1

Size: px
Start display at page:

Download "1"

Transcription

1 1

2 Satellite gravimetry Mapping the global gravity field Static and dynamic components Many applications in geosciences Techniques Orbit determination and tracking Satellite-to-satellite tracking (SST) Gravity gradiometry Recent gravity field satellites CHAMP GRACE Earth s gravity GOCE GRAIL Lunar gravity Image credit: NASA Image credit: GGOS Image credit: CSR GFZ Potsdam Image credit: GGOS Daniel.Schuetze@aei.mpg.de 2

3 What can we learn from observing Earth s gravity? Gravity field is determined by mass distribution Mass redistribution leads to changes in the gravity field Mass transport is associated with many interesting geophysical phenomena, e.g.: Glacial isostatic adjustment Glacial / polar ice changes Solid Earth deformation Hydrology Image credit: GFZ Daniel.Schuetze@aei.mpg.de 3

4 Mass transport example: Hydrology CSR Image credit: NASA 4

5 GRACE observing seasonal water storage changes CSR B. D. Tapley et al., GRACE Measurements of Mass Variability in the Earth System, Science 305, Image credit: NASA (2004). 5

6 Long term trends observed with GRACE Velicogna, Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE, Geophys. Research Lett. 36, L19503 (2009). CSR Tiwari et al., Dwindling groundwater resources in northern India, from satellite gravity observations, Geophys. Research Lett. 36, L18401 (2009). J. S. Famiglietti et al., Satellites measure recent rates of groundwater depletion in California s Central Valley, Geophys. Research Lett. 38, L03403 (2010). Image credit: NASA Daniel.Schuetze@aei.mpg.de 6

7 Overview of observable geophysical processes CSR Image credit: NASA Ilk et al.,

8 GRACE: Low-orbit satellite-to-satellite tracking V7.8 km/s CSR Mass Anomaly Image credit: NASA 8

9 GRACE satellites Two identical spacecraft launched March 2002 Polar low-earth orbit 450 km altitude, 220 km spacecraft separation Freely decaying (no drag compensation) Two-way K-band microwave ranging Dual-frequencies for ionosphere correction Micrometre performance 3-axis SuperSTAR accelerometer Measurement of non-gravitational forces down to m s -2 / Hz Mass-trim to position S/C COM at accelerometer GPS receivers and laser retroreflector Orbit determination and absolute spacecraft position/velocity Attitude and orbit control system 2 star trackers Magnetic torquers Cold gas thrusters for orbit maintenance Schmidt et al. Surv Geophys 28, 319 (2008) Image credit: CSR Daniel.Schuetze@aei.mpg.de 9

10 GRACE follow-on mission GRACE mission extended to the end of its on-orbit life (expected around 2016) Degraded battery, freely decaying orbit Continuation of the data series requires a new mission: GRACE follow-on Near rebuild of GRACE using microwave ranging to minimize data gap Launch in 2017 Will include Laser Ranging Interferometer (LRI) as technology demonstrator Daniel.Schuetze@aei.mpg.de 10

11 GRACE follow-on & LISA LISA Laser interferometer SST Inter-satellite distance 5 million km km Orbit Heliocentric (1 a.u.) Low Earth Orbit ( km) Orbit environment Attitude and Orbit Control System No atmospheric drag, stable thermal environment Drag-free using µn thrusters Atmospheric drag, large thermal CSR disturbances Attitude control with magnetotorquers & cold gas thrusters Measurement band 100 µhz 1 Hz 200 µhz 100 mhz Measurement noise 40 pm/ Hz ( freq. dep.) 80 nm/ Hz ( freq. dep.) Telescope aperture diameter 38 cm 1 cm Transmit beam waist radius 17 cm 2 mm Transmit power 1 W 30 mw Effective received power (at photodetector) 100 pw 100 pw Maximum relative L.O.S. velocity ±15 m/s ±3 m/s (depending on orbits) Daniel.Schuetze@aei.mpg.de 11

12 LRI performance requirements CSR 12

13 Laser frequency stabilization Frequency noise coupling proportional to arm-length mismatch: x L Stabilization is required (30 Hz/ Hz) LISA tricks (armlocking, TDI) not applicable Space-qualified reference cavity developed by Ball Aerospace and tested at JPL Even with stabilization laser frequency noise will be a significant component of error budget W. M. Folkner et al., Laser Frequency Stabilization for GRACE-2, Proc. ESTF Daniel.Schuetze@aei.mpg.de 13 CSR

14 LRI accomodation challenge

15 GRACE follow-on Laser Ranging Interferometer 15

16 Aquisition strategy (AEI/ANU/JPL) Two modes: Initial acquisition with large unknown biases ( mrad) and frequency offset Re-acquisition after loss of lock should be much faster Daniel.Schuetze@aei.mpg.de 16

17 Aquisition strategy (AEI/ANU/JPL) Challenging due to: 5 degrees of freedom (two angles on each S/C plus freq. offset) No real-time communication between the S/C No guarantee that the heterodyne signals will be detected at both ends for near good alignment Must demonstrate that software will work autonomously Daniel.Schuetze@aei.mpg.de 17

18 GRACE follow-on Laser Ranging Interferometer 18

19 Triple Mirror Assembly - basic properties PP, V Place virtual intersection point inside accelerometer Rotation around virtual intersection point preserves: round-trip pathlength d beams antiparallel impact parameter p Daniel.Schuetze@aei.mpg.de 19

20 Triple Mirror Assembly prototyping at ANU/CSIRO Main requirements Beam coalignment error: <40 µrad Vertex (actually the point of minimal coupling ) must be placed within about 100 µm of the ACC in two axes lateral to line of sight Pathlength stability < 25 nm/ Hz NSF(f) in measurement band Robust enough to survive launch CFRP prototype constructed and currently being tested, All glass ULE prototype also being developed as risk reduction Daniel.Schuetze@aei.mpg.de 20

21 Triple Mirror Assembly prototyping at ANU/CSIRO 21

22 Triple Mirror Assembly - coupling of displacement into length measurement Offsets V PP Coupling factors Rotation angles Daniel.Schuetze@aei.mpg.de 22

23 Triple Mirror Assembly testing at AEI Determine Point of minimal coupling TMA is rotated by Hexapod around a grid of points Interferometric monitoring of round-trip pathlength Daniel.Schuetze@aei.mpg.de 23

24 GRACE follow-on Laser Ranging Interferometer 24

25 Optical Bench Measure the average phase difference of the local and received beams Measure the tilt of the received beam (DWS) Send out the transmit beam in the same direction as the input beam (using steering mirror) 25

26 Optical Bench - Differential Wavefront Sensing Daniel.Schuetze@aei.mpg.de 26 Phase difference proportional to wavefront tilt D B C A R L D C B A B T 3 16r R L Approximation for flat-top beams and small tilts Simultaneous readout of two independent axes

27 Optical Bench - Differential Wavefront Sensing Daniel.Schuetze@aei.mpg.de 27

28 Optical Bench - Differential Wavefront Sensing When spacecraft rotates the incoming beam is tilted relative to the local beam leading to a non-zero DWS signals, reduction of contrast and misaligned outgoing beam Daniel.Schuetze@aei.mpg.de 28

29 Optical Bench - Differential Wavefront Sensing Appropriately feeding back the DWS signals to the steering mirror zeros the DWS signals and corrects the outgoing beam direction Daniel.Schuetze@aei.mpg.de 29

30 Optical Bench compensation plate Due to 45 degree angle of incidence, the pathlength through the beamsplitter changes almost linearly with changes of the angle of incidence for yaw Angular coupling for pitch is only quadratic 30

31 Optical Bench compensation plate Simulation 31

32 Optical Bench compensation plate Experiment on Optical Bench prototype (AEI) 32

33 Optical Bench prototyping at AEI QPD on translation stage Local beam from fiber collimator, w 2.5 mm Daniel.Schuetze@aei.mpg.de 33

34 Optical Bench prototyping at AEI QPD on translation stage Received beam, expanded by commercial 20x beam expander, w 20 mm Daniel.Schuetze@aei.mpg.de 34

35 Optical Bench prototyping at AEI 35

36 Optical Bench prototyping at AEI 36

37 Optical Bench prototyping at AEI 37

38 Summary GRACE follow-on will be a milestone as the first inter-satellite laser interferometer Good progress in testing key concepts and components For detailed information on the LRI concept see: Sheard et al., Intersatellite laser ranging instrument for the GRACE follow-on mission, Journal of Geodesy, 2012 (DOI: /s ). Thanks for your attention! Daniel.Schuetze@aei.mpg.de 38

Control of the Laser Interferometer Space Antenna

Control of the Laser Interferometer Space Antenna Control of the Laser Interferometer Space Antenna P. G. Maghami, T. T. Hyde NASA Goddard Space Flight Center Guidance, Navigation and Control Division Greenbelt, MD 20771 J. Kim Swales Aerospace, Inc.

More information

Measuring Earth: Current status of the GRACE Follow-On Laser Ranging Interferometer

Measuring Earth: Current status of the GRACE Follow-On Laser Ranging Interferometer Measuring Earth: Current status of the GRACE Follow-On Laser Ranging Interferometer Daniel Schütze on behalf of the LRI team Max Planck Institute for Gravitational Physics (Albert Einstein Institute) and

More information

TDI Ranging for the GRACE-FO Laser Ranging Interferometer

TDI Ranging for the GRACE-FO Laser Ranging Interferometer TDI Ranging for the GRACE-FO Laser Ranging Interferometer Andrew Sutton Jet Propulsion Laboratory, California Institute of Technology Kirk McKenzie William Klipstien Brent Ware Robert Spero Glenn DeVine

More information

Optical Metrology Applications at TAS-I in support of Gravity and Fundamental Physics

Optical Metrology Applications at TAS-I in support of Gravity and Fundamental Physics Optical Metrology Applications at TAS-I in support of Gravity and Fundamental Physics Template reference : 100181670S-EN Stefano Cesare, Thales Alenia Space Italia, Torino Workshop GG/GGG: state of the

More information

The post launch assessment review confirmed the following previous assertions about the mission status:

The post launch assessment review confirmed the following previous assertions about the mission status: 1 GRACE Newsletter No. 2 August 15, 2003 Topics: http://www.csr.utexas/grace/ http://www.gfz-potsdam.de/grace 1. Editorial 2. Major events in Mission Operations since last Newsletter 3. Current status

More information

Space-based gravitational wave observatories

Space-based gravitational wave observatories elisa/ngo and LISA Pathfinder Max Planck Institute for Gravitational Physics Astroteilchenphysik-Tagung Zeuthen, 20.09.2012 Sources of gravitational waves Binary systems NS-NS, BH-BH, close WD Massive

More information

Gravitational & Planetary Research Program

Gravitational & Planetary Research Program 2012 Gravitational & Planetary Research Program Goals Why? Relativity, Gravitational Waves, Geodesy, Aeronomy Space Technology Education and Training: STEM Team Who? NASA Universities Industry Foreign

More information

Shally Saraf, Stanford University

Shally Saraf, Stanford University LAser GRavitational-wave ANtenna in GEocentric Orbit Shally Saraf, Stanford University for the LAGRANGE team Background LAser GRavitational-wave ANtenna in GEocentric Orbit was proposed originally as a

More information

LISA Technology: A Status Report

LISA Technology: A Status Report LISA Technology: A Status Report Guido Mueller University of Florida Minnesota 2010 1 Content LISA Concept Gravitational Reference Sensor Interferometry Measurement System Status/Outlook 2 LISA Concept

More information

The Stanford Gravitational Reference Sensor

The Stanford Gravitational Reference Sensor The Stanford Gravitational Reference Sensor S. Buchman, B. Allard, G. Allen, R. Byer, W. Davis, D. DeBra, D. Gill, J. Hanson, G.M. Keiser, D. Lauben, I. Mukhar, N. A. Robertson, B. Shelef, K. Sun, S. Williams

More information

LISA Pathfinder Coldgas Thrusters

LISA Pathfinder Coldgas Thrusters LISA Pathfinder Coldgas Thrusters Joseph Martino/Eric Plagnol - LPF collaboration Lisa Symposium September 2016 Zurich Outline System Description External Disturbances and thruster noise In Flight dedicated

More information

GOCE. Gravity and steady-state Ocean Circulation Explorer

GOCE. Gravity and steady-state Ocean Circulation Explorer GOCE Gravity and steady-state Ocean Circulation Explorer Reiner Rummel Astronomical and Physical Geodesy Technische Universität München rummel@bv.tum.de ESA Earth Observation Summerschool ESRIN/Frascati

More information

GOCE-GRAND-2 Project Overview and Status of the GOCE Mission

GOCE-GRAND-2 Project Overview and Status of the GOCE Mission GOCE-GRAND-2 Project Overview and Status of the GOCE Mission Reiner Rummel, Thomas Gruber & Jakob Flury Institut für Astronomische und Physikalische Geodäsie Technische Universität München Geotechnologien

More information

Two major participants: JPL o Modeling wavefront quality (mid-to-high spatial frequency) vs. telescope tilt. o Optical block bonding oddard o Program

Two major participants: JPL o Modeling wavefront quality (mid-to-high spatial frequency) vs. telescope tilt. o Optical block bonding oddard o Program SFC JPL ESA LISA Optics in the U.S. Eugene Waluschka NASA/oddard Space Flight Center reenbelt, Maryland 20771 Two major participants: JPL o Modeling wavefront quality (mid-to-high spatial frequency) vs.

More information

Stanford, Space Gravity Research Group

Stanford, Space Gravity Research Group Stanford, Space Gravity Research Group John W. Conklin, Sasha Buchman, and Robert Byer Gravitational science Earth observation: Geodesy, aeronomy Gravity-waves 1 Space Gravity Technology Development Drag-free

More information

Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory

Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory Optical Telescopes for the L3/LISA Space-Based Gravitational Wave Observatory Jeff Livas for the US LISA Telescope Team NASA Goddard Space Flight Center Greenbelt, MD 20771 Nov 2017 Telescope Team GSFC

More information

Simulation study of a follow-on gravity mission to GRACE

Simulation study of a follow-on gravity mission to GRACE J Geod (2012) 86:319 335 DOI 10.1007/s00190-011-0521-8 ORIGINAL ARTICLE Simulation study of a follow-on gravity mission to GRACE Bryant D. Loomis R. S. Nerem S. B. Luthcke Received: 22 November 2010 /

More information

B. Loomis, D. Wiese, R. S. Nerem (1) P. L. Bender (2) P. N. A. M. Visser (3)

B. Loomis, D. Wiese, R. S. Nerem (1) P. L. Bender (2) P. N. A. M. Visser (3) Possible mission architectures for a GRACE follow-on mission including a study on upgraded instrumentation suites, and multiple satellite pairs in moderately-inclined orbits B. Loomis, D. Wiese, R. S.

More information

Astrophysics & Gravitational Physics with the LISA Mission

Astrophysics & Gravitational Physics with the LISA Mission Astrophysics & Gravitational Physics with the LISA Mission Peter L. Bender JILA, University of Colorado, and NIST Workshop on Robotic Science from the Moon Boulder, CO 5-6 October, 2010 LISA Overview The

More information

The preliminary analysis of Tianqin mission and developments of key technologies

The preliminary analysis of Tianqin mission and developments of key technologies The3 rd KAGRA International Workshop The preliminary analysis of Tianqin mission and developments of key technologies Hsien-Chi Yeh Tianqin Research Center for Gravitational Physics Sun Yat-sen University

More information

Simulations of an etched spiral axial attenuation scheme for an on-axis reflecting telescope

Simulations of an etched spiral axial attenuation scheme for an on-axis reflecting telescope Journal of Physics: Conference Series PAPER OPEN ACCESS Simulations of an etched spiral axial attenuation scheme for an on-axis reflecting telescope To cite this article: Aaron Spector and Guido Mueller

More information

Palomar Testbed Interferometer (PTI) & Keck Interferometer (KI) Mark Colavita 7/29/2005 Michelson Summer School Pasadena, CA

Palomar Testbed Interferometer (PTI) & Keck Interferometer (KI) Mark Colavita 7/29/2005 Michelson Summer School Pasadena, CA Palomar Testbed Interferometer (PTI) & Keck Interferometer (KI) Mark Colavita 7/29/2005 Michelson Summer School Pasadena, CA PTI as seen from the catwalk of the 200 telescope Michelson Interferometer stellar

More information

GP-B Attitude and Translation Control. John Mester Stanford University

GP-B Attitude and Translation Control. John Mester Stanford University GP-B Attitude and Translation Control John Mester Stanford University 1 The GP-B Challenge Gyroscope (G) 10 7 times better than best 'modeled' inertial navigation gyros Telescope (T) 10 3 times better

More information

Space Flight Considerations for Precision Optical Instruments

Space Flight Considerations for Precision Optical Instruments Space Flight Considerations for Precision Optical Instruments M. Shao KISS workshop on Optical Freq Combs in Space Nov 2, 2015 2015 California Institute of Technology. Government sponsorship acknowledged

More information

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1

Fundamental Physics in Space S. Vitale, University of Trento ESO-Garching S. Vitale 1 Fundamental Physics in Space S. Vitale, University of Trento Vitale@science.unitn.it ESO-Garching-15-09-03 S. Vitale 1 Using Space to Investigate Fundamental Laws of Physics: Quantum measurements, entanglement,

More information

UV LED charge control at 255 nm

UV LED charge control at 255 nm UV LED charge control at 255 nm Karthik Balakrishnan Department of Aeronautics and Astronautics Hansen Experimental Physics Labs Stanford University karthikb@stanford.edu Drag free concept and applications

More information

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands The Quantum Sensor Challenge Designing a System for a Space Mission Astrid Heske European Space Agency The Netherlands Rencontres de Moriond - Gravitation, La Thuile, 2017 Quantum Sensors in Lab Experiments

More information

Satellite Gravimetry and its Application to Glaciology by Anthony Arendt for the UAF Summer School in Glaciology, June post-glacial rebound

Satellite Gravimetry and its Application to Glaciology by Anthony Arendt for the UAF Summer School in Glaciology, June post-glacial rebound Satellite Gravimetry and its Application to Glaciology by Anthony Arendt for the UAF Summer School in Glaciology, June 2010 1 Overview The Earth is a dynamic system in which components of the core, surface

More information

Progress towards a high dimensional stability telescope for gravitational wave detection

Progress towards a high dimensional stability telescope for gravitational wave detection Progress towards a high dimensional stability telescope for gravitational wave detection Shannon Sankar shannon.r.sankar@nasa.gov USRA/CRESST/GSFC Jeffrey Livas (PI), Peter Blake, Joseph Howard, Garrett

More information

Simulation Study of A Low-Low Satellite-to-Satellite Tracking Mission. Jeongrae Kim, B.S., M.S. Dissertation. Doctor of Philosophy

Simulation Study of A Low-Low Satellite-to-Satellite Tracking Mission. Jeongrae Kim, B.S., M.S. Dissertation. Doctor of Philosophy Simulation Study of A Low-Low Satellite-to-Satellite Tracking Mission by Jeongrae Kim, B.S., M.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial

More information

Precision Attitude and Translation Control Design and Optimization

Precision Attitude and Translation Control Design and Optimization Precision Attitude and Translation Control Design and Optimization John Mester and Saps Buchman Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, U.S.A. Abstract Future

More information

Roadmap Towards Future Satellite Gravity Missions in Support of Monitoring of Mass Redistribution, Global Change, and Natural Hazards

Roadmap Towards Future Satellite Gravity Missions in Support of Monitoring of Mass Redistribution, Global Change, and Natural Hazards Roadmap Towards Future Satellite Gravity Missions in Support of Monitoring of Mass Redistribution, Global Change, and Natural Hazards STRATEGIC TARGET A multi-decade, continuous series of space-based observations

More information

The Next Generation Gravity Mission challenges, consolidation of the system concepts and technological innovations

The Next Generation Gravity Mission challenges, consolidation of the system concepts and technological innovations SpaceOps Conferences 28 May - 1 June 2018, 2018, Marseille, France 2018 SpaceOps Conference 10.2514/6.2018-2495 The Next Generation Gravity Mission challenges, consolidation of the system concepts and

More information

LISA Pathfinder measuring pico-meters and femto-newtons in space

LISA Pathfinder measuring pico-meters and femto-newtons in space LISA Pathfinder measuring pico-meters and femto-newtons in space M Hewitson for the LPF team Barcelona, February 15th 2012 Observing from Space 2 Observing from Space 2 Observing from Space Push down to

More information

GRACE impact in geodesy and geophysics. R. Biancale (GRGS-CNES Toulouse), M. Diament (IPG Paris)

GRACE impact in geodesy and geophysics. R. Biancale (GRGS-CNES Toulouse), M. Diament (IPG Paris) GRACE impact in geodesy and geophysics R. Biancale (GRGS-CNES Toulouse), M. Diament (IPG Paris) Improvement of gravity models Since 2002 the GRACE mission has changed some goals in geodesy. It has become

More information

Nanosat Science Instruments for Modular Gravitational Reference Sensor (MGRS)

Nanosat Science Instruments for Modular Gravitational Reference Sensor (MGRS) Microgravity White Paper Decadal Survey on Biological and Physical Sciences in Space Fundamental Physics Sciences (FPS) Applied Physical Sciences (APS) Nanosat Science Instruments for Modular Gravitational

More information

Mechanisation of Precision Placement and Catalysis Bonding of Optical Components. Christian Killow ICSO 2016, 21 st October

Mechanisation of Precision Placement and Catalysis Bonding of Optical Components. Christian Killow ICSO 2016, 21 st October Mechanisation of Precision Placement and Catalysis Bonding of Optical Components Christian Killow ICSO 2016, 21 st October Overview Gravitational Waves Detecting Gravitational Waves LISA Pathfinder Technology

More information

arxiv: v1 [astro-ph.im] 16 Jun 2009

arxiv: v1 [astro-ph.im] 16 Jun 2009 TOPICAL REVIEW LISA technology and instrumentation arxiv:0906.2901v1 [astro-ph.im] 16 Jun 2009 O Jennrich 1 ESA/ESTEC, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands E-mail: oliver.jennrich@esa.int Abstract.

More information

A Mission to Planet Mars Gravity Field Determination

A Mission to Planet Mars Gravity Field Determination A Mission to Planet Mars Gravity Field Determination Department for Theoretical Geodesy Graz University of Technology and Space Research Institute Austrian Academy of Sciences Gravity field CHAMP GRACE

More information

x Contents Segmented Mirror Telescopes Metal and Lightweight Mirrors Mirror Polishing

x Contents Segmented Mirror Telescopes Metal and Lightweight Mirrors Mirror Polishing Contents 1 Fundamentals of Optical Telescopes... 1 1.1 A Brief History of Optical Telescopes.................... 1 1.2 General Astronomical Requirements..................... 6 1.2.1 Angular Resolution.............................

More information

Gravity Advanced Package (GAP) : a «null bias» electrostatic accelerometer for fundamental physics missions in the Solar System

Gravity Advanced Package (GAP) : a «null bias» electrostatic accelerometer for fundamental physics missions in the Solar System Gravity Advanced Package (GAP) : a «null bias» electrostatic accelerometer for fundamental physics missions in the Solar System B. Christophe (ONERA, Châtillon, France) on behalf of the GAP Instrument

More information

Gravity gradiometry for fundamental physics, planetary science and Earth observation -- Heritage from LISA Pathfinder

Gravity gradiometry for fundamental physics, planetary science and Earth observation -- Heritage from LISA Pathfinder Gravity gradiometry for fundamental physics, planetary science and Earth observation -- Heritage from LISA Pathfinder G. Heinzel, Yun-Kau Lau ( 刘润球 ) Max Planck Institute for Gravitational Physics (AEI),

More information

Advances in Geosciences

Advances in Geosciences Advances in Geosciences (2003) 1: 57 63 c European Geosciences Union 2003 Advances in Geosciences Integrated sensor analysis for GRACE development and validation B. Frommknecht 1, H. Oberndorfer 1, F.

More information

Drag-free Control and Drag Force Recovery of Small Satellites

Drag-free Control and Drag Force Recovery of Small Satellites Drag-free Control and Drag Force Recovery of Small Satellites Anh N. Nguyen NASA Ames Research Center NASA Ames Research Center, M/S 202-3, Bldg N202, Moffett Field, CA 93035 anh.n.nguyen@nasa.gov John

More information

Orbit Determination of Satellite Formations. Terry Alfriend 9 th US Russian Space Surveillance Workshop

Orbit Determination of Satellite Formations. Terry Alfriend 9 th US Russian Space Surveillance Workshop Orbit Determination of Satellite Formations Terry Alfriend 9 th US Russian Space Surveillance Workshop Outline What is a Satellite Formation Types of Formations Proposed Approach for Orbit Determination

More information

Exploring the Gravitational Wave Universe Challenges for a LISA Successor

Exploring the Gravitational Wave Universe Challenges for a LISA Successor Exploring the Gravitational Wave Universe Challenges for a LISA Successor H Ward University of Glasgow Cosmic Vision 2015 2025 Paris 15 th September 2004 With contributions from : P Bender, K Danzmann,

More information

Seminar BELA STAR SIMULATOR

Seminar BELA STAR SIMULATOR Seminar BELA STAR SIMULATOR Sumita Chakraborty, Michael Affolter, Jakob Neubert (external contractor), Stefan Graf, Daniele Piazza and many more Universität Bern Content > Mercury > BepiColombo > MPO and

More information

Optical Telescope Design Study Results

Optical Telescope Design Study Results Journal of Physics: Conference Series PAPER OPEN ACCESS Optical Telescope Design Study Results To cite this article: J Livas and S Sankar 2015 J. Phys.: Conf. Ser. 610 012029 View the article online for

More information

DECIGO and DECIGO Pathfinder

DECIGO and DECIGO Pathfinder DECIGO and DECIGO Pathfinder Tomotada Akutsu National Astronomical Observatory of Japan on behalf of DECIGO working group Contents 1. DECIGO - Overview - Roadmap - Current status 2. DECIGO Pathfinder (DPF)

More information

Accelerometers for CHAMP, GRACE and GOCE space missions: synergy and evolution

Accelerometers for CHAMP, GRACE and GOCE space missions: synergy and evolution BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA VOL. 40, N. 3-4, pp. 321-327; SEP.-DEC. 1999 Accelerometers for CHAMP, GRACE and GOCE space missions: synergy and evolution P. TOUBOUL, E. WILLEMENOT, B. FOULON

More information

Preparation of the data analysis of the gravitational wave space antenna.

Preparation of the data analysis of the gravitational wave space antenna. Preparation of the data analysis of the gravitational wave space antenna. 1) LISA (Laser Interferometer Space Antenna) Why? 2)How? 1 Frequency Limitation Seismic noise cannot be cancelled at low-frequency

More information

SPACECRAFT NAVIGATION AND MISSION SIMULATION

SPACECRAFT NAVIGATION AND MISSION SIMULATION TianQin Space-borne gravitational wave detector SPACECRAFT NAVIGATION AND MISSION SIMULATION December 9, 2015 - Prepared by Viktor T. Toth A PERSPECTIVE Precision navigation End-to-end mission simulation

More information

The Global Geodetic Observing System (GGOS) of the International Association of Geodesy, IAG

The Global Geodetic Observing System (GGOS) of the International Association of Geodesy, IAG The Global Geodetic Observing System (GGOS) of the International Association of Geodesy, IAG Hans-Peter Plag (1), Markus Rothacher (2), Richard Gross (3), Srinivas Bettadpur (4) (1) Nevada Bureau of Mines

More information

Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis, V. Antakis, G.

Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis, V. Antakis, G. GLEME: GLOBAL LIDAR EXPLORATION OF THE MESOSPHERE Project Technical Officer: E. Armandillo Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis,

More information

From an experimental idea to a satellite

From an experimental idea to a satellite From an experimental idea to a satellite Hansjörg Dittus Institute of Space Systems, Bremen German Aerospace Center Looking back in History Yukawa potential Gravity at large scales Weak gravity Nordtvedt

More information

Application of Accelerometer Data in Precise Orbit Determination of GRACE -A and -B

Application of Accelerometer Data in Precise Orbit Determination of GRACE -A and -B Chin. J. Astron. Astrophys. Vol. 8 (28), No., 63 61 (http://www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Application of Accelerometer Data in Precise Orbit Determination of GRACE -A and

More information

The ACES Mission. Fundamental Physics Tests with Cold Atom Clocks in Space. L. Cacciapuoti European Space Agency

The ACES Mission. Fundamental Physics Tests with Cold Atom Clocks in Space. L. Cacciapuoti European Space Agency The ACES Mission Fundamental Physics Tests with Cold Atom Clocks in Space L. Cacciapuoti European Space Agency La Thuile, 20-27 March 2011 Gravitational Waves and Experimental Gravity 1 ACES Mission Concept

More information

New isostatic mounting concept for a space born Three Mirror Anastigmat (TMA) on the Meteosat Third Generation Infrared Sounder Instrument (MTG-IRS)

New isostatic mounting concept for a space born Three Mirror Anastigmat (TMA) on the Meteosat Third Generation Infrared Sounder Instrument (MTG-IRS) New isostatic mounting concept for a space born Three Mirror Anastigmat (TMA) on the Meteosat Third Generation Infrared Sounder Instrument (MTG-IRS) Maximilian Freudling a, Jesko Klammer a, Gregory Lousberg

More information

Impact of short period, non-tidal, temporal mass variability on GRACE gravity estimates

Impact of short period, non-tidal, temporal mass variability on GRACE gravity estimates GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L06619, doi:10.1029/2003gl019285, 2004 Impact of short period, non-tidal, temporal mass variability on GRACE gravity estimates P. F. Thompson, S. V. Bettadpur, and

More information

2 Each satellite will have two test masses, each being the end mirror for an interferometer.

2 Each satellite will have two test masses, each being the end mirror for an interferometer. Ground Testing for LISA Test Masses with a Torsion Pendulum Matthew Schmidt Valdosta State University International REU: University of Trento, Italy Advisor: Dr. Bill Weber Abstract: One of the most important

More information

The Principles of Astronomical Telescope Design

The Principles of Astronomical Telescope Design The Principles of Astronomical Telescope Design Jingquan Cheng National Radio Astronomy Observatory Charlottesville, Virginia,.USA " 4y Springer Fundamentals of Optical Telescopes 1 1.1 A Brief History

More information

Future Satellite Gravity Missions

Future Satellite Gravity Missions Towards a Roadmap for Future Satellite Gravity Missions, Graz, September 2009 Future Satellite Gravity Missions Activities in Germany Jürgen Müller 1, Nico Sneeuw 2, Frank Flechtner 3 1 Institut für Erdmessung,

More information

Development of surface metrology for the Giant Magellan Telescope primary mirror

Development of surface metrology for the Giant Magellan Telescope primary mirror Development of surface metrology for the Giant Magellan Telescope primary mirror J. H. Burge a,b, W. Davison a, H. M. Martin a, C. Zhao b a Steward Observatory, University of Arizona, Tucson, AZ 85721,

More information

arxiv:gr-qc/ v1 8 Oct 2004

arxiv:gr-qc/ v1 8 Oct 2004 Experimental Design for the LATOR Mission Slava G. Turyshev, a Michael Shao, a and Kenneth Nordtvedt, Jr. b a Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 b Northwest

More information

Plan of Lectures. Lecture (I) Ground-based detector : LCGT. Lecture (II) Space-borne detector : DECIGO. Lecture (III) Novel type detector : TOBA

Plan of Lectures. Lecture (I) Ground-based detector : LCGT. Lecture (II) Space-borne detector : DECIGO. Lecture (III) Novel type detector : TOBA Plan of Lectures Lecture (I) Ground-based detector : LCGT Lecture (II) Space-borne detector : DECIGO Lecture (III) Novel type detector : TOBA Space-borne detector : DECIGO Original Picture : Sora Masaki

More information

Developement and operation of an electro-optical gravitational waves detector simulator as part of the space mission elisa/ngo

Developement and operation of an electro-optical gravitational waves detector simulator as part of the space mission elisa/ngo gravitational space mission PhD student : Pierre Gruning Thesis director : Hubert Halloin Contents gravitational Contents gravitational Contents gravitational Contents gravitational Plan gravitational

More information

HYPER Industrial Feasibility Study Final Presentation Optical Bench Activity 3, WP 3200

HYPER Industrial Feasibility Study Final Presentation Optical Bench Activity 3, WP 3200 HYPER Industrial Feasibility Study Final Presentation Optical Bench Activity 3, WP 3200 ESTEC, Noordwijk The Netherlands 6 -th March 2003 Introduction 1 - Payload overall Architecture 2 - PST and OB design,

More information

LISA mission design. Guido Mueller. APS April Meeting, Jan 30th, 2017, Washington DC

LISA mission design. Guido Mueller. APS April Meeting, Jan 30th, 2017, Washington DC LISA mission design Guido Mueller University of Florida APS April Meeting, Jan 30th, 2017, Washington DC 1 L3 from ESA s perspective 2013: Selection of L3 Science Theme by ESA The Gravitational Universe

More information

GG studies at TAS-I: state of the art

GG studies at TAS-I: state of the art GG studies at TAS-I: state of the art A. Anselmi INRIM, 24-10-2014 83230350-DOC-TAS-EN-002 GG@ThalesAleniaSpace! 1996 Early experiment concept presented to ESA HQ! Industrial support on satellite & drag-free

More information

Copyright 2004 American Geophysical Union. Further reproduction or electronic distribution is not permitted.

Copyright 2004 American Geophysical Union. Further reproduction or electronic distribution is not permitted. Copyright 2004 American Geophysical Union. Further reproduction or electronic distribution is not permitted. Citation: Thompson, P. F., S. V. Bettadpur, and B. D. Tapley (2004), Impact of short period,

More information

ONBOARD AUTONOMOUS CORRECTIONS FOR ACCURATE IRF POINTING

ONBOARD AUTONOMOUS CORRECTIONS FOR ACCURATE IRF POINTING ONBOARD AUTONOMOUS CORRECTIONS FOR ACCURATE IRF POINTING John L. Jørgensen, Maurizio Betto, Peter S. Jørgensen, Troelz Denver Technical University of Denmark, Ørsted.DTU, Dept. of Measurement and Instrumentation

More information

1 Naval Research Laboratory Remote Sensing Division, Code Aberdeen Ave SE Kirtland AFB, NM 87117

1 Naval Research Laboratory Remote Sensing Division, Code Aberdeen Ave SE Kirtland AFB, NM 87117 Carbon Fiber Reinforced Polymer (CFRP) Telescope Program at the Naval Research Laboratory Sergio R. Restaino 1, Ty Martinez 1, Jonathan R. Andrews 1, Christopher C. Wilcox 1, S. Teare 2, Robert Romeo 3,

More information

Lattice Cell/Girder Assembly

Lattice Cell/Girder Assembly SPEAR3 Magnets Jack Tanabe, Nanyang Li, Ann Trautwein, Domenico Dell Orco, Dave Ernst, Zach Wolf (SLAC Magnet Measurements), Catherine L Coq (SLAC Alignment), Jeff Corbett, Bob Hettel (SPEAR3 Physics)

More information

Beate Klinger, Torsten Mayer-Gürr, Saniya Behzadpour, Matthias Ellmer, Andreas Kvas and Norbert Zehentner

Beate Klinger, Torsten Mayer-Gürr, Saniya Behzadpour, Matthias Ellmer, Andreas Kvas and Norbert Zehentner , Torsten Mayer-Gürr, Saniya Behzadpour, Matthias Ellmer, Andreas Kvas and Norbert Zehentner Institute of Geodesy NAWI Graz, Graz University of Technology Outline ITSG-Grace2016 Processing details Unconstrained

More information

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions SYRTE - IACI AtoM Interferometry dual Gravi- GradiOmeter AMIGGO from capability demonstrations in laboratory to space missions A. Trimeche, R. Caldani, M. Langlois, S. Merlet, C. Garrido Alzar and F. Pereira

More information

Control of the Keck and CELT Telescopes. Douglas G. MacMartin Control & Dynamical Systems California Institute of Technology

Control of the Keck and CELT Telescopes. Douglas G. MacMartin Control & Dynamical Systems California Institute of Technology Control of the Keck and CELT Telescopes Douglas G. MacMartin Control & Dynamical Systems California Institute of Technology Telescope Control Problems Light from star Primary mirror active control system

More information

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010 Orbit Design Marcelo Suárez Orbit Design Requirements The following Science Requirements provided drivers for Orbit Design: Global Coverage: the entire extent (100%) of the ice-free ocean surface to at

More information

Advanced accelerometer/gradiometer concepts based on atom interferometry

Advanced accelerometer/gradiometer concepts based on atom interferometry Advanced accelerometer/gradiometer concepts based on atom interferometry Malte Schmidt, Alexander Senger, Matthias Hauth, Sebastian Grede, Christian Freier, Achim Peters Humboldt-Universität zu Berlin

More information

Radio occultation at GFZ Potsdam: Current status and future prospects

Radio occultation at GFZ Potsdam: Current status and future prospects Radio occultation at GFZ Potsdam: Current status and future prospects J. Wickert, T. Schmidt, G. Beyerle, S. Heise, R. Stosius GFZ German Research Centre for Geosciences, Potsdam, Germany The CHAMP, GRACE,

More information

Abstract. Introduction. Eduardo Marin OPTI521

Abstract. Introduction. Eduardo Marin OPTI521 Synopsis of: New isostatic mounting concept for a space born Three Mirror Anastigmat (TMA) on the Metrosat Third Generation Infrared Sounder Instrument (MTG- IRS) Maximilian Freudling ; Jesko Klammer ;

More information

FG5 Absolute Gravimeter

FG5 Absolute Gravimeter FG5 Absolute Gravimeter Micro-g LaCoste Derek van Westrum, Ph.D. www.microglacoste.com derek@microglacoste.com FG5 Specifications Accuracy: 2 μgal (observed agreement between FG5 instruments) Precision:

More information

An Overview of Advanced LIGO Interferometry

An Overview of Advanced LIGO Interferometry An Overview of Advanced LIGO Interferometry Luca Matone Columbia Experimental Gravity group (GECo) Jul 16-20, 2012 LIGO-G1200743 Day Topic References 1 2 3 4 5 Gravitational Waves, Michelson IFO, Fabry-Perot

More information

Physics Mechanics Lecture 30 Gravitational Energy

Physics Mechanics Lecture 30 Gravitational Energy Physics 170 - Mechanics Lecture 30 Gravitational Energy Gravitational Potential Energy Gravitational potential energy of an object of mass m a distance r from the Earth s center: Gravitational Potential

More information

GOES-R Instrument Status and Accommodations. Barbara Pfarr GOES-R Program Systems Engineering January 2010 AMS Conference

GOES-R Instrument Status and Accommodations. Barbara Pfarr GOES-R Program Systems Engineering January 2010 AMS Conference GOES-R Instrument Status and Accommodations Barbara Pfarr GOES-R Program Systems Engineering January 2010 AMS Conference Agenda Instrument Developmental Status Significant Changes in the Last Year Introducing

More information

First Results from the Mesa Beam Profile Cavity Prototype

First Results from the Mesa Beam Profile Cavity Prototype First Results from the Mesa Beam Profile Cavity Prototype Marco Tarallo 26 July 2005 Caltech LIGO Laboratory LIGO-G050348-00-D LIGO Scientific Collaboration 1 Contents Environment setup: description and

More information

Past and Future General Relativity Experiments: Equivalence Principle, Time Delay, and Black Holes. Irwin Shapiro 21 October 2005

Past and Future General Relativity Experiments: Equivalence Principle, Time Delay, and Black Holes. Irwin Shapiro 21 October 2005 Past and Future General Relativity Experiments: Equivalence Principle, Time Delay, and Black Holes Irwin Shapiro 21 October 2005 Translation of Title (a.k.a Outline) Tests of the (Weak) Equivalence Principle

More information

New satellite mission for improving the Terrestrial Reference Frame: means and impacts

New satellite mission for improving the Terrestrial Reference Frame: means and impacts Fourth Swarm science meeting and geodetic missions workshop ESA, 20-24 March 2017, Banff, Alberta, Canada New satellite mission for improving the Terrestrial Reference Frame: means and impacts Richard

More information

Recent Advances in High Resolution Rotation Sensing

Recent Advances in High Resolution Rotation Sensing Recent Advances in High Resolution Rotation Sensing U. Schreiber 1,2, A. Gebauer 1, R. Hurst 2, J.-P. Wells 2 1 Forschungseinrichtung Satellitengeodäsie, Technische Universität München, Germany 2 Department

More information

Pioneer anomaly: Implications for LISA?

Pioneer anomaly: Implications for LISA? Pioneer anomaly: Implications for LISA? Denis Defrère Astrophysics and Geophysics Institute of Liege (Belgium) Andreas Rathke EADS Astrium GmbH Friedrichshafen (Germany) ISSI Meeting - Bern November 10th

More information

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings COSGC Space Research Symposium 2009 BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings BOWSER 1 Mission Premise 4.3 km above sea level 402.3km above sea level BOWSER 2 Information

More information

The Orbit Control of ERS-1 and ERS-2 for a Very Accurate Tandem Configuration

The Orbit Control of ERS-1 and ERS-2 for a Very Accurate Tandem Configuration The Orbit Control of ERS-1 and ERS-2 for a Very Accurate Tandem Configuration Mats Rosengren European Space Operations Centre Robert Bosch Str 5 D64293 Darmstadt Germany Email: mrosengr@esoc.esa.de Abstract

More information

Attitude Determination and. Attitude Control

Attitude Determination and. Attitude Control Attitude Determination and Placing the telescope in orbit is not the end of the story. It is necessary to point the telescope towards the selected targets, or to scan the selected sky area with the telescope.

More information

French-Ukrainian workshop Kevin Dupraz 1 ELI-NP-GBS. Extreme Light Infrastructure Nuclear Physics Gamma Beam Source

French-Ukrainian workshop Kevin Dupraz 1 ELI-NP-GBS. Extreme Light Infrastructure Nuclear Physics Gamma Beam Source 1 ELI-NP-GBS Extreme Light Infrastructure Nuclear Physics Gamma Beam Source The 3 ELI s pillars 2 ELI-Beamlines In Czech Republic: Ultra-short and intense beams for interdisciplinary applications. ELI-NP

More information

THE DYNAMIC TEST EQUIPMENT FOR THE STAR TRACKERS PROCESSING

THE DYNAMIC TEST EQUIPMENT FOR THE STAR TRACKERS PROCESSING THE DYNAMIC TEST EQUIPMENT FOR THE STAR TRACKERS PROCESSING ABSTRACT Sergey Voronkov Space Research Institute, Russian Academy of Sciences, 117997, Profsoyuznaya str., 84/32, Moscow, Russia Phone: +7 095

More information

Hydrological balance in the large Russian river basins from GRACE satellites

Hydrological balance in the large Russian river basins from GRACE satellites Hydrological balance in the large Russian river basins from GRACE satellites Leonid Zotov 1,2, Natalya Frolova 3, E. Kyzyngasheva 1, C.K. Shum 4,5 1 NRU Higher School of Economics, Russia 2 SAI Moscow

More information

David Chaney Space Symposium Radius of Curvature Actuation for the James Webb Space Telescope

David Chaney Space Symposium Radius of Curvature Actuation for the James Webb Space Telescope 2018 Space Symposium Radius of Curvature Actuation for the James Webb Space Telescope David Chaney Optical Engineering Staff Consultant Ball Aerospace 4/2/18 1 JWST Overview James Webb Space Telescope

More information

Accelerometer Assisted Tracking for Free-Space Optical Communications. Shinhak Lee, James W. Alexander, Gerry G. Ortiz, and Chien-Chung Chen

Accelerometer Assisted Tracking for Free-Space Optical Communications. Shinhak Lee, James W. Alexander, Gerry G. Ortiz, and Chien-Chung Chen Accelerometer Assisted Tracking for Free-Space Optical Communications Shinhak Lee, James W. Alexander, Gerry G. Ortiz, and Chien-Chung Chen Jet Propulsion Laboratory California Institute of Technology

More information

Michigan Aerospace Optical Products Atmospheric Intelligence

Michigan Aerospace Optical Products Atmospheric Intelligence Michigan Aerospace Optical Products Atmospheric Intelligence Atmospheric Intelligence for Earth, Air, and Space Michigan Aerospace provides the most advanced atmospheric measurement systems available.

More information

AAS/AIAA Space Flight Mechanics Meeting

AAS/AIAA Space Flight Mechanics Meeting Paper AAS 00-163 GRACE Mission Design: Impact of Uncertainties in Disturbance Environment and Satellite Force Models Daniel D. Mazanek NASA Langley Research Center Hampton, Virginia Renjith R. Kumar, Hans

More information

Simulation Results of Alternative Methods for Formation Separation Control

Simulation Results of Alternative Methods for Formation Separation Control Simulation Results of Alternative Methods for Formation Separation Control Thomas Heine, Charles Bussy-Virat, Mark Moldwin, Aaron Ridley Department of Climate and Space Sciences and Engineering University

More information