Palomar Testbed Interferometer (PTI) & Keck Interferometer (KI) Mark Colavita 7/29/2005 Michelson Summer School Pasadena, CA

Size: px
Start display at page:

Download "Palomar Testbed Interferometer (PTI) & Keck Interferometer (KI) Mark Colavita 7/29/2005 Michelson Summer School Pasadena, CA"

Transcription

1 Palomar Testbed Interferometer (PTI) & Keck Interferometer (KI) Mark Colavita 7/29/2005 Michelson Summer School Pasadena, CA

2 PTI as seen from the catwalk of the 200 telescope

3 Michelson Interferometer stellar wavefront collector beamsplitter detector collector detector optical delay line

4 PTI Description NASA funded, tech dev. for Keck and other interferometers; first fringes way system, 110 m max baseline 40 cm collecting apertures Active broadband fringe tracking at K (2-2.4 mm) or H ( mm) Angle tracking at R + I ( mm) Single-beam capability for visibility and very-narrow-angle astrometry (<1 ) Dual-beam capability for very-narrow-angle astrometry (1-1 ) Refs: ApJ 510, 505 (1999) N-W baseline 85 m N-S baseline 110 m

5 PTI block diagram Primary Beam Combiner Fringe Sensor Incoming starlight Short delay line Angle Sensor Acquisition camera Fast-steering mirrors Primary star Secondary star Beam compressors Inputs from other arm Siderostat Telescope Dual-star feed Long delay line Angle Sensor Fringe Sensor Secondary Beam Combiner

6 Siderostat & compressor

7 Delay Lines (background), switchyard (foreground), primary (right) and secondary (left) combiners

8 Primary beam combiner table

9 A "Typical" Night of PTI V 2 Data... Observe > 100 scans/night ~ 50 calibrated V 2 measured

10 Cepheid Studies PTI made the first direct detection of Cepheid pulsations Lane et al Cepheid modeling combined PTI and NPOI data Lane et al. 2000, Nature 407, 485 Lane et al. 2002, ApJ 573, 330

11 Astrometry with an Interferometer collector wavefront, star #2 wavefront, star #1 s r B r The delay d is the dot product d = B. s + C of the vector connecting the two collectors and the unit vector to the star; C is a fixed offset optical delay line collector The (measured) extra delay required to get fringes on star #2 compared to star #1 is a measure of the angle between them Delay line position, star 1 Delay line position, star 2

12 Single-Beam Astrometry Fringe Scanning Examples Images Courtesy Of M. Muterspaugh

13 12 Boo Analysis A.F. Boden, M.J. Creech-Eakman, and D. Queloz, 2000, ApJ, 536, 880.

14 Dual-Star Concept star 1 star 2 common metrology fiducials, common baseline Beam Combiner 1 field separator star selector mirror Beam Combiner 2

15 Phase referencing with PTI Analogous to adaptive optics on a large telescope Approach Fringe track on a bright star within the isoplanatic patch of the target star Use as a probe of the atmospheric effects on the target star Correct using optical delay lines by» Feedback same signal to both stars delay lines» or... Feedforward signal to secondary star s delay line Advantage Allows longer integration times that would ordinarily be possible

16 Lane & Colavita, AJ, 125, Phase referencing with PTI

17 Astrometry Observation Primary Combiner Track Primary Star Secondary Combiner (chops between primary and secondary) Track Primary Star Track Secondary Star Track Primary Star repeat...

18 Raw data hrs microns Secondary fringe tracker tracking primary star Differential separation Secondary fringe tracker tracking secondary star Outliers removed

19 61 Cyg Astrometry

20 Constant-term metrology Corner cube in dual-star feed Metrology launch Subaperture polarizers Metrology detect

21

22 Keck Interferometer Keck Interferometer links the two 10 m Keck telescopes NASA-funded joint development: JPL, Keck, Caltech (MSC) 3-22 Refs: SPIE 5491, 454 (2004); SPIE 4838, 79 (2003)

23 Keck Interferometer modes High sensitivity fringe visibility (V 2 ) measurements Combines the AO-corrected beams V 2 measurements in the near-ir Infrared nulling at 10 um Nulling beam combiner to suppress central star Measure zodiacal dust around nearby stars Differential-phase interferometry Multi-color fringe measurements Detect the fringe shift caused by hot companions to nearby stars

24 Michelson Interferometer stellar wavefront collector beamsplitter detector collector detector optical delay line

25 Configuration at the Summit

26 Telescope & AO Extract beam in collimated space on AO bench after deformable mirror 9 m inscribed circle on Keck primary mirror maps to 112 mm collimated beam 80.4 : 1 demagnification

27 Dual star module Slides in adjacent to AO system like other Nasmyth instruments Sends collimated beam into coude beam train Secondary M4 Fold Mirror Extraction Beamsplitter Primary M4 DSM Fold Mirror Keck AOB

28 Beam Combining Lab Optical path Beam Injection and Switching Keck 2 Keck 1 Fast delay lines Switchyard Long delay lines Imaging and nulling combiners Fringe trackers Angle trackers Auto-aligner

29 Long delay lines Installed in coude tunnel Provides coarse delay positioning (static during observation) Double-height mirror accommodates two beams for phase referencing

30 Fast delay lines 4-stage cat s-eye design Fiber-fed laser metrology Delay range +/- 15m High speed position and rate commanding Metrology launchers

31 FATCAT (Fringe tracker) Free-space Michelson beam combination at H and K bands HAWAII array camera fed by single-mode fluoride fibers White-light and spectrometer channels; frame rates of Hz Fringe tracking with coherent fringe demodulation, closed-loop to delay line

32 Angle tracker Electronics IR Camera Primary Mirror Secondary Mirror Keck 1 FM H and J band angle tracking DCR corrector for good sky coverage Images from two Kecks multiplexed onto one quadrant of HAWAII array 100 Hz readout High-speed updates to local tip/tilt mirror Low-speed off-loads to AO system Keck 2 FM

33 Visibility-Mode observations at KI

34 National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology KI first results: NGC4151 Swain et al., 2003, ApJL, 596, L163 First detection of any source outside our galaxy with infrared interferometry NGC 4151 is a Seyfert galaxy at a distance of ~13 Mpc The interferometer clearly resolved the emission Examined several possible sources of emission Star cluster: too big Dust torus: too big Jet: did not fit SED Accretion disk: consistent with observations Data implies the emission comes from a region < 0.1 parsec across Towards Earth BLR θ = 40 Dust torus R ~ 1 pc Radio jet

35 Technologies Enabling technologies for very narrow angle interferometric astrometry Laser metrology» Nuller uses 16 systems to measure and control Fringe tracking» Nuller uses 2 K-band trackers along with 3 trackers at N band (not simultaneous) Phase referencing» Used to stabilize N band fringes; similar function to stabilizing primary star while scanning secondary one

36 Internal pathlength (CT) metrology Secondary M4 Inconel Extraction Fold Mirror Beamsplitter Corner cube Annular mirror Primary M4 Fold Mirror DSM Visible Beamsplitter Keck AOB Adds laser metrology of (almost) entire optical path, not just FDL Measured position error combined with local FDL metrology to control FDL position Keck 2 Keck 1 Beam Injection and Long delay lines Switching Fast delay lines Switchyard Imaging and nulling combiners Rugate filters CT launchers Fringe trackers Angle trackers Auto-aligner

37 Phase reference test -Plotted is fringe phase vs. time on the primary nuller -Green bars indicate times when K-band to nuller phase referencing was enabled -Nuller was operated with zero gain, so all stabilization is attributable to phase referencing

38 Approach: Dual-baseline Nulling K1 Implement dual-baseline nulling to remove both star and thermal background Use subapertures on Keck telescopes Cross-Combiner Two step beam combination Null star on pair of K1-K2 baselines Nuller MIR cam Nuller Measure exozodi fringe with rapid scan between two nulled outputs Cross-Combiner Operates at µm (+) Resembles some TPF approaches K2

39 Keck nulling beam-combiner: 2 nullers & 2 X-combiners in Nuller 1 Nuller 2 out Cross-combiners

40 Nuller Summit Installation KALI Camera Stimulus Nuller Fast Delay Line Lab Fringe Tracker Dewar Fringe Tracker Foreoptics

41 Nuller Summit Installation Fast Delay Line Lab Fast Delay Line Lab Beam Switchyard

42 Nuller Summit Installation Video Link to Summit I/F Control Room Video Links to K1 & K2 Operators Waimea Remote Control Room Post-Processed White Light (10-um) Interferogram

43

The Nulling Coronagraph Using a Nulling Interferometer for Planet Detection in Visible Light with a Single Aperture Telescope

The Nulling Coronagraph Using a Nulling Interferometer for Planet Detection in Visible Light with a Single Aperture Telescope Terrestrial Planet Finder The Nulling Coronagraph Using a Nulling Interferometer for Planet Detection in Visible Light with a Single Aperture Telescope Michael Shao, B. Martin Levine, Duncan Liu, J. Kent

More information

Phase-Referencing and the Atmosphere

Phase-Referencing and the Atmosphere Phase-Referencing and the Atmosphere Francoise Delplancke Outline: Basic principle of phase-referencing Atmospheric / astrophysical limitations Phase-referencing requirements: Practical problems: dispersion

More information

Spectral Resolution in Interferometry

Spectral Resolution in Interferometry Spectral Resolution in Interferometry Christopher Tycner Michelson Postdoctoral Fellow @ U. S. Naval Observatory Flagstaff Station Outline Spectral Resolution in Interferometry Implementation Benefits

More information

Upgrades and Current SSA Activities at the Navy Precision Optical Interferometer

Upgrades and Current SSA Activities at the Navy Precision Optical Interferometer Upgrades and Current SSA Activities at the Navy Precision Optical Interferometer Henrique R. Schmitt a, J. T. Armstrong a, E. K. Baines a, J. H. Clark III a, R. B. Hindsley a, S. R. Restaino a a Remote

More information

Keck Interferometer Nuller Update

Keck Interferometer Nuller Update Keck Interferometer Nuller Update M. M. Colavita a *, E. Serabyn a, A. J. Booth a, S. L. Crawford a, J. I. Garcia-Gathright a, E. R. Ligon a, B. L. Mennesson a#, C. G. Paine a a Jet Propulsion Laboratory,

More information

Classical Interferometric Arrays. Andreas Quirrenbach Landessternwarte Heidelberg

Classical Interferometric Arrays. Andreas Quirrenbach Landessternwarte Heidelberg Classical Interferometric Arrays Andreas Quirrenbach Landessternwarte Heidelberg The VLT Interferometer Tucson 11/14/2006 Andreas Quirrenbach 2 Optical / Infrared Interferometry Today Access to milliarcsecond-scale

More information

Exoplanet Detection and Characterization with Mid-Infrared Interferometry

Exoplanet Detection and Characterization with Mid-Infrared Interferometry Exoplanet Detection and Characterization with Mid-Infrared Interferometry Rachel Akeson NASA Exoplanet Science Institute With thanks to Peter Lawson for providing material Sagan Workshop July 21, 2009

More information

Characterizing Closure-phase Measurements at IOTA

Characterizing Closure-phase Measurements at IOTA Characterizing Closure-phase Measurements at IOTA Ragland, S. 1,2,3, Traub, W. 1, Berger, J.-P. 4, Millan-Gabet, R. 5, Monnier, J. D. 6, Pedretti, E. 6, Schloerb, F. P. 7, Carleton, N. P. 1, Haguenauer,

More information

Optical interferometry: problems and practice

Optical interferometry: problems and practice Outline Optical interferometry: problems and practice Chris Haniff Aims. What is an interferometer? Fundamental differences between optical and radio. Implementation at optical wavelengths. Conclusions.

More information

PTI/KI s Greatest Hits. JPL/CIT Interferometry Mafia (Reported by A. Boden)

PTI/KI s Greatest Hits. JPL/CIT Interferometry Mafia (Reported by A. Boden) PTI/KI s Greatest Hits JPL/CIT Interferometry Mafia (Reported by A. Boden) Outline! The Interferometers! The People! The Process! The Hits! The Full List! Mystery Guest! Postscript Photogenic Testbed Interferometer

More information

Science Results and Future Prospects for Optical/IR Interferometry

Science Results and Future Prospects for Optical/IR Interferometry Outline of Talk 2 Science Results and Future Prospects for Optical/IR Interferometry M. J. Creech-Eakman History of Optical Interferometry Specialized Techniques Stellar Science Extragalactic Science Facility-Class

More information

Overview of the SIM PlanetQuest Light (SIM-Lite) mission concept.

Overview of the SIM PlanetQuest Light (SIM-Lite) mission concept. Overview of the SIM PlanetQuest Light (SIM-Lite) mission concept. R. Goullioud, J. H. Catanzarite, F. G. Dekens, M. Shao, J. C. Marr IV, Jet Propulsion Laboratory, California Institute of Technology, 4800

More information

arxiv:astro-ph/ v1 2 Feb 2001

arxiv:astro-ph/ v1 2 Feb 2001 Atmospheric Turbulence Measurements with the Palomar Testbed Interferometer R. P. Linfield Infrared Processing and Analysis Center, 1-22, California Institute of Technology, Pasadena, CA 91125 ariv:astro-ph/1252v1

More information

Daily Alignment Procedure with 2 AO Wave Front Sensors

Daily Alignment Procedure with 2 AO Wave Front Sensors Daily Alignment Procedure with 2 AO Wave Front Sensors First Version Judit Sturmann Talk Outline AO at CHARA design scheme Before sky alignment Keeping the alignment during the night Lab and Telescope

More information

Extragalactic Science with SIM Very Deep Visible Nulling Interferometry. M. Shao Interferometry Summer School 2003

Extragalactic Science with SIM Very Deep Visible Nulling Interferometry. M. Shao Interferometry Summer School 2003 A Random Selection of Topics on Interferometry Extragalactic Science with SIM Very Deep Visible Nulling Interferometry M. Shao Interferometry Summer School 2003 Understanding the fundamental AGN power

More information

ASTRA: ASTrometry and phase-referencing Astronomy on the Keck interferometer

ASTRA: ASTrometry and phase-referencing Astronomy on the Keck interferometer ASTRA: ASTrometry and phase-referencing Astronomy on the Keck interferometer J. Woillez a,r.akeson b,m.colavita c, J. Eisner d,a.ghez e,j.graham f, L. Hillenbrand g,r. Millan-Gabet b, J. Monnier h,j.-u.pott

More information

arxiv:astro-ph/ v1 17 Oct 1998

arxiv:astro-ph/ v1 17 Oct 1998 Accepted for publication in the Astrophysical Journal. Scheduled for Vol. 510 #1 (Jan. 1, 1999). The Palomar Testbed Interferometer arxiv:astro-ph/9810262v1 17 Oct 1998 M. M. Colavita 1, J. K. Wallace

More information

Optical Interferometry Phil Hinz Image Synthesis in Interferometry

Optical Interferometry Phil Hinz Image Synthesis in Interferometry Lecture 1 History Interferometry Measurments Scientific Motivation Optical vs. Radio Interferometry Fizeau and Michelson Interferometry Sensitivity Field-of-View Astrometry Limit Suppression Limit Optical

More information

Space Interferometers

Space Interferometers Space-Based Interferometers SIM Instrument Scientist Michelson Summer School 11 July 2003 11 July 2003 pg 1 Outline Some History Large Arrays meeting Cargese 84 TRIO, COSMIC, Fiber-Linked COSMIC, SAMSI

More information

Introduction to Interferometer and Coronagraph Imaging

Introduction to Interferometer and Coronagraph Imaging Introduction to Interferometer and Coronagraph Imaging Wesley A. Traub NASA Jet Propulsion Laboratory and Harvard-Smithsonian Center for Astrophysics Michelson Summer School on Astrometry Caltech, Pasadena

More information

How to calibrate interferometric data

How to calibrate interferometric data National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology How to calibrate interferometric data Rachel Akeson 28 July 2006 Outline Calibration basics System

More information

VLTI Status. Gerard T. van Belle. PRIMA Instrument Scientist European Southern Observatory March 1 st, 2011

VLTI Status. Gerard T. van Belle. PRIMA Instrument Scientist European Southern Observatory March 1 st, 2011 VLTI Status Gerard T. van Belle PRIMA Instrument Scientist Observatory March 1 st, 2011 Food for Thought There ain t no such thing as a free lunch 1 R. A. Heinlein 1 Often abbreviated as TANSTAAFL, from

More information

Adaptive Optics for the Giant Magellan Telescope. Marcos van Dam Flat Wavefronts, Christchurch, New Zealand

Adaptive Optics for the Giant Magellan Telescope. Marcos van Dam Flat Wavefronts, Christchurch, New Zealand Adaptive Optics for the Giant Magellan Telescope Marcos van Dam Flat Wavefronts, Christchurch, New Zealand How big is your telescope? 15-cm refractor at Townsend Observatory. Talk outline Introduction

More information

Medium baseline, high sensitivity, high efficiency imaging interferometer for general astrophysics

Medium baseline, high sensitivity, high efficiency imaging interferometer for general astrophysics Compact Fizeau Array as an ELT alternative Medium baseline, high sensitivity, high efficiency imaging interferometer for general astrophysics Olivier Guyon (Subaru Telescope) with inputs from: R. Angel,

More information

Challenges for the next generation stellar interferometer. Markus Schöller European Southern Observatory January 29, 2009

Challenges for the next generation stellar interferometer. Markus Schöller European Southern Observatory January 29, 2009 Challenges for the next generation stellar interferometer Markus Schöller European Southern Observatory January 29, 2009 VLTI Four 8.2m telescopes (UTs) All equipped with AO (MACAO) Six Baselines 47m-130m

More information

Interferometry and AGN

Interferometry and AGN Interferometry and AGN Michelson Summer Workshop 2006 Mark R. Swain Acknowledgements to: Walter Jaffe, Klaus Meisenheimer, Konrad Tristram, & Markus Wittkowski 2 August 2006 1 Overview Themes Origin of

More information

An introduction to closure phases

An introduction to closure phases An introduction to closure phases Michelson Summer Workshop Frontiers of Interferometry: Stars, disks, terrestrial planets Pasadena, USA, July 24 th -28 th 2006 C.A.Haniff Astrophysics Group, Department

More information

THE PHASES DIFFERENTIAL ASTROMETRY DATA ARCHIVE. I. MEASUREMENTS AND DESCRIPTION

THE PHASES DIFFERENTIAL ASTROMETRY DATA ARCHIVE. I. MEASUREMENTS AND DESCRIPTION The Astronomical Journal, 140:1579 1622, 2010 December C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-6256/140/6/1579 THE PHASES DIFFERENTIAL ASTROMETRY

More information

Control of the Keck and CELT Telescopes. Douglas G. MacMartin Control & Dynamical Systems California Institute of Technology

Control of the Keck and CELT Telescopes. Douglas G. MacMartin Control & Dynamical Systems California Institute of Technology Control of the Keck and CELT Telescopes Douglas G. MacMartin Control & Dynamical Systems California Institute of Technology Telescope Control Problems Light from star Primary mirror active control system

More information

Broadband phase and intensity compensation with a deformable mirror for an interferometric nuller

Broadband phase and intensity compensation with a deformable mirror for an interferometric nuller Broadband phase and intensity compensation with a deformable mirror for an interferometric nuller Robert D. Peters,* Oliver. P. Lay, and Muthu Jeganathan Jet Propulsion Laboratory, California Institute

More information

Characterization of Picometer Repeatability Displacement Metrology Gauges

Characterization of Picometer Repeatability Displacement Metrology Gauges Characterization of Picometer Repeatability Displacement Metrology Gauges This paper was presented at ODIMAP III, the 3 rd Topical Meeting on Optoelectronic Distance/Displacement Measurements and Applications,

More information

Plans for Unprecedented Imaging of Stellar Surfaces with the Navy Precision Optical Interferometer (NPOI)

Plans for Unprecedented Imaging of Stellar Surfaces with the Navy Precision Optical Interferometer (NPOI) Plans for Unprecedented Imaging of Stellar Surfaces with the Navy Precision Optical Interferometer (NPOI) A. M. Jorgensen Electrical Engineering Department New Mexico Tech, USA H. R. Schmitt, D. Mozurkewich,

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

CHARA Collaboration Year-Eight Science Review. VLTI update. F. Delplancke

CHARA Collaboration Year-Eight Science Review. VLTI update. F. Delplancke VLTI update F. Delplancke Summary Infrastructure Current instruments: MIDI, AMBER, PIONIER Under test & commissioning: PRIMA 2 nd generation instruments Long Range Plan Infrastructure Infrastructure 4

More information

OIR Interferometry. Outline. OIR Interferometry. Astro 6525 Fall 2015 November Michelson s Interferometer

OIR Interferometry. Outline. OIR Interferometry. Astro 6525 Fall 2015 November Michelson s Interferometer Outline OIR Interferometry OIR Interferometry Michelson s Interferometer OIR Interferometers Aperture Masking Astro 6525 Fall 215 November 24 215 2 Michelson s Interferometer 1921ApJ...53..249M 3 Image

More information

arxiv:astro-ph/ v1 28 Aug 2003

arxiv:astro-ph/ v1 28 Aug 2003 Interferometer Observations of Subparsec-scale Infrared Emission in the Nucleus of NGC 4151 arxiv:astro-ph/0308513 v1 28 Aug 2003 M. Swain 1, G. Vasisht 1, R. Akeson 2, J. Monnier 3, R. Millan-Gabet 2,

More information

An Introduction to. Adaptive Optics. Presented by. Julian C. Christou Gemini Observatory

An Introduction to. Adaptive Optics. Presented by. Julian C. Christou Gemini Observatory An Introduction to Adaptive Optics Presented by Julian C. Christou Gemini Observatory Gemini North in action Turbulence An AO Outline Atmospheric turbulence distorts plane wave from distant object. How

More information

arxiv:astro-ph/ v1 2 Jul 2003

arxiv:astro-ph/ v1 2 Jul 2003 To appear in the Astrophysical Journal, Letters Observations of DG Tauri with the Keck Interferometer arxiv:astro-ph/0307051v1 2 Jul 2003 M. Colavita 1, R. Akeson 2, P. Wizinowich 3, M. Shao 1, S. Acton

More information

Spectral Interferometry for Broadband UV / Optical Astronomy

Spectral Interferometry for Broadband UV / Optical Astronomy Spectral Interferometry for Broadband UV / Optical Astronomy Jerry Edelstein, Space Sciences Lab, U. California, Berkeley jerrye@ssl.berkeley David Erskine Lawrence Livermore National Laboratory erskine1@llnl.gov

More information

Definition of Keck Interferometer Level 1 data FITS files

Definition of Keck Interferometer Level 1 data FITS files Definition of Keck Interferometer Level 1 data FITS files R. Akeson, A. Boden Michelson Science Center KIV2 L1 Version 2.1 email comments and questions to: rla@ipac.caltech.edu 1. Introduction This document

More information

McMath-Pierce Adaptive Optics Overview. Christoph Keller National Solar Observatory, Tucson

McMath-Pierce Adaptive Optics Overview. Christoph Keller National Solar Observatory, Tucson McMath-Pierce Adaptive Optics Overview Christoph Keller National Solar Observatory, Tucson Small-Scale Structures on the Sun 1 arcsec Important astrophysical scales (pressure scale height in photosphere,

More information

Optical interferometry A brief introduction

Optical interferometry A brief introduction Mem. S.A.It. Suppl. Vol. 2, 194 c SAIt 2003 Memorie della Supplementi Optical interferometry A brief introduction Markus Schöller European Southern Observatory, Casilla 19001, Santiago 19, Chile May 31,

More information

Copyright 2006 Society of Photo-Optical Instrumentation Engineers. This paper was published in Advances in Stellar Interferometry, SPIE and is made

Copyright 2006 Society of Photo-Optical Instrumentation Engineers. This paper was published in Advances in Stellar Interferometry, SPIE and is made Copyright 2006 Society of Photo-Optical Instrumentation Engineers. This paper was published in Advances in Stellar Interferometry, SPIE and is made available as an electronic reprint Proc. 6268 with permission

More information

Near-infrared guiding and tip-tilt correction for the UC Berkeley Infrared Spatial Interferometer

Near-infrared guiding and tip-tilt correction for the UC Berkeley Infrared Spatial Interferometer Near-infrared guiding and tip-tilt correction for the UC Berkeley Infrared Spatial Interferometer E. A. Lipman, M. Bester, W. C. Danchi, and C. H. Townes Space Sciences Laboratory and Department of Physics

More information

Adaptive Optics with Laser Guide Stars - The ALFA system

Adaptive Optics with Laser Guide Stars - The ALFA system Adaptive Optics with Laser Guide Stars - The ALFA system Thomas Ott, Andreas Eckart, Wolfgang Hackenberg, Sebastian Rabien, Ric Davies, Stephan Anders Max-Planck Institut für extraterrestrische Physik,

More information

Exoplanet Instrumentation with an ASM

Exoplanet Instrumentation with an ASM Exoplanet Instrumentation with an ASM Olivier Guyon1,2,3,4, Thayne Currie 1 (1) Subaru Telescope, National Astronomical Observatory of Japan (2) National Institutes for Natural Sciences (NINS) Astrobiology

More information

NPOI Current Status and Recent Science

NPOI Current Status and Recent Science NPOI Current Status and Recent Science Ellyn Baines Naval Research Laboratory Navy Precision Optical Interferometer Joint project between NRL, Lowell Observatory, and USNO Observes in visible wavelengths

More information

Near -IR interferometry:

Near -IR interferometry: Near -IR interferometry: spectrally dispersed JHK-band IOTA / GI2T interferograms, advantages of NIR, and aims Gerd Weigelt Max-Planck Institute for Radioastronomy, Bonn Plan Interferometry with spectrally

More information

Speckles and adaptive optics

Speckles and adaptive optics Chapter 9 Speckles and adaptive optics A better understanding of the atmospheric seeing and the properties of speckles is important for finding techniques to reduce the disturbing effects or to correct

More information

x Contents Segmented Mirror Telescopes Metal and Lightweight Mirrors Mirror Polishing

x Contents Segmented Mirror Telescopes Metal and Lightweight Mirrors Mirror Polishing Contents 1 Fundamentals of Optical Telescopes... 1 1.1 A Brief History of Optical Telescopes.................... 1 1.2 General Astronomical Requirements..................... 6 1.2.1 Angular Resolution.............................

More information

The innermost circumstellar environment of massive young stellar objects revealed by infrared interferometry

The innermost circumstellar environment of massive young stellar objects revealed by infrared interferometry The innermost circumstellar environment of massive young stellar objects revealed by infrared interferometry Thomas Preibisch, Stefan Kraus, Keiichi Ohnaka Max Planck Institute for Radio Astronomy, Bonn

More information

Cheapest nuller in the World: Crossed beamsplitter cubes

Cheapest nuller in the World: Crossed beamsplitter cubes Cheapest nuller in the World: François Hénault Institut de Planétologie et d Astrophysique de Grenoble, Université Joseph Fourier, CNRS, B.P. 53, 38041 Grenoble France Alain Spang Laboratoire Lagrange,

More information

High contrast imaging at 3-5 microns. Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel

High contrast imaging at 3-5 microns. Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel High contrast imaging at 3-5 microns Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel University of Arizona ABSTRACT The 6.5 m MMT with its integrated deformable

More information

Keck Adaptive Optics Note 1069

Keck Adaptive Optics Note 1069 Keck Adaptive Optics Note 1069 Tip-Tilt Sensing with Keck I Laser Guide Star Adaptive Optics: Sensor Selection and Performance Predictions DRAFT to be updated as more performance data becomes available

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

High fidelity imaging of geosynchronous satellites with the MROI

High fidelity imaging of geosynchronous satellites with the MROI High fidelity imaging of geosynchronous satellites with the MROI John Young a, Christopher Haniff a, David Buscher a, Michelle Creech-Eakman b, and Ifan Payne b a Cavendish Laboratory, University of Cambridge,

More information

The Potential of Ground Based Telescopes. Jerry Nelson UC Santa Cruz 5 April 2002

The Potential of Ground Based Telescopes. Jerry Nelson UC Santa Cruz 5 April 2002 The Potential of Ground Based Telescopes Jerry Nelson UC Santa Cruz 5 April 2002 Contents Present and Future Telescopes Looking through the atmosphere Adaptive optics Extragalactic astronomy Planet searches

More information

Fundamental Limits to Wavefront Sensing in the Submillimeter

Fundamental Limits to Wavefront Sensing in the Submillimeter Fundamental Limits to Wavefront Sensing in the Submillimeter E. Serabyn Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, USA 91109 Copyright 2006 Society

More information

Overview: Astronomical Spectroscopy

Overview: Astronomical Spectroscopy Overview: Astronomical Spectroscopy or How to Start Thinking Creatively about Measuring the Universe Basic Spectrograph Optics Objective Prism Spectrometers - AESoP Slit Spectrometers Spectrometers for

More information

Exploring the Central ArcSecond: Future Prospects for Interferometry

Exploring the Central ArcSecond: Future Prospects for Interferometry Exploring the Central ArcSecond: Future Prospects for Interferometry C. Beichman 28 July 2006 With lots of help from Oliver Lay, Peter Lawson, TPF-I SWG Probing The Central Arcsecond Angular resolution

More information

FINITO: Three-Way Interferometric Fringe Sensor for VLTI

FINITO: Three-Way Interferometric Fringe Sensor for VLTI FINITO: Three-Way Interferometric Fringe Sensor for VLTI M. Gai 1, L. Corcione 1, M.G. Lattanzi 1, B. Bauvir 2, D. Bonino 1, D. Gardiol 1, A. Gennai 2, D. Loreggia 1, G. Massone 1, S. Menardi 2 1 INAF

More information

OHANA phase II: a prototype demonstrator of fiber linked interferometry between very large telescopes

OHANA phase II: a prototype demonstrator of fiber linked interferometry between very large telescopes OHANA phase II: a prototype demonstrator of fiber linked interferometry between very large telescopes G. Perrin 1, O. Lai 2, J. Woillez 1, J. Guerin 1, F. Reynaud 3, S. T. Ridgway 4, P. J. Léna 1, P. L.

More information

SALT s Venture into Near Infrared Astronomy with RSS NIR

SALT s Venture into Near Infrared Astronomy with RSS NIR SALT s Venture into Near Infrared Astronomy with RSS NIR Marsha Wolf University of Wisconsin Madison IUCAA RSS VIS future RSS NIR 5 June 2015 SALT Science Conference 2015 2 Robert Stobie Spectrograph 5

More information

Optical/NIR Spectroscopy A3130. John Wilson Univ of Virginia

Optical/NIR Spectroscopy A3130. John Wilson Univ of Virginia Optical/NIR Spectroscopy A3130 John Wilson Univ of Virginia Topics: Photometry is low resolution spectroscopy Uses of spectroscopy in astronomy Data cubes and dimensionality challenge Spectrograph design

More information

TMT Overview Telescope / Instruments / Sites

TMT Overview Telescope / Instruments / Sites 1 SUBARU N a t io na l A s t r o n o m ic a l J a p an TMT Overview Telescope / Instruments / Sites of O b s e r v a t o r y Tomonori USUDA (SUBARU Telescope) TMT Reference Design (as of Dec 06)! Costs:

More information

Observations of a Geosynchronous Satellite with Optical Interferometry

Observations of a Geosynchronous Satellite with Optical Interferometry Observations of a Geosynchronous Satellite with Optical Interferometry J. T. Armstrong, R. B. Hindsley, S. R. Restaino Naval Research Laboratory J. A. Benson, D. J. Hutter, F. J. Vrba, R. T. Zavala U.

More information

The Status of AO Worldwide. State of AO Today UC Santa Cruz. Interim Director, UC Observatories Director, Center for Adaptive Optics

The Status of AO Worldwide. State of AO Today UC Santa Cruz. Interim Director, UC Observatories Director, Center for Adaptive Optics The Status of AO Worldwide Claire E. Max State of AO Today UC Santa Cruz Interim Director, UC Observatories Director, Center for Adaptive Optics Topics AO on current 8-10m telescopes Plans for AO on ELTs

More information

1

1 Daniel.Schuetze@aei.mpg.de 1 Satellite gravimetry Mapping the global gravity field Static and dynamic components Many applications in geosciences Techniques Orbit determination and tracking Satellite-to-satellite

More information

Magdalena Ridge Observatory Interferometer. M. J. Creech-Eakman

Magdalena Ridge Observatory Interferometer. M. J. Creech-Eakman Magdalena Ridge Observatory Interferometer M. J. Creech-Eakman Overview of Talk Instrument/Site Description Science Reference Mission Technical Progress Personnel/Staffing Schedule Conclusions SPIE - Glasgow

More information

What do we do with the image?

What do we do with the image? Astro 150 Spring 2018: Lecture 7 page 1 Reading: Chapter 6, Sect. 6.4; Chapter 14 + assignment posted on Astro 150 website Homework: questions on special reading - answers due in lecture Thursday Exam

More information

Exoplanet High Contrast Imaging Technologies Ground

Exoplanet High Contrast Imaging Technologies Ground Exoplanet High Contrast Imaging Technologies Ground KISS Short Course: The Hows and Whys of Exoplanet Imaging Jared Males University of Arizona Telescope Diameter (Bigger is Better) Diameter: Collecting

More information

High-Resolution Imagers

High-Resolution Imagers 40 Telescopes and Imagers High-Resolution Imagers High-resolution imagers look at very small fields of view with diffraction-limited angular resolution. As the field is small, intrinsic aberrations are

More information

Optical Simulation Analysis of a Geometrical-phase-based. Nulling Interferometer

Optical Simulation Analysis of a Geometrical-phase-based. Nulling Interferometer Optical Simulation Analysis of a Geometrical-phase-based Nulling Interferometer Kuo-Hui Chang and Jyh-Long Chern Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan Abstract The

More information

Webster Cash University of Colorado. X-ray Interferometry

Webster Cash University of Colorado. X-ray Interferometry Webster Cash University of Colorado X-ray Interferometry Co-Investigators Steve Kahn - Columbia University Mark Schattenburg - MIT David Windt Columbia University Dennis Gallagher Ball Aerospace A Sufficiently

More information

The Principles of Astronomical Telescope Design

The Principles of Astronomical Telescope Design The Principles of Astronomical Telescope Design Jingquan Cheng National Radio Astronomy Observatory Charlottesville, Virginia,.USA " 4y Springer Fundamentals of Optical Telescopes 1 1.1 A Brief History

More information

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO?

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? Astronomy 418/518 final practice exam 1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? b. Describe the visibility vs. baseline for a two element,

More information

Light Pollution. Atmospheric Seeing. Seeing Through the Atmosphere. Atmospheric Absorption of Light

Light Pollution. Atmospheric Seeing. Seeing Through the Atmosphere. Atmospheric Absorption of Light Lec 8: 2 FEB 2012 ASTR 130 - Introductory Astronomy II (Chapter 6) LAST TIME - Optics and Telescopes Basic Functions of a Telescope Reflecting v. Refracting Affects of the Atmosphere TODAY Modern Astronomical

More information

CHARA Meeting 2017 Pasadena, California

CHARA Meeting 2017 Pasadena, California MORE AUTOMATION Laszlo Sturmann M7 ACTUATORS LAB. LASER ALIGNMENT TELESCOPE OPTICAL ALIGNMENT NEW ACTUATORS REMOTELY ACTUATED M7 MOUNT MOTIVATION THE PRECISION OF THE COUDE ALIGNMENT WAS NOT SUFFICIENT

More information

ABSTRACT 1 INTRODUCTION

ABSTRACT 1 INTRODUCTION SIM Internal Metrology Beam Launcher Development Feng Zhao*, Rosemary Diaz, Gary Kuan, Norbert Sigrist, and Yuri Beregovski. Jet Propulsion Laboratory, Pasadena, California 91 109 Lawrence Ames, and Kalyan

More information

M. J. Creech-Eakman New Mexico Tech MROI Proj. Scientist On behalf of the NMT and Cambridge Teams

M. J. Creech-Eakman New Mexico Tech MROI Proj. Scientist On behalf of the NMT and Cambridge Teams M. J. Creech-Eakman New Mexico Tech MROI Proj. Scientist On behalf of the NMT and Cambridge Teams Magdalena Ridge Observatory Federally funded 2000-2011, 2014 EIS completed in 2003 Two facilities at MRO

More information

Talk about. Optical Telescopes and Instrumentation. by Christian Clemens

Talk about. Optical Telescopes and Instrumentation. by Christian Clemens Talk about Optical Telescopes and Instrumentation by Christian Clemens Overview powers of telescopes lens refractors, mirror reflectors interferometry, spectroscopy, optical systems modern observatories

More information

CHARA 2017: Year 13 Science Review Adaptive Optics and Open Access. Update on the MROI. M. J. Creech-Eakman. On behalf of the MROI team

CHARA 2017: Year 13 Science Review Adaptive Optics and Open Access. Update on the MROI. M. J. Creech-Eakman. On behalf of the MROI team Update on the MROI M. J. Creech-Eakman On behalf of the MROI team MROI Project Scientist NMT Physics Professor Overview of Talk General Introduction to MROI Progress in past Few Years Plans Associated

More information

Ground-Layer Adaptive Optics Christoph Baranec (IfA, U. Hawai`i)

Ground-Layer Adaptive Optics Christoph Baranec (IfA, U. Hawai`i) Ground-Layer Adaptive Optics Christoph Baranec (IfA, U. Hawai`i) Photo credit: T. Stalcup What is Ground-layer Adaptive Optics (GLAO)? Benefits of GLAO to astronomy. MMT multiple-laser AO system. Ground-layer

More information

Astrometry (STEP) M. Shao

Astrometry (STEP) M. Shao Technical Issues for Narrow Angle Astrometry (STEP) M. Shao Outline Ground based narrow angle astrometry Current state of the art (0.5~1 mas (in 30 min) What are the limiting error sources Photon noise

More information

Adaptive Optics Overview Phil Hinz What (Good) is Adaptive Optics?

Adaptive Optics Overview Phil Hinz What (Good) is Adaptive Optics? Adaptive Optics Overview Phil Hinz (phinz@as.arizona.edu) What (Good) is Adaptive Optics? System Overview MMT AO system Atmospheric Turbulence Image Structure References: Adaptive Optics for Astronomical

More information

Copyright 2010 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only.

Copyright 2010 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Copyright 2010 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material

More information

Keck laser guide star: Science case

Keck laser guide star: Science case Keck laser guide star: Science case Claire Max, LLNL Keck SSC Meeting September 11, 2000 Science case: Central issues How do Keck NGS and LGS AO compare with AO systems on other 8-10 m telescopes? How

More information

Ongoing Reduction of PTI Giant Diameters

Ongoing Reduction of PTI Giant Diameters Ongoing Reduction of PTI Giant Diameters I m Not Dead Yet Gerard van Belle Lowell Observatory March 19, 2013 Palomar Testbed Interferometer 2-way beam combination 3 50cm apertures 110-m, 2 85m baselines

More information

Electronic Imaging in Astronomy

Electronic Imaging in Astronomy Ian S, McLean Electronic Imaging in Astronomy Detectors and Instrumentation (Second Edition) j""v Published f udiisnea in association with witn fyj Springer Praxis PubUshing Publisl PR Chichester, UK Contents

More information

AST 101 Intro to Astronomy: Stars & Galaxies

AST 101 Intro to Astronomy: Stars & Galaxies AST 101 Intro to Astronomy: Stars & Galaxies Telescopes Mauna Kea Observatories, Big Island, HI Imaging with our Eyes pupil allows light to enter the eye lens focuses light to create an image retina detects

More information

Low Coherence Vibration Insensitive Fizeau Interferometer

Low Coherence Vibration Insensitive Fizeau Interferometer Low Coherence Vibration Insensitive Fizeau Interferometer Brad Kimbrough, James Millerd, James Wyant, John Hayes 4D Technology Corporation, 3280 E. Hemisphere Loop, Suite 146, Tucson, AZ 85706 (520) 294-5600,

More information

7. Telescopes: Portals of Discovery Pearson Education Inc., publishing as Addison Wesley

7. Telescopes: Portals of Discovery Pearson Education Inc., publishing as Addison Wesley 7. Telescopes: Portals of Discovery Parts of the Human Eye pupil allows light to enter the eye lens focuses light to create an image retina detects the light and generates signals which are sent to the

More information

Fourier Transform Spectrograph Development Project

Fourier Transform Spectrograph Development Project Fourier Transform Spectrograph Development Project NARIT Research Colloquium / Research Project Evaluation 2018 August 2 nd, Flora Creek Hotel, Chiangmai C. Buisset 1, P. Artsang 2, P. Meemon 2, 1 National

More information

Webster Cash University of Colorado. X-ray Interferometry

Webster Cash University of Colorado. X-ray Interferometry Webster Cash University of Colorado X-ray Interferometry Co-Investigators Steve Kahn - Columbia University Mark Schattenburg - MIT David Windt - Lucent (Bell-Labs) Outline of Presentation Science Potential

More information

Ground-based Optical/Infrared Interferometry: High Resolution, High Precision Imaging

Ground-based Optical/Infrared Interferometry: High Resolution, High Precision Imaging Ground-based Optical/Infrared Interferometry: High Resolution, High Precision Imaging A technical development white paper submitted to the OIR Panel of the Astro2010 Review Committee, 31 March 2009 J.T.

More information

ADVANCEMENT OF AO TECHNOLOGY FOR THE NEXT GENERATION OF EXTREMELY LARGE TELESCOPES

ADVANCEMENT OF AO TECHNOLOGY FOR THE NEXT GENERATION OF EXTREMELY LARGE TELESCOPES ADVANCEMENT OF AO TECHNOLOGY FOR THE NEXT GENERATION OF EXTREMELY LARGE TELESCOPES Donald Gavel 1 University of California Observatories, UC Santa Cruz, 1156 High Street, Santa Cruz, CA, USA 95064 Abstract.

More information

Astronomical Research at the Center for Adaptive Optics. Sandra M. Faber, CfAO SACNAS Conference October 4, 2003

Astronomical Research at the Center for Adaptive Optics. Sandra M. Faber, CfAO SACNAS Conference October 4, 2003 Astronomical Research at the Center for Adaptive Optics Sandra M. Faber, CfAO SACNAS Conference October 4, 2003 Science with Natural Guide Stars Any small bright object can be a natural guide star: Examples:

More information

Science Opportunities in Stellar Physics. Douglas R. Gies CHARA, Georgia State Univ., and the Stellar Physics Working Group

Science Opportunities in Stellar Physics. Douglas R. Gies CHARA, Georgia State Univ., and the Stellar Physics Working Group Science Opportunities in Stellar Physics Douglas R. Gies CHARA, Georgia State Univ., gies@chara.gsu.edu and the Stellar Physics Working Group General Themes! Fundamental properties! Interior structure

More information

Astronomical Tools. Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes

Astronomical Tools. Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes Astronomical Tools Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes Laws of Refraction and Reflection Law of Refraction n 1 sin θ 1

More information

Distant galaxies: a future 25-m submm telescope

Distant galaxies: a future 25-m submm telescope Distant galaxies: a future 25-m submm telescope Andrew Blain Caltech 11 th October 2003 Cornell-Caltech Workshop Contents Galaxy populations being probed Modes of investigation Continuum surveys Line surveys

More information