Interplanetary Field During the Current Solar Minimum

Size: px
Start display at page:

Download "Interplanetary Field During the Current Solar Minimum"

Transcription

1 Interplanetary Field During the Current Solar Minimum C.T. Russell 1, L.K. Jian 1, J. G. Luhmann 2, T.L. Zhang 3 1 UCLA, 2 UCB, 3 SRI, OEAW SOHO 23 Understanding a Peculiar Solar Minimum Asticou Inn, Northeast Harbor, Maine Friday, September

2 The Changing Interplanetary Magnetic Field The IMF generally weakens slightly during solar minimum as illustrated here for the last 3 solar cycles. This was true of the current solar minimum but when the extended minimum proceeded the field strength continued to fall. The field strength weakened in the equatorial regions and in the high latitudes simultaneously (Smith and Balogh, 2008) 2

3 Proximate Cause of Weak IMF: Weak Photospheric Field Top panel shows the signed emerging flux in the photosphere for last 3 cycles Bottom panel shows the unsigned emerging flux seen by WSO In the last cycle not much flux emerged into the photosphere 3

4 Result of Weak Photospheric Field: Low Transport To Poles Dave Hathaway has illustrated how the polar transport of flux weakened in cycle 23. Naively lower transport would result in a longer time for the field reversal and that certainly has happened but more than just a longer polar reversal time ensued. 4

5 Result of Low Rate of Flux Transport to Poles: Weak Polar Fields This shows the WSO observed polar field strength. It has dropped more than a factor of two. Is this the cause of the weak fields in the IMF? No, because the field comes from low latitude coronal holes as well. The solar field is weak everywhere. 5

6 Neutral Sheet Location: Evolving Dance of the Ballerina The location of the neutral line changes greatly during the solar cycle Current sheet is highly inclined at solar maximum and only slightly inclined at solar minimum Over the last 3 solar cycles pattern was quite similar until the slow decline to solar minimum Does this affect stream interactions? 6

7 Coronal Holes at Low Latitudes: PFSS Maps Near Minimum PFSS maps show where field lines are open and where they are closed These maps are selected from the declining phase of solar cycle 23 They reveal low latitude coronal holes that are a source of the solar wind and IMF As a result of these low latitude sources, stream interactions and weak shocks have continued through solar minimum 7

8 Solar Minimum Phenomena: Interplanetary Shocks While the current sheet has become flatter, this has not stopped fast streams overtaking slow streams. Here are two shocks a forward and a reverse shock produced by fast streams overtaking slow streams. These shocks, as are all shocks recently, are weak. ICMEs generally do not have a leading shock at this solar minimum 8

9 Solar Minimum Phenomena: Mirror Mode Storms Many phenomena are present in the solar wind at this solar minimum and there is lots of plasma physics to explore. Mirror mode storms occur in high beta regions. These waves consist of very squarish peaks and dips. These may evolve into deep isolated mirror mode structures. 9

10 Solar Minima Phenomena: Ion Cyclotron Waves Ion cyclotron waves have been discovered in the solar wind. They are produced in the corona and significantly heating the solar wind (L. K. Jian, ApJL., 701, 2, L105 L109, 2009) These waves extend from inside 0.3 AU to at least 1.0 AU (Lan Jian, poster #25) If the IMF continues to weaken they will all be absorbed inside 1 AU 10

11 Solar Minimum Phenomena: Interplanetary Field Enhancements Interplanetary field enhancements are sharp field enhancements with a strong central current sheet. They are seen throughout the inner solar system from 0.3 AU to beyond 1 AU They travel at the speed of the solar wind and may be associated with the acceleration of dust. They seem to be unaffected by the deep solar minimum. 11

12 Solar Minimum Phenomena: Periods of Very Weak Fields The magnetic field can become very weak for periods approaching a day For short periods the field can be very close to zero. LH panel shows 24 hr and RH panel shows 4 minutes at 0915 nt. Since the magnetic field couples energy to the Earth s magnetosphere these conditions result in very weak geomagnetic activity. 12

13 Magnetic Field at Solar Minimum at 0.72 AU Magnetic field strength at 0.72 AU as seen by Venus Express has been dropping just as the field at 1 AU and at Ulysses has been dropping. Rate of decrease since January 2006 has been 0.6 nt per year. 13

14 Are Such Low Fields Unprecedented? One hour and three hour indices have been used to derive the interplanetary magnetic field strength for over a century by Lockwood et al. (2009) Where they co exist the observations and predictions are very similar so we may trust these predictions They tell us that in the last 100 years we have not seen such low field strengths 14

15 Summary and Conclusions The strength of the interplanetary magnetic field has been decreasing since This change can be seen at the orbits of Venus and Earth and out of the ecliptic plane. The proximate cause of the decline is the weak photospheric magnetic field. The heliospheric current sheet has become equatorial but low latitude coronal holes have maintained stream interactions While strong ICMEs have disappeared other solar wind phenomena such as shocks, mirror mode waves, ion cyclotron waves, and interplanetary field enhancements have not. Using geomagnetic activity as a proxy for the strength of the IMF we infer that such low IMF strengths have not occurred during the past 100 years. 15

Lecture 5 The Formation and Evolution of CIRS

Lecture 5 The Formation and Evolution of CIRS Lecture 5 The Formation and Evolution of CIRS Fast and Slow Solar Wind Fast solar wind (>600 km/s) is known to come from large coronal holes which have open magnetic field structure. The origin of slow

More information

The Solar Wind over the Last Five Sunspot Cycles and The Sunspot Cycle over the Last Three Centuries

The Solar Wind over the Last Five Sunspot Cycles and The Sunspot Cycle over the Last Three Centuries The Solar Wind over the Last Five Sunspot Cycles and The Sunspot Cycle over the Last Three Centuries C.T. Russell, J.G. Luhmann, L.K. Jian, and B.J.I. Bromage IAU Division E: Sun and Heliosphere Mini Symposium:

More information

Remember: how to measure the solar wind. Two types of solar wind: evidence from Helios. Two different types of solar wind!

Remember: how to measure the solar wind. Two types of solar wind: evidence from Helios. Two different types of solar wind! Remember: how to measure the solar wind The principle of electrostatic analyzers Spherical deflection plates with an applied voltage let charged particles pass if their energy/charge fits. E/q = m/2 *

More information

North-South Offset of Heliospheric Current Sheet and its Causes

North-South Offset of Heliospheric Current Sheet and its Causes North-South Offset of Heliospheric Current Sheet and its Causes X. P. Zhao, J. T. Hoeksema, P. H. Scherrer W. W. Hansen Experimental Physics Laboratory, Stanford University Abstract Based on observations

More information

Extended Coronal Heating and Solar Wind Acceleration over the Solar Cycle

Extended Coronal Heating and Solar Wind Acceleration over the Solar Cycle Extended Coronal Heating and Solar Wind Acceleration over the Solar Cycle S. R. Cranmer, J. L. Kohl, M. P. Miralles, & A. A. van Ballegooijen Harvard-Smithsonian Center for Astrophysics Extended Coronal

More information

Plasma and Magnetic Field Observations of Stream Interaction Regions near 1 AU

Plasma and Magnetic Field Observations of Stream Interaction Regions near 1 AU Plasma and Magnetic Field Observations of Stream Interaction Regions near 1 AU Lan K. Jian 1, C.T. Russell 1, J.G. Luhmann 2, A.B. Gavin 3, D. Odstrcil 4, P.J. MacNeice 5 1 Inst. of Geophysics & Planetary

More information

ESS 200C. Lectures 6 and 7 The Solar Wind

ESS 200C. Lectures 6 and 7 The Solar Wind ESS 200C Lectures 6 and 7 The Solar Wind The Earth s atmosphere is stationary. The Sun s atmosphere is not stable but is blown out into space as the solar wind filling the solar system and then some. The

More information

The Solar Wind Space physics 7,5hp

The Solar Wind Space physics 7,5hp The Solar Wind Space physics 7,5hp Teknisk fysik '07 1 Contents History... 3 Introduction... 3 Two types of solar winds... 4 Effects of the solar wind... 5 Magnetospheres... 5 Atmospheres... 6 Solar storms...

More information

SPACE PHYSICS ADVANCED OPTION ON THE SOLAR WIND AND HELIOSPHERE

SPACE PHYSICS ADVANCED OPTION ON THE SOLAR WIND AND HELIOSPHERE SPACE PHYSICS ADVANCED OPTION ON THE SOLAR WIND AND HELIOSPHERE STUDY MATERIAL AND WORKSHEET Monday 28 th October 2002 Dr R J Forsyth, room 308, r.forsyth@ic.ac.uk I will be happy to discuss the material

More information

Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry

Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry Babita Chandel Sri Sai University Palampur, Himachal Pradesh, India Abstract: Space weather activity CMEs, and solar energetic

More information

The Magnetic Sun. CESAR s Booklet

The Magnetic Sun. CESAR s Booklet The Magnetic Sun CESAR s Booklet 1 Introduction to planetary magnetospheres and the interplanetary medium Most of the planets in our Solar system are enclosed by huge magnetic structures, named magnetospheres

More information

A Comparative Study of Different Approaches and Potential Improvement to Modeling the Solar Wind

A Comparative Study of Different Approaches and Potential Improvement to Modeling the Solar Wind A Comparative Study of Different Approaches and Potential Improvement to Modeling the Solar Wind Sun, X. and Hoeksema, J. T. W.W. Hansen Experimental Physics Laboratory (HEPL), Stanford University Abstract:

More information

If the Sun is so quiet, why is the Earth still ringing?

If the Sun is so quiet, why is the Earth still ringing? If the Sun is so quiet, why is the Earth still ringing? Sarah Gibson Talk outline Overview of differences between current and past solar minima (with extreme bias towards comparison to space age cycles!)

More information

The Solar wind - magnetosphere - ionosphere interaction

The Solar wind - magnetosphere - ionosphere interaction The Solar wind - magnetosphere - ionosphere interaction Research seminar on Sun-Earth connections Eija Tanskanen Friday January 27, 2006 12-14 a.m., D115 Outline 1. Basics of the Earth s magnetosphere

More information

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity ! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun The Sun & Solar Activity The Sun in Perspective Planck s Law for Black Body Radiation ν = c / λ

More information

SOLAR ORBITER Linking the Sun and Inner Heliosphere. Daniel Müller

SOLAR ORBITER Linking the Sun and Inner Heliosphere. Daniel Müller SOLAR ORBITER Linking the Sun and Inner Heliosphere Outline Science goals of Solar Orbiter Focus of HELEX joint mission Mission requirements Science payload Status update Top level scientific goals of

More information

Geomagnetic Disturbance Report Reeve Observatory

Geomagnetic Disturbance Report Reeve Observatory Event type: Various geomagnetic disturbances including coronal hole high-speed stream, coronal mass ejection, sudden impulse and reverse shock effects Background: This background section defines the various

More information

The Solar Resource: The Active Sun as a Source of Energy. Carol Paty School of Earth and Atmospheric Sciences January 14, 2010

The Solar Resource: The Active Sun as a Source of Energy. Carol Paty School of Earth and Atmospheric Sciences January 14, 2010 The Solar Resource: The Active Sun as a Source of Energy Carol Paty School of Earth and Atmospheric Sciences January 14, 2010 The Sun: A Source of Energy Solar Structure Solar Wind Solar Cycle Solar Activity

More information

MHD MODELING FOR HMI JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO

MHD MODELING FOR HMI JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO MHD MODELING FOR HMI ZORAN MIKIĆ JON A. LINKER SCIENCE APPLICATIONS INTL. CORP. SAN DIEGO Presented at the HMI Team Meeting Stanford University, Palo Alto, May 1 2, 23 USEFULNESS OF MHD MODELS A global

More information

Inferring the Structure of the Solar Corona and Inner Heliosphere during the Maunder Minimum using MHD simulations

Inferring the Structure of the Solar Corona and Inner Heliosphere during the Maunder Minimum using MHD simulations Inferring the Structure of the Solar Corona and Inner Heliosphere during the Maunder Minimum using MHD simulations Pete Riley, Roberto Lionello, Jon Linker, and Zoran Mikic Predictive Science, Inc. (PSI),

More information

Chapter 8 Geospace 1

Chapter 8 Geospace 1 Chapter 8 Geospace 1 Previously Sources of the Earth's magnetic field. 2 Content Basic concepts The Sun and solar wind Near-Earth space About other planets 3 Basic concepts 4 Plasma The molecules of an

More information

Survey of the Solar System. The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems

Survey of the Solar System. The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems Survey of the Solar System The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems The Sun Mass, M ~ 2 x 10 30 kg Radius, R ~ 7 x 10 8 m Surface Temperature ~ 5800 K Density ~ 1.4

More information

INTERPLANETARY ASPECTS OF SPACE WEATHER

INTERPLANETARY ASPECTS OF SPACE WEATHER INTERPLANETARY ASPECTS OF SPACE WEATHER Richard G. Marsden Research & Scientific Support Dept. of ESA, ESTEC, P.O. Box 299, 2200 AG Noordwijk, NL, Email: Richard.Marsden@esa.int ABSTRACT/RESUME Interplanetary

More information

MDs in INTERPLANETARY SPACE and MIRROR MODEs in PLANETARY MAGNETOSHEATHS and the HELIOSHEATH

MDs in INTERPLANETARY SPACE and MIRROR MODEs in PLANETARY MAGNETOSHEATHS and the HELIOSHEATH MDs in INTERPLANETARY SPACE and MIRROR MODEs in PLANETARY MAGNETOSHEATHS and the HELIOSHEATH B.T. Tsurutani 1, F.L. Guarnieri 2, E.E. Echer 3, G.S. Lakhina 4 and O.P. Verkhoglyadova 1,5 1 Jet Propulsion

More information

Pros and Cons (Advantages and Disadvantages) of Various Magnetic Field Extrapolation Techniques

Pros and Cons (Advantages and Disadvantages) of Various Magnetic Field Extrapolation Techniques Pros and Cons (Advantages and Disadvantages) of Various Magnetic Field Extrapolation Techniques Marc DeRosa Lockheed Martin Solar and Astrophysics Lab SDO Summer School ~ August 2010 ~ Yunnan, China Some

More information

Coronal Field Opens at Lower Height During the Solar Cycles 22 and 23 Minimum Periods: IMF Comparison Suggests the Source Surface Should Be Lowered

Coronal Field Opens at Lower Height During the Solar Cycles 22 and 23 Minimum Periods: IMF Comparison Suggests the Source Surface Should Be Lowered Solar Phys (2011) 269: 367 388 DOI 10.1007/s11207-010-9699-9 Coronal Field Opens at Lower Height During the Solar Cycles 22 and 23 Minimum Periods: IMF Comparison Suggests the Source Surface Should Be

More information

Earth s Magnetic Field

Earth s Magnetic Field Magnetosphere Earth s Magnetic Field The Earth acts much like a bar magnet: its magnetic field deflects compasses on the Earth s surface to point northwards. Magnetic field lines North Pole S N South Pole

More information

PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density

PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density varies as ( ) where is a constant, is the unit vector in x direction. a) Sketch the magnetic flux density and the

More information

Comparison of Solar Wind and CME Data: Current and Previous Solar Minima

Comparison of Solar Wind and CME Data: Current and Previous Solar Minima Comparison of Solar Wind and CME Data: Current and Previous Solar Minima David Webb 1 & Sarah Gibson 2 1 ISR, Boston College, Chestnut Hill, MA 2 HAO/NCAR, Boulder, CO The What and Why of the Whole Heliospheric

More information

Sun Earth Connection Missions

Sun Earth Connection Missions Sun Earth Connection Missions ACE Advanced Composition Explorer The Earth is constantly bombarded with a stream of accelerated particles arriving not only from the Sun, but also from interstellar and galactic

More information

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS Space Physics: Recent Advances and Near-term Challenge Chi Wang National Space Science Center, CAS Feb.25, 2014 Contents Significant advances from the past decade Key scientific challenges Future missions

More information

EFFECT OF SOLAR AND INTERPLANETARY DISTURBANCES ON SPACE WEATHER

EFFECT OF SOLAR AND INTERPLANETARY DISTURBANCES ON SPACE WEATHER Indian J.Sci.Res.3(2) : 121-125, 2012 EFFECT OF SOLAR AND INTERPLANETARY DISTURBANCES ON SPACE WEATHER a1 b c SHAM SINGH, DIVYA SHRIVASTAVA AND A.P. MISHRA Department of Physics, A.P.S.University, Rewa,M.P.,

More information

Magnetic Fields at Hale Solar Sector Boundaries

Magnetic Fields at Hale Solar Sector Boundaries Magnetic Fields at Hale Solar Sector Boundaries Leif Svalgaard HEPL Stanford University Huntsville Workshop, 25 March 2014 1 Discovery of Sector Structure Quasi-Stationary Corotating Structure in the Interplanetary

More information

Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits of observations

Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits of observations JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008ja013631, 2009 Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits

More information

A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS

A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS Nicolas Wijsen KU Leuven In collaboration with: A. Aran (University of Barcelona) S. Poedts (KU Leuven) J. Pomoell (University

More information

19:00-20:30 Welcome Reception at the Wäinö Aaltonen Museum of Art. 09:40-10:10 An Historical Perspective on Coronal Mass Ejections: 5$

19:00-20:30 Welcome Reception at the Wäinö Aaltonen Museum of Art. 09:40-10:10 An Historical Perspective on Coronal Mass Ejections: 5$ 6RODU(QHUJHWLF3ODVPDVDQG3DUWLFOHV 6FLHQWLILF3URJUDP 6XQGD\$XJXVW 19:00-20:30 Welcome Reception at the Wäinö Aaltonen Museum of Art 0RQGD\$XJXVW 09:00-09:10 Welcome: 3URIHVVRU.HLMR9LUWDQHQ, Rector of the

More information

Sources of geomagnetic activity during nearly three solar cycles ( )

Sources of geomagnetic activity during nearly three solar cycles ( ) JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A8, 1187, 10.1029/2001JA000504, 2002 Sources of geomagnetic activity during nearly three solar cycles (1972 2000) I. G. Richardson 1 and H. V. Cane 2 NASA

More information

Remote sensing of magnetospheric processes: Lesson 1: Configura7on of the magnetosphere

Remote sensing of magnetospheric processes: Lesson 1: Configura7on of the magnetosphere Remote sensing of magnetospheric processes: Lesson 1: Configura7on of the magnetosphere AGF-351 Optical methods in auroral physics research UNIS, 24.-25.11.2011 Anita Aikio Dept. Physics University of

More information

Annales Geophysicae. Annales Geophysicae (2004) 22: SRef-ID: /ag/ European Geosciences Union 2004

Annales Geophysicae. Annales Geophysicae (2004) 22: SRef-ID: /ag/ European Geosciences Union 2004 Annales Geophysicae () : 19 1 SRef-ID: 1-7/ag/--19 European Geosciences Union Annales Geophysicae Open solar flux estimates from near-earth measurements of the interplanetary magnetic field: comparison

More information

Geomagnetic Disturbance Report Reeve Observatory

Geomagnetic Disturbance Report Reeve Observatory Event type: Geomagnetic disturbances due to recurrent coronal hole high-speed stream Background: This background section defines the events covered. A coronal hole is a large dark region of less dense

More information

Prediction and understanding of the north-south displacement of the heliospheric current sheet

Prediction and understanding of the north-south displacement of the heliospheric current sheet 1 Prediction and understanding of the north-south displacement of the heliospheric current sheet X. P. Zhao, J. T. Hoeksema and P. H. Scherrer W. W. Hansen Experimental Physics Laboratory, Stanford University,

More information

POLAR-ECLIPTIC PATROL (PEP) FOR SOLAR STUDIES AND MONITORING OF SPACE WEATHER

POLAR-ECLIPTIC PATROL (PEP) FOR SOLAR STUDIES AND MONITORING OF SPACE WEATHER Proc. 2 nd International conference-exibition. Small satellities. New technologies, miniaturization. Areas of effective applications in XXI century. Section 1: Remote sensing of the Earth and space. Korolev,

More information

Solar and Interplanetary Disturbances causing Moderate Geomagnetic Storms

Solar and Interplanetary Disturbances causing Moderate Geomagnetic Storms J. Astrophys. Astr. (2008) 29, 263 267 Solar and Interplanetary Disturbances causing Moderate Geomagnetic Storms Santosh Kumar, M. P. Yadav & Amita Raizada Department of P.G. Studies and Research in Physics

More information

IDENTIFICATION OF SOLAR SOURCES OF MAJOR GEOMAGNETIC STORMS BETWEEN 1996 AND 2000 J. Zhang, 1 K. P. Dere, 2 R. A. Howard, 2 and V.

IDENTIFICATION OF SOLAR SOURCES OF MAJOR GEOMAGNETIC STORMS BETWEEN 1996 AND 2000 J. Zhang, 1 K. P. Dere, 2 R. A. Howard, 2 and V. The Astrophysical Journal, 582:520 533, 2003 January 1 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. IDENTIFICATION OF SOLAR SOURCES OF MAJOR GEOMAGNETIC STORMS BETWEEN

More information

P472G. The Solar Wind

P472G. The Solar Wind P472G The Solar Wind Copyright No9ce The material presented during this course may contain items collected from third- party sources and are presented to you for your personal study. The US Copyright Act

More information

Solar Sector Structure: Fact or Fiction?

Solar Sector Structure: Fact or Fiction? Solar Sector Structure: Fact or Fiction? Leif Svalgaard Stanford University LMSAL, August 18, 2011 1 Discovery of Sector Structure Quasi-Stationary Corotating Structure in the Interplanetary Medium John

More information

Turbulent Origins of the Sun s Hot Corona and the Solar Wind

Turbulent Origins of the Sun s Hot Corona and the Solar Wind Turbulent Origins of the Sun s Hot Corona and the Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics Turbulent Origins of the Sun s Hot Corona and the Solar Wind Outline: 1. Solar

More information

Geomagnetic storms. Measurement and forecasting

Geomagnetic storms. Measurement and forecasting Geomagnetic storms. Measurement and forecasting Anna Gustavsson 17 October 2006 Project of the Space Physics Course 2006 Umeå University 1 Introduction Effects of magnetic storms on technology Geomagnetic

More information

The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole

The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole Astron. Astrophys. 316, 287 295 (1996) ASTRONOMY AND ASTROPHYSICS The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole R.J. Forsyth 1, A. Balogh 1, T.S. Horbury 1,G.Erdös

More information

(The Open Flux Has Been Constant Since at Least 1840s) Long-term Variations of Open Flux in the Solar Corona

(The Open Flux Has Been Constant Since at Least 1840s) Long-term Variations of Open Flux in the Solar Corona Long-term Variations of Open Flux in the Solar Corona (The Open Flux Has Been Constant Since at Least 1s) Leif Svalgaard ETK, Houston, TX Abstract: The geomagnetic record allows us to infer the strength

More information

The Interior Structure of the Sun

The Interior Structure of the Sun The Interior Structure of the Sun Data for one of many model calculations of the Sun center Temperature 1.57 10 7 K Pressure 2.34 10 16 N m -2 Density 1.53 10 5 kg m -3 Hydrogen 0.3397 Helium 0.6405 The

More information

How is Earth s Radiation Belt Variability Controlled by Solar Wind Changes

How is Earth s Radiation Belt Variability Controlled by Solar Wind Changes How is Earth s Radiation Belt Variability Controlled by Solar Wind Changes Richard M. Thorne Department of Atmospheric and Oceanic Sciences, UCLA Electron (left) and Proton (right) Radiation Belt Models

More information

High energy particles from the Sun. Arto Sandroos Sun-Earth connections

High energy particles from the Sun. Arto Sandroos Sun-Earth connections High energy particles from the Sun Arto Sandroos Sun-Earth connections 25.1.2006 Background In addition to the solar wind, there are also particles with higher energies emerging from the Sun. First observations

More information

Magnetic Reconnection in ICME Sheath

Magnetic Reconnection in ICME Sheath WDS'11 Proceedings of Contributed Papers, Part II, 14 18, 2011. ISBN 978-80-7378-185-9 MATFYZPRESS Magnetic Reconnection in ICME Sheath J. Enzl, L. Prech, K. Grygorov, A. Lynnyk Charles University, Faculty

More information

The largest geomagnetic storm of solar cycle 23 occurred on 2003 November 20 with a

The largest geomagnetic storm of solar cycle 23 occurred on 2003 November 20 with a Solar source of the largest geomagnetic storm of cycle 23 N. Gopalswamy 1, S. Yashiro 1,2, G. Michalek, H. Xie 1,2, R. P. Lepping 1, and R. A. Howard 3 1 NASA Goddard Space Flight Center, Greenbelt, MD,

More information

Interplanetary coronal mass ejections that are undetected by solar coronagraphs

Interplanetary coronal mass ejections that are undetected by solar coronagraphs Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007ja012920, 2008 Interplanetary coronal mass ejections that are undetected by solar coronagraphs T. A. Howard 1 and

More information

Response of the Earth s magnetosphere and ionosphere to the small-scale magnetic flux rope in solar wind by the MHD simulation

Response of the Earth s magnetosphere and ionosphere to the small-scale magnetic flux rope in solar wind by the MHD simulation Response of the Earth s magnetosphere and ionosphere to the small-scale magnetic flux rope in solar wind by the MHD simulation Kyung Sun Park 1, Dae-Young Lee 1, Myeong Joon Kim 1, Rok Soon Kim 2, Kyungsuk

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

Connecting Magnetic Clouds to Solar Surface Features

Connecting Magnetic Clouds to Solar Surface Features Connecting Magnetic Clouds to Solar Surface Features Vasyl Yurchyshyn Coronal mass ejecta (CMEs) are known to cause strongest geomagnetic storms Most of the strongest storms are associated with arrival

More information

Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model: An Investigation of Possible Sources

Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model: An Investigation of Possible Sources Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model: An Investigation of Possible Sources Bala Poduval and Xue Pu Zhao Hansen Experimental Physics Laboratory Stanford

More information

PROPAGATION AND EVOLUTION OF ICMES IN THE SOLAR WIND

PROPAGATION AND EVOLUTION OF ICMES IN THE SOLAR WIND PROPAGATION AND EVOLUTION OF ICMES IN THE SOLAR WIND John D. Richardson, Ying Liu, and John W. Belcher Massachusetts Institute of Technology Cambridge, MA, USA jdr@space.mit.edu Abstract Interplanetary

More information

The Structure of the Sun. CESAR s Booklet

The Structure of the Sun. CESAR s Booklet How stars work In order to have a stable star, the energy it emits must be the same as it can produce. There must be an equilibrium. The main source of energy of a star it is nuclear fusion, especially

More information

Prediction and understanding of the north-south displacement of the heliospheric current sheet

Prediction and understanding of the north-south displacement of the heliospheric current sheet JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004ja010723, 2005 Prediction and understanding of the north-south displacement of the heliospheric current sheet X. P. Zhao, J. T. Hoeksema, and

More information

CHAPTER 2 DATA. 2.1 Data Used

CHAPTER 2 DATA. 2.1 Data Used CHAPTER DATA For the analysis, it is required to use geomagnetic indices, which are representatives of geomagnetic activity, and Interplanetary Magnetic Field (IMF) data in addition to f F,which is used

More information

Caltech, 2 Washington University, 3 Jet Propulsion Laboratory 4. Goddard Space Flight Center

Caltech, 2 Washington University, 3 Jet Propulsion Laboratory 4. Goddard Space Flight Center R. A. Mewaldt 1, A. J. Davis 1, K. A. Lave 2, R. A. Leske 1, E. C. Stone 1, M. E. Wiedenbeck 3, W. R. Binns 2, E. R. ChrisCan 4, A. C. Cummings 1, G. A. de Nolfo 4, M. H. Israel 2, A. W. Labrador 1, and

More information

Solar cycle changes in coronal holes and space weather cycles

Solar cycle changes in coronal holes and space weather cycles JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A8, 1154, 10.1029/2001JA007550, 2002 Solar cycle changes in coronal holes and space weather cycles J. G. Luhmann, 1 Y. Li, 1 C. N. Arge, 2 P. R. Gazis, 3

More information

Radio Observations and Space Weather Research

Radio Observations and Space Weather Research Radio Observations and Space Weather Research Jasmina Magdalenić Solar-Terrestrial Centre of Excellence SIDC, Royal Observatory of Belgium What is space weather and why is it important? Eruptive processes:

More information

Coronal Heating versus Solar Wind Acceleration

Coronal Heating versus Solar Wind Acceleration SOHO 15: Coronal Heating, 6 9 September 2004, University of St. Andrews, Scotland Coronal Heating versus Solar Wind Acceleration Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics, Cambridge,

More information

Generated a summary plot of plasma/ field/energetic particle observations in the vicinity of each shock.

Generated a summary plot of plasma/ field/energetic particle observations in the vicinity of each shock. Summary Shock List Since 1996 Aim: To consolidate several of the existing shock lists into a working list of shocks and their properties to compare with energetic particle observations. Help to fill gaps

More information

Zach Meeks. Office: Ford ES&T Phone: (918) Please let me know if you have any questions!

Zach Meeks. Office: Ford ES&T Phone: (918) Please let me know if you have any questions! Zach Meeks Office: Ford ES&T 2114 Email: zachary.meeks@gatech.edu Phone: (918) 515-0052 Please let me know if you have any questions! The scope of space physics Solar-Terrestrial Relations Solar-Terrestrial

More information

The Magnetic Field at the Inner Boundary of the Heliosphere Around Solar Minimum

The Magnetic Field at the Inner Boundary of the Heliosphere Around Solar Minimum The Magnetic Field at the Inner Boundary of the Heliosphere Around Solar Minimum X. P. Zhao and J. T. Hoeksema W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085

More information

The first super geomagnetic storm of solar cycle 24: The St. Patrick day (17 March 2015) event

The first super geomagnetic storm of solar cycle 24: The St. Patrick day (17 March 2015) event The first super geomagnetic storm of solar cycle 24: The St. Patrick day (17 March 2015) event Chin Chun Wu 1, Kan Liou 2, Bernard Jackson 3, Hsiu Shan Yu 3, Lynn Hutting 1, R. P. Lepping 4, Simon Plunkett

More information

Sun-Earth Connection Missions

Sun-Earth Connection Missions ACE (1997 ) Cosmic and Heliospheric Study of the physics and chemistry Advanced Composition Explorer Learning Center of the solar corona, the solar wind, http://helios.gsfc.nasa.gov/ace/ http://helios.gsfc.nasa.gov

More information

ESS 7. Lectures 6, 7 and 8 April 9, 12 and 14

ESS 7. Lectures 6, 7 and 8 April 9, 12 and 14 ESS 7 Lectures 6, 7 and 8 April 9, 12 and 14 The Heliosphere The Exploding Sun At times the Sun explosively sends plasma into space. This occurs most dramatically during CMEs. Hallowe en Storm 2003 Note

More information

The Sun. Never look directly at the Sun, especially NOT through an unfiltered telescope!!

The Sun. Never look directly at the Sun, especially NOT through an unfiltered telescope!! The Sun Introduction We will meet in class for a brief discussion and review of background material. We will then go outside for approximately 1 hour of telescope observing. The telescopes will already

More information

Chapter 3. The Solar Wind in the Vicinity of Earth and Jupiter

Chapter 3. The Solar Wind in the Vicinity of Earth and Jupiter Chapter 3 The Solar Wind in the Vicinity of Earth and Jupiter Planetary bow shocks form in order to divert the supersonic solar wind around planetary obstacles. In the case of magnetized planets such as

More information

Interplanetary and solar surface properties of coronal holes observed during solar maximum

Interplanetary and solar surface properties of coronal holes observed during solar maximum JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A4, 1144, doi:10.1029/2002ja009538, 2003 Interplanetary and solar surface properties of coronal holes observed during solar maximum J. Zhang, 1,2 J. Woch,

More information

Tutorial: The magnetic Connection between the Sun and the Heliosphere. Karel Schrijver

Tutorial: The magnetic Connection between the Sun and the Heliosphere. Karel Schrijver Tutorial: The magnetic Connection between the Sun and the Heliosphere Karel Schrijver The connection between Sun and Earth The problem: Focus of this presentation 2 Overview From ideal to real Five pieces

More information

Geo-effective transients and their solar causes during solar cycle 23

Geo-effective transients and their solar causes during solar cycle 23 Indian Journal of Radio & Space Physics Vol. 37, December 2008, pp. 379-385 Geo-effective transients and their solar causes during solar cycle 23 Santosh Kumar 1,$ *,1, 2,# & Simranjit Kaur 1 Department

More information

parameters and to AL and Dst indices in course of Magnetic Storms

parameters and to AL and Dst indices in course of Magnetic Storms Relation of РС index to Solar Wind parameters and to AL and Dst indices in course of Magnetic Storms О.A.Troshichev and D.A.Sormakov Arctic and Antarcrtic Research Institute, St.Petersburg olegtro@aari.ru

More information

Ooty Radio Telescope Space Weather

Ooty Radio Telescope Space Weather Ooty Radio Telescope Space Weather P.K. Manoharan Radio Astronomy Centre National Centre for Radio Astrophysics Tata Institute of Fundamental Research Ooty 643001, India mano@ncra.tifr.res.in Panel Meeting

More information

On the Structure of Streamer-stalk Solar Wind: in-situ Observations, Theory and Simulation

On the Structure of Streamer-stalk Solar Wind: in-situ Observations, Theory and Simulation On the Structure of Streamer-stalk Solar Wind: in-situ Observations, Theory and Simulation by Liang Zhao A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of

More information

DYNAMICS OF THE EARTH S MAGNETOSPHERE

DYNAMICS OF THE EARTH S MAGNETOSPHERE DYNAMICS OF THE EARTH S MAGNETOSPHERE PROF JIM WILD j.wild@lancaster.ac.uk @jim_wild With thanks to: Stan Cowley, Rob Fear & Steve Milan OUTLINE So far: Dungey cycle - the stirring of the magnetosphere

More information

Solar-terrestrial relation and space weather. Mateja Dumbović Hvar Observatory, University of Zagreb Croatia

Solar-terrestrial relation and space weather. Mateja Dumbović Hvar Observatory, University of Zagreb Croatia Solar-terrestrial relation and space weather Mateja Dumbović Hvar Observatory, University of Zagreb Croatia Planets Comets Solar wind Interplanetary magnetic field Cosmic rays Satellites Astronauts HELIOSPHERE

More information

Solar-Terrestrial Physics. The Sun s Atmosphere, Solar Wind, and the Sun-Earth Connection

Solar-Terrestrial Physics. The Sun s Atmosphere, Solar Wind, and the Sun-Earth Connection Week 2 Lecture Notes Solar-Terrestrial Physics The Sun s Atmosphere, Solar Wind, and the Sun-Earth Connection www.cac.cornell.edu/~slantz The Solar Corona is the Sun s Extended Atmosphere Scattered light

More information

How are the present solar minimum conditions transmitted to the outer heliosphere and heliosheath? John Richardson M.I.T.

How are the present solar minimum conditions transmitted to the outer heliosphere and heliosheath? John Richardson M.I.T. How are the present solar minimum conditions transmitted to the outer heliosphere and heliosheath? John Richardson M.I.T. Heliosphere Overview Heliopause: boundary of LIC and SW plasma He H Termination

More information

PC index as a standard of magnetospheric disturbances in the auroral zone

PC index as a standard of magnetospheric disturbances in the auroral zone PC index as a standard of magnetospheric disturbances in the auroral zone Oleg Troshichev, Arctic and Antarcrtic Research Institute, St.Petersburg olegtro@aari.ru The Solar-Terrestrial Physics Symposium

More information

Modeling the Sun s open magnetic flux. M. Schüssler 1 and I. Baumann 2 ABSTRACT

Modeling the Sun s open magnetic flux. M. Schüssler 1 and I. Baumann 2 ABSTRACT A&A 9, 9 9 () DOI:./-: c ESO Astronomy & Astrophysics Modeling the Sun s open magnetic flux M. Schüssler and I. Baumann Max-Planck-Institut für Sonnensystemforschung, 9 Katlenburg-Lindau, Germany e-mail:

More information

Linear Prediction Filter Analysis of Relativistic Electron Properties at 6.6 R E

Linear Prediction Filter Analysis of Relativistic Electron Properties at 6.6 R E JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 95, NO. A9, PAGES 15,133-15,140, SEPTEMBER I, 1990 Linear Prediction Filter Analysis of Relativistic Electron Properties at 6.6 R E D. N. BAKER NASA Goddard Space

More information

The point in an orbit around the Sun at which an object is at its greatest distance from the Sun (Opposite of perihelion).

The point in an orbit around the Sun at which an object is at its greatest distance from the Sun (Opposite of perihelion). ASTRONOMY TERMS Albedo Aphelion Apogee A measure of the reflectivity of an object and is expressed as the ratio of the amount of light reflected by an object to that of the amount of light incident upon

More information

Polar Coronal Holes During Solar Cycles 22 and 23

Polar Coronal Holes During Solar Cycles 22 and 23 Chin. J. Astron. Astrophys. Vol. 5 (2005), No. 5, 531 538 (http: /www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Polar Coronal Holes During Solar Cycles 22 and 23 Jun Zhang 1,2,J.Woch 2 and

More information

Variation of Solar Wind Parameters During Intense Geomagnetic Storms

Variation of Solar Wind Parameters During Intense Geomagnetic Storms The Himalayan Physics Vol. 6 & 7, April 2017 (80-85) ISSN 2542-2545 Variation of Solar Wind Parameters During Intense Geomagnetic Storms Ayush Subedi, Binod Adhikari and Roshan Kumar Mishra Department

More information

Study of Wave-Particle Interaction Using Wind/ACE Data

Study of Wave-Particle Interaction Using Wind/ACE Data Study of Wave-Particle Interaction Using Wind/ACE Data Lan Jian (lan.jian@nasa.gov) 1. 2. University of Maryland, College Park NASA Goddard Space Flight Center Collaborators: M. Stevens, S. P. Gary, A.

More information

On the nature of the in-ecliptic interplanetary magnetic field s two-humped distribution at 1AU

On the nature of the in-ecliptic interplanetary magnetic field s two-humped distribution at 1AU Preprint of the Institute of terrestrial magnetism (IZMIRAN), 2011 On the nature of the in-ecliptic interplanetary magnetic field s two-humped distribution at 1AU O. Khabarova V. Obridko Heliophysical

More information

THE G INDEX OF INTERPLANETARY SCINTILLATION DATA AND ITS RELATION TO FORBUSH DECREASES DURING and

THE G INDEX OF INTERPLANETARY SCINTILLATION DATA AND ITS RELATION TO FORBUSH DECREASES DURING and Solar Physics (06) 236: 389 397 DOI:.7/s117-006-0074-9 C Springer 06 THE G INDEX OF INTERPLANETARY SCINTILLATION DATA AND ITS RELATION TO FORBUSH DECREASES DURING 1991 1994 R. PÉREZ-ENRÍQUEZ Centro de

More information

CESAR BOOKLET General Understanding of the Sun: Magnetic field, Structure and Sunspot cycle

CESAR BOOKLET General Understanding of the Sun: Magnetic field, Structure and Sunspot cycle CESAR BOOKLET General Understanding of the Sun: Magnetic field, Structure and Sunspot cycle 1 Table of contents Introduction to planetary magnetospheres and the interplanetary medium... 3 A short introduction

More information

There are two more types of solar wind! The ballerina Sun right before activity minimum. The ballerina dancing through the solar cycle

There are two more types of solar wind! The ballerina Sun right before activity minimum. The ballerina dancing through the solar cycle There are two more types of solar wind! 3. Low speed wind of "maximum" type Similar characteristics as (2), except for Lectures at the International Max-Planck-Research School Oktober 2002 by Rainer Schwenn,

More information

Coronal Modeling and Synchronic Maps*

Coronal Modeling and Synchronic Maps* Coronal Modeling and Synchronic Maps* Jon A. Linker, Roberto Lionello, Zoran Mikic, Pete Riley, and Cooper Downs Predictive Science, Inc. (PSI), San Diego, CA 92121 http://www.predsci.com Carl Henney and

More information

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1 Solar Magnetic Fields 1 11 Jun 07 UA/NSO Summer School 1 If the sun didn't have a magnetic field, then it would be as boring a star as most astronomers think it is. -- Robert Leighton 11 Jun 07 UA/NSO

More information

РС INDEX AS INDICATOR OF THE SOLAR WIND ENERGY ENTERED INTO THE MAGNETOSPHERE: RELATION TO INTERPLANETARY ELECTRIC FIELD AND MAGNETIC DISTURBANCES

РС INDEX AS INDICATOR OF THE SOLAR WIND ENERGY ENTERED INTO THE MAGNETOSPHERE: RELATION TO INTERPLANETARY ELECTRIC FIELD AND MAGNETIC DISTURBANCES РС INDEX AS INDICATOR OF THE SOLAR WIND ENERGY ENTERED INTO THE MAGNETOSPHERE: RELATION TO INTERPLANETARY ELECTRIC FIELD AND MAGNETIC DISTURBANCES О. A.Troshichev Arctic and Antarcrtic Research Institute,

More information