9/12/2010. The Four Fundamental Forces of Nature. 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force
|
|
- Penelope Hudson
- 4 years ago
- Views:
Transcription
1 The Four Fundamental Forces of Nature 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force The Universe is made of matter Gravity the force of attraction between matter Most important force in Astronomy! Operates over large distances! The five naked eye planets 1. Mercury 2. Venus 3. Mars 4. Jupiter 5. Saturn Direct and Retrograde Motion The Geocentric Cosmology of Ptolemy ( AD) Planets are brightest during retrograde motion 1
2 Epicycles and Deferents The Ptolemaic explanation for retrograde motion Occam s Razor The simplest ideas are usually the best The simplest ideas are those with the fewest assumptions Assumptions are things which are assumed to be true but which have not been confirmed experimentally Nicolai Copernicus ( ) The Heliocentric Cosmology Inferior and Superior planets Inferior Planets (Mercury, Venus) always seen close to the Sun in the sky must be closer to the Sun than the Earth since they have a shorter distance to travel they should take less time to orbit the Sun Superior Planets (Mars, Jupiter, Saturn) can be seen far from the Sun in the sky (high in the sky at midnight) must be further from the Sun than the Earth since they have a longer distance to travel they should take more time to orbit the Sun 2
3 The Copernican explanation for retrograde motion Tycho Brahe ( ) Johannes Kepler ( ) Made detailed observations of planetary motion Used the empirical method to determine the optimum shapes of planetary orbits The Empirical Method: An Example Planetary Orbits are Ellipses! 3
4 Eccentricity measuring the shape of ellipses 1 st Law: the orbit of a planet is an ellipse with the Sun at one focus Zero Low High 2 nd Law: an imaginary line joining the Sun and a planet sweeps out equal areas in equal times Planets move faster when they are closer to the Sun! 4
5 3 rd Law: the Harmonic Law P 2 = a 3 where: P = orbital period (Earth years) a = semi-major axis (AU) 3 rd Law: the Harmonic Law P 2 = a 3 where: P = orbital period (Earth years) a = semi-major axis (AU) a is also equal to the average distance of the planet from the Sun! What does this mean? Mathematical Equations Describe the relationship between things (called variables) More concise than using words Allow calculations to be made Example: in P 2 = a 3, P and a are the variables Analyzing Equations 1. Ignore any powers (and constants) 2. Make sure the two variables to be analyzed are on opposite sides of the = sign 3. Are the variables on the same level i.e. if you were to draw a line under the equation both variables would be above it? 4. If so, we have what is called a direct relationship where variables increase and decrease in the same direction Example P 2 = a 3 1. Ignore powers: P = a 2. P and a are on opposite sides of = 3. P and a are on the same level: P = a 4. We have a direct relationship: a P 5
6 P = how long a planet takes to go around the Sun a = average distance of planet from Sun The further a planet is from the Sun, the longer it takes to orbit! Galileo Galilei ( ) Galileo didn t invent the telescope but was one of the first people to study the sky with it He saw four objects surrounding Jupiter And found that their positions shifted with time in a regular pattern 6
7 This could only be explained if they were in orbit about the planet! The Phases of Venus Observed motions consistent with heliocentric theory! Today they are called the Galilean moons of Jupiter! Can only be explained if Venus orbits the Sun! If Venus moved about the Earth, we would not see the observed cycle of phases! The Inquisition of Galileo (1616) Isaac Newton ( ) Placed under house arrest for vehement suspicion of heresy The Analytical Method 7
8 Newton s Laws of Motion 1 st Law An object will remain at rest or move in a straight line at constant speed unless a force acts In their elliptical orbits around the Sun, are the planets at rest or moving in straight lines? No! So what does this mean? A force must be acting! This force is called gravity! speed (m/s) = how fast velocity, v (m/s) = speed + direction acceleration, a (m/s 2 ) = changing velocity 8
9 Changing Speed, Constant Direction There are three different kinds of acceleration! Changing Direction, Constant Speed Changing Speed and Direction Planet in a circular orbit Planet in an elliptical orbit Gravity exerts a force which causes the planets to accelerate around the Sun! 2 nd Law F = ma where: F = force applied a = resultant acceleration m = mass 9
10 F = ma Relationship between F and a? Direct! F a Mass = measure of total amount of matter Weight = force exerted by mass due to gravity Mass same everywhere Weight varies with location Example Location Weight Earth 165 lbs Moon 28 lbs Space 0 lbs Mass is constant! Relationship between a and m? F = ma F/m = ma/m (divide both sides by m) a = F/m Assume F is constant Inverse relationship! m a 3 rd Law Action and reaction are equal and opposite! Only applies to forces that are in equilibrium (balance) 10
11 Force of Sun on planets = Force of planets on Sun Why do the planets then orbit the Sun? Why can t the Sun orbit the Earth? Newton s 2 nd Law a = F/m Masses: m Sun >> m planet Planets are much less massive than the Sun so accelerate much more! This is why they orbit the Sun! Newton s Universal Law of Gravitation G is a constant (does not change) Can be ignored during analysis Relationship between F and M? Direct! M F 11
12 Relationship between F and d? Inverse squared! d x 2 F x 1/2 2 = 1/4 d x 3 F x 1/3 2 = 1/9 Applications Proof of Kepler s 3 rd Law Newton s modified form: P 2 = a 3 /(M 1 +M 2 ) where: P = orbital period (Earth years) a = average distance from the Sun (AU) M 1 +M 2 = combined mass (solar masses) Application to Solar System M Sun = 1 M planet = M Sun + M planet = P 2 = a 3 /1 P 2 = a 3! Kepler only deduced an approximation! For any two masses in orbit about each other, if we know their average separation, a and their orbital period, P it is possible to use this formula to calculate their combined masses: M 1 + M 2 = a 3 / P 2 12
13 Sir Edmund Halley ( ) Historical records showed that a comet appeared in the sky at regular intervals of 76 years! Adoration of the Magi Giotto (1304-6) The Bayeux Tapestry Inspired by Halley return in 1302? Depicts the Norman conquest at the Battle of Hastings (1066) Indeed, it was first sighted at end of 1757 in agreement with theory! He used Newton s theory predict when it would return! Calculations suggested it should return in 1758 Halley s Comet! 13
14 The Planet Uranus discovered telescopically in 1781 The planet Neptune discovered by gravitational calculations in
Chapter 2 The Science of Life in the Universe
In ancient times phenomena in the sky were not understood! Chapter 2 The Science of Life in the Universe The Ancient Greeks The Scientific Method Our ideas must always be consistent with our observations!
Gravitation and the Motion of the Planets
Gravitation and the Motion of the Planets 1 Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets go around
Lecture #5: Plan. The Beginnings of Modern Astronomy Kepler s Laws Galileo
Lecture #5: Plan The Beginnings of Modern Astronomy Kepler s Laws Galileo Geocentric ( Ptolemaic ) Model Retrograde Motion: Apparent backward (= East-to-West) motion of a planet with respect to stars Ptolemy
Gravitation and the Waltz of the Planets
Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets
Gravitation and the Waltz of the Planets. Chapter Four
Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets
Introduction To Modern Astronomy I
ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens
Introduction To Modern Astronomy II
ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy II Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens
Occam s Razor: William of Occam, 1340(!)
Reading: OpenStax, Chapter 2, Section 2.2 &2.4, Chapter 3, Sections 3.1-3.3 Chapter 5, Section 5.1 Last time: Scales of the Universe Astro 150 Spring 2018: Lecture 2 page 1 The size of our solar system,
Astronomy Notes Chapter 02.notebook April 11, 2014 Pythagoras Aristotle geocentric retrograde motion epicycles deferents Aristarchus, heliocentric
Around 2500 years ago, Pythagoras began to use math to describe the world around him. Around 200 years later, Aristotle stated that the Universe is understandable and is governed by regular laws. Most
Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM
Claudius Ptolemaeus Second Century AD Jan 5 7:37 AM Copernicus: The Foundation Nicholas Copernicus (Polish, 1473 1543): Proposed the first modern heliocentric model, motivated by inaccuracies of the Ptolemaic
History of Astronomy. PHYS 1411 Introduction to Astronomy. Tycho Brahe and Exploding Stars. Tycho Brahe ( ) Chapter 4. Renaissance Period
PHYS 1411 Introduction to Astronomy History of Astronomy Chapter 4 Renaissance Period Copernicus new (and correct) explanation for retrograde motion of the planets Copernicus new (and correct) explanation
18. Kepler as a young man became the assistant to A) Nicolaus Copernicus. B) Ptolemy. C) Tycho Brahe. D) Sir Isaac Newton.
Name: Date: 1. The word planet is derived from a Greek term meaning A) bright nighttime object. B) astrological sign. C) wanderer. D) nontwinkling star. 2. The planets that were known before the telescope
Chapter 4. The Origin Of Modern Astronomy. Is okay to change your phone? From ios to Android From Android to ios
Chapter 4 The Origin Of Modern Astronomy Slide 14 Slide 15 14 15 Is Change Good or Bad? Do you like Homer to look like Homer or with hair? Does it bother you when your schedule is changed? Is it okay to
Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler
Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler Celestial motions The stars: Uniform daily motion about the celestial poles (rising and setting). The Sun: Daily motion around the celestial
Learning Objectives. one night? Over the course of several nights? How do true motion and retrograde motion differ?
Kepler s Laws Learning Objectives! Do the planets move east or west over the course of one night? Over the course of several nights? How do true motion and retrograde motion differ?! What are geocentric
Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws
Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Craig Lage New York University - Department of Physics craig.lage@nyu.edu February 24, 2014 1 / 21 Tycho Brahe s Equatorial
PHYS 155 Introductory Astronomy
PHYS 155 Introductory Astronomy - observing sessions: Sunday Thursday, 9pm, weather permitting http://www.phys.uconn.edu/observatory - Exam - Tuesday March 20, - Review Monday 6:30-9pm, PB 38 Marek Krasnansky
Chapter 1 The Copernican Revolution
Chapter 1 The Copernican Revolution The Horse Head nebula in the Orion constellation (Reading assignment: Chapter 1) Learning Outcomes How the geocentric model accounts for the retrograde motion of planets?
Physics Unit 7: Circular Motion, Universal Gravitation, and Satellite Orbits. Planetary Motion
Physics Unit 7: Circular Motion, Universal Gravitation, and Satellite Orbits Planetary Motion Geocentric Models --Many people prior to the 1500 s viewed the! Earth and the solar system using a! geocentric
History of Astronomy. Historical People and Theories
History of Astronomy Historical People and Theories Plato Believed he could solve everything through reasoning. Circles and Spheres are good because they are perfect (never ending) and pleasing to the
Days of the week: - named after 7 Power (moving) objects in the sky (Sun, Moon, 5 planets) Models of the Universe:
Motions of the Planets ( Wanderers ) Planets move on celestial sphere - change RA, Dec each night - five are visible to naked eye Mercury, Venus, Mars, Jupiter, Saturn Days of the week: - named after 7
Announcements. Topics To Be Covered in this Lecture
Announcements! Tonight s observing session is cancelled (due to clouds)! the next one will be one week from now, weather permitting! The 2 nd LearningCurve activity was due earlier today! Assignment 2
January 19, notes.notebook. Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM
8.1 notes.notebook Claudius Ptolemaeus Second Century AD Jan 5 7:7 AM Copernicus: The Foundation Nicholas Copernicus (Polish, 147 154): Proposed the first modern heliocentric model, motivated by inaccuracies
Astronomy- The Original Science
Astronomy- The Original Science Imagine that it is 5,000 years ago. Clocks and modern calendars have not been invented. How would you tell time or know what day it is? One way to tell the time is to study
In so many and such important. ways, then, do the planets bear witness to the earth's mobility. Nicholas Copernicus
In so many and such important ways, then, do the planets bear witness to the earth's mobility Nicholas Copernicus What We Will Learn Today What did it take to revise an age old belief? What is the Copernican
Planetary Orbits: Kepler s Laws 1/18/07
Planetary Orbits: Kepler s Laws Announcements The correct link for the course webpage http://www.lpl.arizona.edu/undergrad/classes/spring2007/giacalone_206-2 The first homework due Jan 25 (available for
Astronomy 1 Fall 2016
Astronomy 1 Fall 2016 Comet Halley Edmund Halley, a friend of Newton s used Newton s math to predict the return of a comet seen at intervals of 76 years. Lecture 3; September 29, 2016 Previously on Astro-1
Chapter 02 The Rise of Astronomy
Chapter 02 The Rise of Astronomy Multiple Choice Questions 1. The moon appears larger when it rises than when it is high in the sky because A. You are closer to it when it rises (angular-size relation).
Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009
Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Mark answer on Scantron.
Chapter 2. The Rise of Astronomy. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 2 The Rise of Astronomy Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Periods of Western Astronomy Western astronomy divides into 4 periods Prehistoric
Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields
Gravity Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Simulation Synchronous Rotation https://www.youtube.com/watch?v=ozib_l eg75q Sun-Earth-Moon System https://vimeo.com/16015937
How big is the Universe and where are we in it?
Announcements Results of clicker questions from Monday are on ICON. First homework is graded on ICON. Next homework due one minute before midnight on Tuesday, September 6. Labs start this week. All lab
Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION
Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 1 The Copernican Revolution Lecture Presentation 1.0 Have you ever wondered about? Where are the stars during the day? What is the near
Ch. 22 Origin of Modern Astronomy Pretest
Ch. 22 Origin of Modern Astronomy Pretest Ch. 22 Origin of Modern Astronomy Pretest 1. True or False: Early Greek astronomers (600 B.C. A.D. 150) used telescopes to observe the stars. Ch. 22 Origin of
Kepler, Newton, and laws of motion
Kepler, Newton, and laws of motion First: A Little History Geocentric vs. heliocentric model for solar system (sec. 2.2-2.4)! The only history in this course is this progression: Aristotle (~350 BC) Ptolemy
Early Theories. Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle
Planetary Motion Early Theories Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle Stars appear to move around Earth Observations showed
Evidence that the Earth does not move: Greek Astronomy. Aristotelian Cosmology: Motions of the Planets. Ptolemy s Geocentric Model 2-1
Greek Astronomy Aristotelian Cosmology: Evidence that the Earth does not move: 1. Stars do not exhibit parallax: 2-1 At the center of the universe is the Earth: Changeable and imperfect. Above the Earth
cosmogony geocentric heliocentric How the Greeks modeled the heavens
Cosmogony A cosmogony is theory about ones place in the universe. A geocentric cosmogony is a theory that proposes Earth to be at the center of the universe. A heliocentric cosmogony is a theory that proposes
2.4 The Birth of Modern Astronomy
2.4 The Birth of Modern Astronomy Telescope invented around 1600 Galileo built his own, made observations: Moon has mountains and valleys Sun has sunspots, and rotates Jupiter has moons (shown): Venus
The History of Astronomy
The History of Astronomy The History of Astronomy Earliest astronomical record: a lunar calendar etched on bone from 6500 B.C. Uganda. Also we find early groups noted the Sun, Moon, Mercury, Venus, Earth,
Earth Science, 13e Tarbuck & Lutgens
Earth Science, 13e Tarbuck & Lutgens Origins of Modern Astronomy Earth Science, 13e Chapter 21 Stanley C. Hatfield Southwestern Illinois College Early history of astronomy Ancient Greeks Used philosophical
Most of the time during full and new phases, the Moon lies above or below the Sun in the sky.
6/16 Eclipses: We don t have eclipses every month because the plane of the Moon s orbit about the Earth is different from the plane the ecliptic, the Earth s orbital plane about the Sun. The planes of
towards the modern view
Brief review of last time: Og through Tycho Brahe Early Science 1 Reading: Chap. 2, Sect.2.4, Ch. 3, Sect. 3.1 Homework 3: Due Tomorrow and Mon. Homework 4: Now available, due next recitation cycle, or
Monday, October 3, 2011
We do not ask for what useful purpose the birds do sing, for song is their pleasure since they were created for singing. Similarly, we ought not ask why the human mind troubles to fathom the secrets of
4. Gravitation & Planetary Motion. Mars Motion: 2005 to 2006
4. Gravitation & Planetary Motion Geocentric models of ancient times Heliocentric model of Copernicus Telescopic observations of Galileo Galilei Systematic observations of Tycho Brahe Three planetary laws
Pull out a ½ sheet or use the back of your old quiz
Pull out a ½ sheet or use the back of your old quiz Weekly Schedule Today Hw # 2 due Quiz # 2 Geocentric vs. Heliocentric models Kepler s Laws Astronomy InteracGves Newton and Gravity Lecture tutorials
Early Models of the Universe. How we explained those big shiny lights in the sky
Early Models of the Universe How we explained those big shiny lights in the sky The Greek philosopher Aristotle (384 322 BCE) believed that the Earth was the center of our universe, and everything rotated
D. A system of assumptions and principles applicable to a wide range of phenomena that has been repeatedly verified
ASTRONOMY 1 EXAM 1 Name Identify Terms - Matching (20 @ 1 point each = 20 pts.) 1 Solar System G 7. aphelion N 14. eccentricity M 2. Planet E 8. apparent visual magnitude R 15. empirical Q 3. Star P 9.
Lecture 13. Gravity in the Solar System
Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws
Origins of the Universe
Cosmology Origins of the Universe The study of the universe, its current nature, its origin, and evolution 1 2 The Theory Theory Expansion indicates a denser, hotter past uniform, hot gas that cools as
The History of Astronomy. Please pick up your assigned transmitter.
The History of Astronomy Please pick up your assigned transmitter. When did mankind first become interested in the science of astronomy? 1. With the advent of modern computer technology (mid-20 th century)
PHYS 160 Astronomy Test #1 Fall 2017 Version B
PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,
Test Bank for Life in the Universe, Third Edition Chapter 2: The Science of Life in the Universe
1. The possibility of extraterrestrial life was first considered A) after the invention of the telescope B) only during the past few decades C) many thousands of years ago during ancient times D) at the
Copernican revolution Review
opernican revolution Review Score: 1. How long does it take a planet to orbit the sun exactly once? Sidereal period Synodic period One rotation One day 2. Which of Kepler's laws is illustrated in the diagram?
Basics of Kepler and Newton. Orbits of the planets, moons,
Basics of Kepler and Newton Orbits of the planets, moons, Kepler s Laws, as derived by Newton. Kepler s Laws Universal Law of Gravity Three Laws of Motion Deriving Kepler s Laws Recall: The Copernican
Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws Laws of Motion. Laws of Motion
Today Planetary Motion Tycho Brahe s Observations Kepler s Laws Laws of Motion Laws of Motion In 1633 the Catholic Church ordered Galileo to recant his claim that Earth orbits the Sun. His book on the
Module 3: Astronomy The Universe Topic 6 Content: The Age of Astronomy Presentation Notes
Module 3: Astronomy The Universe The Age of Astronomy was marked by the struggle to understand the placement of Earth in the universe and the effort to understand planetary motion. Behind this struggle
Copernican Revolution. ~1500 to ~1700
~1500 to ~1700 Copernicus (~1500) Brahe (~1570) Kepler (~1600) Galileo (~1600) Newton (~1670) The Issue: Geocentric or Heliocentric Which model explains observations the best? Copernicus (~1500) Resurrected
Space Notes Covers Objectives 1 & 2
Space Notes Covers Objectives 1 & 2 Space Introduction Space Introduction Video Celestial Bodies Refers to a natural object out in space 1) Stars 2) Comets 3) Moons 4) Planets 5) Asteroids Constellations
Astronomy Lesson 8.1 Astronomy s Movers and Shakers
8 Astronomers.notebook Astronomy Lesson 8.1 Astronomy s Movers and Shakers Aristotle 384 322 BCE Heavenly objects must move on circular paths at constant speeds. Earth is motionless at the center of the
The History of Astronomy. Theories, People, and Discoveries of the Past
The History of Astronomy Theories, People, and Discoveries of the Past Early man recorded very little history. Left some clues in the form of petrographs. Stone drawings that show eclipses, comets, supernovae.
The Science of Life in the Universe (Chap 2 Bennett/Shostak) Overview of Chapter 2. Overview of Chapter 2. Example Question
The Science of Life in the Universe (Chap 2 Bennett/Shostak) 26 January 2010 - Lecture 3 HNRS 228 - Astrobiology Prof. Geller Overview of Chapter 2 Ancient Debate about Life Beyond Earth (2.1) Greeks and
ASTR 1010 Spring 2016 Study Notes Dr. Magnani
The Copernican Revolution ASTR 1010 Spring 2016 Study Notes Dr. Magnani The Copernican Revolution is basically how the West intellectually transitioned from the Ptolemaic geocentric model of the Universe
Unit 2: Celestial Mechanics
Unit 2: Celestial Mechanics The position of the Earth Ptolemy (90 168 AD) Made tables that allowed a user to locate the position of a planet at any past, present, or future date. In order to maintain circular
Astronomy 101 Exam 2 Form Akey
Astronomy 101 Exam 2 Form Akey Name: Lab section number: (In the format M0**. See back page; if you get this wrong you may not get your exam back!) Exam time: one hour and twenty minutes Please put bags
Astronomy 101 Exam 2 Form Bkey
Astronomy 101 Exam 2 Form Bkey Name: Lab section number: (In the format M0**. See back page; if you get this wrong you may not get your exam back!) Exam time: one hour and twenty minutes Please put bags
Astronomy 101 Exam 2 Form Dkey
Astronomy 101 Exam 2 Form Dkey Name: Lab section number: (In the format M0**. See back page; if you get this wrong you may not get your exam back!) Exam time: one hour and twenty minutes Please put bags
Motions of the Planets ASTR 2110 Sarazin
Motions of the Planets ASTR 2110 Sarazin Motion of Planets Retrograde Motion Inferior Planets: Mercury, Venus Always near Sun on Sky Retrograde motion when very close to Sun on sky (Every other time) Superior
Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy
2006 Pearson Prentice Hall Lecture Outlines PowerPoint Chapter 21 Earth Science 11e Tarbuck/Lutgens This work is protected by United States copyright laws and is provided solely for the use of instructors
ASTR-1010: Astronomy I Course Notes Section III
ASTR-1010: Astronomy I Course Notes Section III Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use
7.4 Universal Gravitation
Circular Motion Velocity is a vector quantity, which means that it involves both speed (magnitude) and direction. Therefore an object traveling at a constant speed can still accelerate if the direction
Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws of Planetary Motion. Laws of Motion. in physics
Planetary Motion Today Tycho Brahe s Observations Kepler s Laws of Planetary Motion Laws of Motion in physics Page from 1640 text in the KSL rare book collection That the Earth may be a Planet the seeming
1. The Moon appears larger when it rises than when it is high in the sky because
2-1 Copyright 2016 All rights reserved. No reproduction or distribution without the prior written consent of 1. The Moon appears larger when it rises than when it is high in the sky because A. you are
Gat ew ay T o S pace AS EN / AS TR Class # 19. Colorado S pace Grant Consortium
Gat ew ay T o S pace AS EN / AS TR 2500 Class # 19 Colorado S pace Grant Consortium Announcements: - Launch Readiness Review Cards - 11 days to launch Announcements: - Launch Readiness Review Cards - 11
Astr 2320 Tues. Jan. 24, 2017 Today s Topics Review of Celestial Mechanics (Ch. 3)
Astr 2320 Tues. Jan. 24, 2017 Today s Topics Review of Celestial Mechanics (Ch. 3) Copernicus (empirical observations) Kepler (mathematical concepts) Galileo (application to Jupiter s moons) Newton (Gravity
Johannes Kepler ( ) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it!
Johannes Kepler (1571-1630) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it! Kepler s Life Work Kepler sought a unifying principle
Scientific Method. Ancient Astronomy. Astronomy in Ancient Times
Scientific Method Chapter 2: The Copernican Revolution The Birth of Modern Science Ancient Astronomy Models of the Solar System Laws of Planetary Motion Newton s Laws Laws of Motion Law of Gravitation
Lecture 4: Kepler and Galileo. Astronomy 111 Wednesday September 6, 2017
Lecture 4: Kepler and Galileo Astronomy 111 Wednesday September 6, 2017 Reminders Online homework #2 due Monday at 3pm Johannes Kepler (1571-1630): German Was Tycho s assistant Used Tycho s data to discover
Earth Science Lesson Plan Quarter 4, Week 5, Day 1
Earth Science Lesson Plan Quarter 4, Week 5, Day 1 Outcomes for Today Standard Focus: Earth Sciences 1.d students know the evidence indicating that the planets are much closer to Earth than are the stars
Chapter 4 Thrills and Chills +Math +Depth Acceleration of the Moon +Concepts The Moon is 60 times further away from the center of Earth than objects on the surface of Earth, and moves about Earth in an
ASTRONOMY LECTURE NOTES MIDTERM REVIEW. ASTRONOMY LECTURE NOTES Chapter 1 Charting the Heavens
ASTRONOMY LECTURE NOTES MIDTERM REVIEW ASTRONOMY LECTURE NOTES Chapter 1 Charting the Heavens How Do We Locate Objects in the Sky? Local-Sky Coordinates versus Celestial-Sphere Coordinates When the sky
Observing the Solar System 20-1
Observing the Solar System 20-1 Ancient Observations The ancient Greeks observed the sky and noticed that the moon, sun, and stars seemed to move in a circle around the Earth. It seemed that the Earth
How High Is the Sky? Bob Rutledge
How High Is the Sky? Bob Rutledge Homer s Physics: Feb 16 2007 The Sun 8 Light Minutes Away 2 The Pleiades 300 Light Years Away (and inside our galaxy) [The nearest star, Proxima Cen, is only 4.2 light
Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points)
Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points) Moon Phases Moon is always ½ illuminated by the Sun, and the sunlit side
Planetary Mechanics:
Planetary Mechanics: Satellites A satellite is an object or a body that revolves around another body due to the gravitational attraction to the greater mass. Ex: The planets are natural satellites of the
Things to do today. Terminal, Astronomy is Fun. Lecture 24 The Science of Astronomy. Scientific Thinking. After this lecture, please pick up:
Things to do today After this lecture, please pick up: Review questions for the final exam Homework#6 (due next Tuesday) No class on Thursday (Thanksgiving) Final exam on December 2 (next Thursday) Terminal,
Physics 107 Ideas of Modern Physics (uw.physics.wisc.edu/~rzchowski/phy107) Goals of the course. What will we cover? How do we do this?
Physics 107 Ideas of Modern Physics (uw.physics.wisc.edu/~rzchowski/phy107) Main emphasis is Modern Physics: essentially post-1900 Why 1900? Two radical developments: Relativity & Quantum Mechanics Both
Eclipses and Forces. Jan 21, ) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws
Eclipses and Forces Jan 21, 2004 1) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws Review Lots of motion The Moon revolves around the Earth Eclipses Solar Lunar the Sun, Earth and Moon must all be
N = R * f p n e f l f i f c L
Astronomy 230 Section 1 MWF 1400-1450 106 B6 Eng Hall This Class (Lecture 20): Evolution of the Worldview Next Class: Lifetime Presentations MWF: Arthur Jones Mark Piergies Matt Clarkin Gergana Slavova
Chapter 2 The Copernican Revolution
Chapter 2 The Copernican Revolution Units of Chapter 2 2.1 Ancient Astronomy 2.2 The Geocentric Universe 2.3 The Heliocentric Model of the Solar System The Foundations of the Copernican Revolution 2.4
Astronomy 1 Winter 2011
Astronomy 1 Winter 2011 Lecture 5; January 12 2011 Previously on Astro-1 Planets appear to move on the sky mostly West to East but occasionally with retrograde motions The ancients thought that the Earth
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016 Why are celestial motions and forces important? They explain the world around us.
Universal Gravitation
Universal Gravitation Johannes Kepler Johannes Kepler was a German mathematician, astronomer and astrologer, and key figure in the 17th century Scientific revolution. He is best known for his laws of planetary
Thursday is last Planetarium observing. Nighttime observing starts next week.
Homework #2 is due at 11:50am this Friday! Thursday is last Planetarium observing. Solar Observing is happening now! Check out webpage to see if it is canceled due to weather. Nighttime observing starts
Astronomy 104: Stellar Astronomy
Astronomy 104: Stellar Astronomy Lecture 5: Observing is the key... Brahe and Kepler Spring Semester 2013 Dr. Matt Craig 1 For next time: Read Slater and Freedman 3-5 and 3-6 if you haven't already. Focus
The following notes roughly correspond to Section 2.4 and Chapter 3 of the text by Bennett. This note focuses on the details of the transition for a
The following notes roughly correspond to Section 2.4 and Chapter 3 of the text by Bennett. This note focuses on the details of the transition for a geocentric model for understanding the universe to a
Astronomy 1143 Quiz 1 Review
Astronomy 1143 Quiz 1 Review Prof. Pradhan September 7, 2017 I What is Science? 1. Explain the difference between astronomy and astrology. Astrology: nonscience using zodiac sign to predict the future/personality
Kepler s Laws Simulations
Kepler s Laws Simulations Goto: http://csep10.phys.utk.edu/guidry/java/kepler/kepler.html 1. Observe the speed of the planet as it orbits around the Sun. Change the speed to.50 and answer the questions.
THE SUN AND THE SOLAR SYSTEM
Chapter 26 THE SUN AND THE SOLAR SYSTEM CHAPTER 26 SECTION 26.1: THE SUN S SIZE, HEAT, AND STRUCTURE Objectives: What is the Sun s structure and source of energy? Key Vocabulary: Fusion Photosphere Corona
KEPLER S LAWS OF PLANETARY MOTION
KEPLER S LAWS OF PLANETARY MOTION In the early 1600s, Johannes Kepler culminated his analysis of the extensive data taken by Tycho Brahe and published his three laws of planetary motion, which we know