown fast enough to go a horizontal distance of 8 kilometers during the time (1 second) it takes to fall 5 meters, will orbit

More information

Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM

Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM Claudius Ptolemaeus Second Century AD Jan 5 7:37 AM Copernicus: The Foundation Nicholas Copernicus (Polish, 1473 1543): Proposed the first modern heliocentric model, motivated by inaccuracies of the Ptolemaic

More information

In this chapter, you will consider the force of gravity:

In this chapter, you will consider the force of gravity: Gravity Chapter 5 Guidepost In this chapter, you will consider the force of gravity: What were Galileo s insights about motion and gravity? What were Newton s insights about motion and gravity? How does

More information

What is a Satellite? A satellite is an object that orbits another object. Ex. Radio satellite, moons, planets

What is a Satellite? A satellite is an object that orbits another object. Ex. Radio satellite, moons, planets Planetary Orbit Planetary Orbits What shape do planets APPEAR to orbit the sun? Planets APPEAR to orbit in a circle. What shape do the planets orbit the sun??? Each planet Orbits the Sun in an ellipse

More information

The History of Astronomy. Please pick up your assigned transmitter.

The History of Astronomy. Please pick up your assigned transmitter. The History of Astronomy Please pick up your assigned transmitter. When did mankind first become interested in the science of astronomy? 1. With the advent of modern computer technology (mid-20 th century)

More information

Kepler s Laws Simulations

Kepler s Laws Simulations Kepler s Laws Simulations Goto: http://csep10.phys.utk.edu/guidry/java/kepler/kepler.html 1. Observe the speed of the planet as it orbits around the Sun. Change the speed to.50 and answer the questions.

More information

Astronomy 101 Exam 2 Form AC-key

Astronomy 101 Exam 2 Form AC-key Astronomy 101 Exam 2 Form AC-key Name: Lab section number: (In the format M0**. See back page; if you get this wrong you may not get your exam back!) Exam time: one hour and twenty minutes Please put bags

More information

Chapter 13. Universal Gravitation

Chapter 13. Universal Gravitation Chapter 13 Universal Gravitation Planetary Motion A large amount of data had been collected by 1687. There was no clear understanding of the forces related to these motions. Isaac Newton provided the answer.

More information

Isaac Newton & Gravity

Isaac Newton & Gravity Isaac Newton & Gravity Isaac Newton was born in England in 1642 the year that Galileo died. Newton would extend Galileo s study on the motion of bodies, correctly deduce the form of the gravitational force,

More information