An Empirical Comparison of Graph Laplacian Solvers

Size: px
Start display at page:

Download "An Empirical Comparison of Graph Laplacian Solvers"

Transcription

1 An Empirical Comparison of Graph Laplacian Solvers Kevin Deweese 1 Erik Boman 2 John Gilbert 1 1 Department of Computer Science University of California, Santa Barbara 2 Scalable Algorithms Department Sandia National Laboratories Algorithm Engineering and Experiments, 2016 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy s National Nuclear Security Administration under contract DE-AC04-94AL85000.

2 Problem Description Our focus: Solve the the system of equations Lx = b where L is a graph Laplacian matrix K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

3 Applications Graphs with regular degree structure, 2D/3D meshes Finite element analysis Electrical and thermal conductivity Fluid flow modeling Image processing Image segmentation, inpainting, regression, classification Graphs with irregular degree, problems in network analysis Maximum flow problems Graph sparsification Spectral clustering K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

4 Applications Graphs with regular degree structure, 2D/3D meshes Finite element analysis Electrical and thermal conductivity Fluid flow modeling Image processing Image segmentation, inpainting, regression, classification Graphs with irregular degree, problems in network analysis Maximum flow problems Graph sparsification Spectral clustering K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

5 SDD Systems Some applications use symmetric diagonally dominant (SDD) matrices Slightly more general, allows for positive off-diagonal entries Can be reduced to solving a Laplacian linear system K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

6 SDD Solvers With Good Asymptotic Complexity Linear times polylog. Spielman and Teng, 2006 Nearly m log n. Koutis, Miller, and Peng, 2011 A simple, combinatorial algorithm. Kelner, Orecchia, Sidford, and Zhu, 2013 mostly theoretical results, few experiments K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

7 Our Goal Perform a comprehensive study of existing Laplacian solvers Select a set of test problems that are relevant/challenging Select performance metrics for evaluating current and future Laplacian solver performance Ongoing work, plan to update it with new solvers, new test problems K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

8 Test Graphs University of Florida Sparse Matrix Collection [Davis] Irregular degree graphs - 10K edges to 4M edges 2D/3D mesh-like graphs - 30K edges to 7M edges Block two-level Erdös Rényi (BTER) [Seshadhri et al.] Designed to model web graphs with realistic degree distributions and clustering behavior Image segmentation graphs [Felzenszwalb and Huttenlocher] Pixels=vertices, edge weights represent dissimilarity between pixel values - 300K edges to 7M edges K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

9 Solution Methods Direct methods Solve in a finite number of operations Cholesky factorization Sometimes expensive in time and memory use Iterative methods Form a sequence of improving approximations Conjugate gradients (CG) Convergence depends on matrix spectrum, bounded in terms of condition number κ(a) = λ n(a)/λ 1 (A) Typically used with a preconditioner to improve the condition number Multilevel Approximate solution on a coarser problem, occasionally correct on original Form recursive hierarchy of approximations K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

10 Solution Methods all from [Trilinos] Direct Solvers Cholesky factorization (Cholmod [Davis]) CG with single-level preconditioner Jacobi Incomplete LU Factorization (ILU) Spanning trees CG with multi-level preconditioner Algebraic Multigrid (AMG) K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

11 Solution Methods all from [Trilinos] Direct Solvers Cholesky factorization (Cholmod [Davis]) CG with single-level preconditioner Jacobi Incomplete LU Factorization (ILU) Spanning trees CG with multi-level preconditioner Algebraic Multigrid (AMG) = x K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

12 Solution Methods all from [Trilinos] Direct Solvers Cholesky factorization (Cholmod [Davis]) CG with single-level preconditioner Jacobi Incomplete LU Factorization (ILU) Spanning trees CG with multi-level preconditioner Algebraic Multigrid (AMG) D K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

13 Solution Methods all from [Trilinos] Direct Solvers Cholesky factorization (Cholmod [Davis]) CG with single-level preconditioner Jacobi Incomplete LU Factorization (ILU) Spanning trees CG with multi-level preconditioner Algebraic Multigrid (AMG) x K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

14 Solution Methods all from [Trilinos] Direct Solvers Cholesky factorization (Cholmod [Davis]) CG with single-level preconditioner Jacobi Incomplete LU Factorization (ILU) Spanning trees CG with multi-level preconditioner Algebraic Multigrid (AMG) T = x K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

15 Solution Methods all from [Trilinos] Direct Solvers Cholesky factorization (Cholmod [Davis]) CG with single-level preconditioner Jacobi Incomplete LU Factorization (ILU) Spanning trees CG with multi-level preconditioner Algebraic Multigrid (AMG) K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

16 Experimental Design Lx = b solved on problems in 4 test sets b randomly generated Solutions found to within residual tolerance of 10 9 Mostly used default solver parameters K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

17 Performance Metrics Number of Iterations Setup Time (one time work) Per-solve Time (every time work) Total Time (Setup+Per-solve) Memory Usage K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

18 Setup + Per-solve (Irregular) Fraction of problems within τ of best Fraction of problems within τ of best Cholesky Jacobi ILU Tree Multilevel τ τ UF Irregular Graphs BTER Graphs K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

19 Setup + Per-solve (Mesh-like) Fraction of problems within τ of best Fraction of problems within τ of best Cholesky Jacobi ILU Tree Multilevel τ τ UF Mesh-like Graphs Image Segmentation Graphs K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

20 Iterations (Irregular) Iterations 10 2 Iterations 10 2 Jacobi ILU Tree Multilevel κ(l) UF Irregular Graphs κ(l) BTER Graphs K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

21 Iterations (Mesh-like) Iterations 10 2 Iterations 10 2 Jacobi ILU Tree Multilevel κ(l) UF Mesh-like Graphs κ(l) Image Segmentation Graphs K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

22 Per-solve Time (Irregular) Per-Solve Time(s) Per-Solve Time(s) Cholesky Jacobi ILU Tree Multilevel m κ(l) UF Irregular Graphs m κ(l) BTER Graphs K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

23 Per-solve Time (Mesh-like) Per-Solve Time(s) Per-Solve Time(s) Cholesky Jacobi ILU Tree Multilevel m κ(l) UF Mesh-like Graphs m κ(l) Image Segmentation Graphs K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

24 Summary of Results Relative solver performance is consistent within test sets, but very different between test sets Multigrid does well on mesh-like problems; single-level preconditioners do well on irregular problems BTER problems are easier for the iterative methods, more difficult for direct methods The irregular problems are better conditioned, simple preconditioners like Jacobi do well K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

25 Future Work Incorporate additional solvers Multigrid methods designed for irregular graphs Decide how to incorporate solvers outside Trilinos Add additional test problems Understand how graph structure -> condition number, solver behavior K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

26 Thank You K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian Solvers ALENEX / 20

A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices

A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices DICEA DEPARTMENT OF CIVIL, ENVIRONMENTAL AND ARCHITECTURAL ENGINEERING PhD SCHOOL CIVIL AND ENVIRONMENTAL ENGINEERING SCIENCES XXX CYCLE A robust multilevel approximate inverse preconditioner for symmetric

More information

What s New in Isorropia?

What s New in Isorropia? What s New in Isorropia? Erik Boman Cedric Chevalier, Lee Ann Riesen Sandia National Laboratories, NM, USA Trilinos User s Group, Nov 4-5, 2009. SAND 2009-7611P. Sandia is a multiprogram laboratory operated

More information

Towards Practically-Efficient Spectral Sparsification of Graphs. Zhuo Feng

Towards Practically-Efficient Spectral Sparsification of Graphs. Zhuo Feng Design Automation Group Towards Practically-Efficient Spectral Sparsification of Graphs Zhuo Feng Acknowledgements: PhD students: Xueqian Zhao, Lengfei Han, Zhiqiang Zhao, Yongyu Wang NSF CCF CAREER grant

More information

Lecture 24: Element-wise Sampling of Graphs and Linear Equation Solving. 22 Element-wise Sampling of Graphs and Linear Equation Solving

Lecture 24: Element-wise Sampling of Graphs and Linear Equation Solving. 22 Element-wise Sampling of Graphs and Linear Equation Solving Stat260/CS294: Randomized Algorithms for Matrices and Data Lecture 24-12/02/2013 Lecture 24: Element-wise Sampling of Graphs and Linear Equation Solving Lecturer: Michael Mahoney Scribe: Michael Mahoney

More information

Algorithmic Primitives for Network Analysis: Through the Lens of the Laplacian Paradigm

Algorithmic Primitives for Network Analysis: Through the Lens of the Laplacian Paradigm Algorithmic Primitives for Network Analysis: Through the Lens of the Laplacian Paradigm Shang-Hua Teng Computer Science, Viterbi School of Engineering USC Massive Data and Massive Graphs 500 billions web

More information

1. Fast Iterative Solvers of SLE

1. Fast Iterative Solvers of SLE 1. Fast Iterative Solvers of crucial drawback of solvers discussed so far: they become slower if we discretize more accurate! now: look for possible remedies relaxation: explicit application of the multigrid

More information

Lecture 17: Iterative Methods and Sparse Linear Algebra

Lecture 17: Iterative Methods and Sparse Linear Algebra Lecture 17: Iterative Methods and Sparse Linear Algebra David Bindel 25 Mar 2014 Logistics HW 3 extended to Wednesday after break HW 4 should come out Monday after break Still need project description

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 24: Preconditioning and Multigrid Solver Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 5 Preconditioning Motivation:

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

Algebraic Multigrid as Solvers and as Preconditioner

Algebraic Multigrid as Solvers and as Preconditioner Ò Algebraic Multigrid as Solvers and as Preconditioner Domenico Lahaye domenico.lahaye@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ domenico/ Department of Computer Science Katholieke Universiteit Leuven

More information

U.C. Berkeley CS270: Algorithms Lecture 21 Professor Vazirani and Professor Rao Last revised. Lecture 21

U.C. Berkeley CS270: Algorithms Lecture 21 Professor Vazirani and Professor Rao Last revised. Lecture 21 U.C. Berkeley CS270: Algorithms Lecture 21 Professor Vazirani and Professor Rao Scribe: Anupam Last revised Lecture 21 1 Laplacian systems in nearly linear time Building upon the ideas introduced in the

More information

Linear Solvers. Andrew Hazel

Linear Solvers. Andrew Hazel Linear Solvers Andrew Hazel Introduction Thus far we have talked about the formulation and discretisation of physical problems...... and stopped when we got to a discrete linear system of equations. Introduction

More information

Lecture 18 Classical Iterative Methods

Lecture 18 Classical Iterative Methods Lecture 18 Classical Iterative Methods MIT 18.335J / 6.337J Introduction to Numerical Methods Per-Olof Persson November 14, 2006 1 Iterative Methods for Linear Systems Direct methods for solving Ax = b,

More information

Graph Sparsifiers: A Survey

Graph Sparsifiers: A Survey Graph Sparsifiers: A Survey Nick Harvey UBC Based on work by: Batson, Benczur, de Carli Silva, Fung, Hariharan, Harvey, Karger, Panigrahi, Sato, Spielman, Srivastava and Teng Approximating Dense Objects

More information

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems P.-O. Persson and J. Peraire Massachusetts Institute of Technology 2006 AIAA Aerospace Sciences Meeting, Reno, Nevada January 9,

More information

Numerical Methods I Non-Square and Sparse Linear Systems

Numerical Methods I Non-Square and Sparse Linear Systems Numerical Methods I Non-Square and Sparse Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 25th, 2014 A. Donev (Courant

More information

Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes

Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes Elena Virnik, TU BERLIN Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

Solving PDEs with Multigrid Methods p.1

Solving PDEs with Multigrid Methods p.1 Solving PDEs with Multigrid Methods Scott MacLachlan maclachl@colorado.edu Department of Applied Mathematics, University of Colorado at Boulder Solving PDEs with Multigrid Methods p.1 Support and Collaboration

More information

Preconditioning Techniques for Large Linear Systems Part III: General-Purpose Algebraic Preconditioners

Preconditioning Techniques for Large Linear Systems Part III: General-Purpose Algebraic Preconditioners Preconditioning Techniques for Large Linear Systems Part III: General-Purpose Algebraic Preconditioners Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, Georgia, USA

More information

Fine-Grained Parallel Algorithms for Incomplete Factorization Preconditioning

Fine-Grained Parallel Algorithms for Incomplete Factorization Preconditioning Fine-Grained Parallel Algorithms for Incomplete Factorization Preconditioning Edmond Chow School of Computational Science and Engineering Georgia Institute of Technology, USA SPPEXA Symposium TU München,

More information

Incomplete Cholesky preconditioners that exploit the low-rank property

Incomplete Cholesky preconditioners that exploit the low-rank property anapov@ulb.ac.be ; http://homepages.ulb.ac.be/ anapov/ 1 / 35 Incomplete Cholesky preconditioners that exploit the low-rank property (theory and practice) Artem Napov Service de Métrologie Nucléaire, Université

More information

Fun and Games with BTER Graph Generator

Fun and Games with BTER Graph Generator Fun and Games with BTER Graph Generator Ben Bales June 10, 2014 1 Introduction BTER [3] is a graph generator that models social network graphs my matching the degree and clustering coefficient distributions.

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

Preconditioning techniques to accelerate the convergence of the iterative solution methods

Preconditioning techniques to accelerate the convergence of the iterative solution methods Note Preconditioning techniques to accelerate the convergence of the iterative solution methods Many issues related to iterative solution of linear systems of equations are contradictory: numerical efficiency

More information

Preconditioning Techniques Analysis for CG Method

Preconditioning Techniques Analysis for CG Method Preconditioning Techniques Analysis for CG Method Huaguang Song Department of Computer Science University of California, Davis hso@ucdavis.edu Abstract Matrix computation issue for solve linear system

More information

Graph Sparsification I : Effective Resistance Sampling

Graph Sparsification I : Effective Resistance Sampling Graph Sparsification I : Effective Resistance Sampling Nikhil Srivastava Microsoft Research India Simons Institute, August 26 2014 Graphs G G=(V,E,w) undirected V = n w: E R + Sparsification Approximate

More information

Algorithms, Graph Theory, and the Solu7on of Laplacian Linear Equa7ons. Daniel A. Spielman Yale University

Algorithms, Graph Theory, and the Solu7on of Laplacian Linear Equa7ons. Daniel A. Spielman Yale University Algorithms, Graph Theory, and the Solu7on of Laplacian Linear Equa7ons Daniel A. Spielman Yale University Rutgers, Dec 6, 2011 Outline Linear Systems in Laplacian Matrices What? Why? Classic ways to solve

More information

Review: From problem to parallel algorithm

Review: From problem to parallel algorithm Review: From problem to parallel algorithm Mathematical formulations of interesting problems abound Poisson s equation Sources: Electrostatics, gravity, fluid flow, image processing (!) Numerical solution:

More information

Iterative Methods for Solving A x = b

Iterative Methods for Solving A x = b Iterative Methods for Solving A x = b A good (free) online source for iterative methods for solving A x = b is given in the description of a set of iterative solvers called templates found at netlib: http

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

Algorithm Design Using Spectral Graph Theory

Algorithm Design Using Spectral Graph Theory Algorithm Design Using Spectral Graph Theory Richard Peng CMU-CS-13-121 August 2013 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Thesis Committee: Gary L. Miller, Chair Guy

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

Estimating Current-Flow Closeness Centrality with a Multigrid Laplacian Solver

Estimating Current-Flow Closeness Centrality with a Multigrid Laplacian Solver Estimating Current-Flow Closeness Centrality with a Multigrid Laplacian Solver E. Bergamini, M. Wegner, D. Lukarski, H. Meyerhenke October 12, 2016 SIAM WORKSHOP ON COMBINATORIAL SCIENTIFIC COMPUTING (CSC16)

More information

Course Notes: Week 1

Course Notes: Week 1 Course Notes: Week 1 Math 270C: Applied Numerical Linear Algebra 1 Lecture 1: Introduction (3/28/11) We will focus on iterative methods for solving linear systems of equations (and some discussion of eigenvalues

More information

Fine-grained Parallel Incomplete LU Factorization

Fine-grained Parallel Incomplete LU Factorization Fine-grained Parallel Incomplete LU Factorization Edmond Chow School of Computational Science and Engineering Georgia Institute of Technology Sparse Days Meeting at CERFACS June 5-6, 2014 Contribution

More information

Direct and Incomplete Cholesky Factorizations with Static Supernodes

Direct and Incomplete Cholesky Factorizations with Static Supernodes Direct and Incomplete Cholesky Factorizations with Static Supernodes AMSC 661 Term Project Report Yuancheng Luo 2010-05-14 Introduction Incomplete factorizations of sparse symmetric positive definite (SSPD)

More information

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers Applied and Computational Mathematics 2017; 6(4): 202-207 http://www.sciencepublishinggroup.com/j/acm doi: 10.11648/j.acm.20170604.18 ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) A Robust Preconditioned

More information

Parallelization of Multilevel Preconditioners Constructed from Inverse-Based ILUs on Shared-Memory Multiprocessors

Parallelization of Multilevel Preconditioners Constructed from Inverse-Based ILUs on Shared-Memory Multiprocessors Parallelization of Multilevel Preconditioners Constructed from Inverse-Based ILUs on Shared-Memory Multiprocessors J.I. Aliaga 1 M. Bollhöfer 2 A.F. Martín 1 E.S. Quintana-Ortí 1 1 Deparment of Computer

More information

Scientific Computing WS 2018/2019. Lecture 9. Jürgen Fuhrmann Lecture 9 Slide 1

Scientific Computing WS 2018/2019. Lecture 9. Jürgen Fuhrmann Lecture 9 Slide 1 Scientific Computing WS 2018/2019 Lecture 9 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 9 Slide 1 Lecture 9 Slide 2 Simple iteration with preconditioning Idea: Aû = b iterative scheme û = û

More information

A MULTIGRID ALGORITHM FOR. Richard E. Ewing and Jian Shen. Institute for Scientic Computation. Texas A&M University. College Station, Texas SUMMARY

A MULTIGRID ALGORITHM FOR. Richard E. Ewing and Jian Shen. Institute for Scientic Computation. Texas A&M University. College Station, Texas SUMMARY A MULTIGRID ALGORITHM FOR THE CELL-CENTERED FINITE DIFFERENCE SCHEME Richard E. Ewing and Jian Shen Institute for Scientic Computation Texas A&M University College Station, Texas SUMMARY In this article,

More information

Multigrid and Multilevel Preconditioners for Computational Photography

Multigrid and Multilevel Preconditioners for Computational Photography Multigrid and Multilevel Preconditioners for Computational Photography Dilip Krishnan Department of Computer Science New York University dilip@cs.nyu.edu Richard Szeliski Interactive Visual Media Group

More information

6.4 Krylov Subspaces and Conjugate Gradients

6.4 Krylov Subspaces and Conjugate Gradients 6.4 Krylov Subspaces and Conjugate Gradients Our original equation is Ax = b. The preconditioned equation is P Ax = P b. When we write P, we never intend that an inverse will be explicitly computed. P

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

An Efficient Solver for Sparse Linear Systems based on Rank-Structured Cholesky Factorization

An Efficient Solver for Sparse Linear Systems based on Rank-Structured Cholesky Factorization An Efficient Solver for Sparse Linear Systems based on Rank-Structured Cholesky Factorization David Bindel and Jeffrey Chadwick Department of Computer Science Cornell University 30 October 2015 (Department

More information

J.I. Aliaga 1 M. Bollhöfer 2 A.F. Martín 1 E.S. Quintana-Ortí 1. March, 2009

J.I. Aliaga 1 M. Bollhöfer 2 A.F. Martín 1 E.S. Quintana-Ortí 1. March, 2009 Parallel Preconditioning of Linear Systems based on ILUPACK for Multithreaded Architectures J.I. Aliaga M. Bollhöfer 2 A.F. Martín E.S. Quintana-Ortí Deparment of Computer Science and Engineering, Univ.

More information

Implementation of a preconditioned eigensolver using Hypre

Implementation of a preconditioned eigensolver using Hypre Implementation of a preconditioned eigensolver using Hypre Andrew V. Knyazev 1, and Merico E. Argentati 1 1 Department of Mathematics, University of Colorado at Denver, USA SUMMARY This paper describes

More information

arxiv: v1 [cs.na] 20 Jul 2015

arxiv: v1 [cs.na] 20 Jul 2015 AN EFFICIENT SOLVER FOR SPARSE LINEAR SYSTEMS BASED ON RANK-STRUCTURED CHOLESKY FACTORIZATION JEFFREY N. CHADWICK AND DAVID S. BINDEL arxiv:1507.05593v1 [cs.na] 20 Jul 2015 Abstract. Direct factorization

More information

Iterative Methods and Multigrid

Iterative Methods and Multigrid Iterative Methods and Multigrid Part 3: Preconditioning 2 Eric de Sturler Preconditioning The general idea behind preconditioning is that convergence of some method for the linear system Ax = b can be

More information

Conjugate Gradients: Idea

Conjugate Gradients: Idea Overview Steepest Descent often takes steps in the same direction as earlier steps Wouldn t it be better every time we take a step to get it exactly right the first time? Again, in general we choose a

More information

Solving Ax = b, an overview. Program

Solving Ax = b, an overview. Program Numerical Linear Algebra Improving iterative solvers: preconditioning, deflation, numerical software and parallelisation Gerard Sleijpen and Martin van Gijzen November 29, 27 Solving Ax = b, an overview

More information

Approximate Gaussian Elimination for Laplacians

Approximate Gaussian Elimination for Laplacians CSC 221H : Graphs, Matrices, and Optimization Lecture 9 : 19 November 2018 Approximate Gaussian Elimination for Laplacians Lecturer: Sushant Sachdeva Scribe: Yasaman Mahdaviyeh 1 Introduction Recall sparsifiers

More information

Multigrid Methods and their application in CFD

Multigrid Methods and their application in CFD Multigrid Methods and their application in CFD Michael Wurst TU München 16.06.2009 1 Multigrid Methods Definition Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential

More information

Spectral Graph Theory and its Applications. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity

Spectral Graph Theory and its Applications. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Spectral Graph Theory and its Applications Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Outline Adjacency matrix and Laplacian Intuition, spectral graph drawing

More information

Algorithms, Graph Theory, and Linear Equa9ons in Laplacians. Daniel A. Spielman Yale University

Algorithms, Graph Theory, and Linear Equa9ons in Laplacians. Daniel A. Spielman Yale University Algorithms, Graph Theory, and Linear Equa9ons in Laplacians Daniel A. Spielman Yale University Shang- Hua Teng Carter Fussell TPS David Harbater UPenn Pavel Cur9s Todd Knoblock CTY Serge Lang 1927-2005

More information

Solving Large Nonlinear Sparse Systems

Solving Large Nonlinear Sparse Systems Solving Large Nonlinear Sparse Systems Fred W. Wubs and Jonas Thies Computational Mechanics & Numerical Mathematics University of Groningen, the Netherlands f.w.wubs@rug.nl Centre for Interdisciplinary

More information

Graph Sparsifiers. Smaller graph that (approximately) preserves the values of some set of graph parameters. Graph Sparsification

Graph Sparsifiers. Smaller graph that (approximately) preserves the values of some set of graph parameters. Graph Sparsification Graph Sparsifiers Smaller graph that (approximately) preserves the values of some set of graph parameters Graph Sparsifiers Spanners Emulators Small stretch spanning trees Vertex sparsifiers Spectral sparsifiers

More information

Fast Linear Solvers for Laplacian Systems

Fast Linear Solvers for Laplacian Systems s Solver for UCSD Research Exam University of California, San Diego osimpson@ucsd.edu November 8, 2013 s Solver 1 2 Matrices Linear in the Graph 3 Overview 4 Solving Linear with Using Computing A of the

More information

Bruce Hendrickson Discrete Algorithms & Math Dept. Sandia National Labs Albuquerque, New Mexico Also, CS Department, UNM

Bruce Hendrickson Discrete Algorithms & Math Dept. Sandia National Labs Albuquerque, New Mexico Also, CS Department, UNM Latent Semantic Analysis and Fiedler Retrieval Bruce Hendrickson Discrete Algorithms & Math Dept. Sandia National Labs Albuquerque, New Mexico Also, CS Department, UNM Informatics & Linear Algebra Eigenvectors

More information

Cholesky factorisation of linear systems coming from finite difference approximations of singularly perturbed problems

Cholesky factorisation of linear systems coming from finite difference approximations of singularly perturbed problems Cholesky factorisation of linear systems coming from finite difference approximations of singularly perturbed problems Thái Anh Nhan and Niall Madden Abstract We consider the solution of large linear systems

More information

A Taxonomy and Comparison of Parallel Block Multi-level Preconditioners for the Incompressible Navier Stokes Equations

A Taxonomy and Comparison of Parallel Block Multi-level Preconditioners for the Incompressible Navier Stokes Equations SANDIA REPORT SAND2007-2761 Unlimited Release Printed May 2007 A Taxonomy and Comparison of Parallel Block Multi-level Preconditioners for the Incompressible Navier Stokes Equations Howard Elman, Victoria

More information

Comparative Analysis of Mesh Generators and MIC(0) Preconditioning of FEM Elasticity Systems

Comparative Analysis of Mesh Generators and MIC(0) Preconditioning of FEM Elasticity Systems Comparative Analysis of Mesh Generators and MIC(0) Preconditioning of FEM Elasticity Systems Nikola Kosturski and Svetozar Margenov Institute for Parallel Processing, Bulgarian Academy of Sciences Abstract.

More information

An Efficient Graph Sparsification Approach to Scalable Harmonic Balance (HB) Analysis of Strongly Nonlinear RF Circuits

An Efficient Graph Sparsification Approach to Scalable Harmonic Balance (HB) Analysis of Strongly Nonlinear RF Circuits Design Automation Group An Efficient Graph Sparsification Approach to Scalable Harmonic Balance (HB) Analysis of Strongly Nonlinear RF Circuits Authors : Lengfei Han (Speaker) Xueqian Zhao Dr. Zhuo Feng

More information

An Efficient Solver for Sparse Linear Systems based on Rank-Structured Cholesky Factorization

An Efficient Solver for Sparse Linear Systems based on Rank-Structured Cholesky Factorization An Efficient Solver for Sparse Linear Systems based on Rank-Structured Cholesky Factorization David Bindel Department of Computer Science Cornell University 15 March 2016 (TSIMF) Rank-Structured Cholesky

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 68 (2014) 1151 1160 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa A GPU

More information

Lecture Approximate Potentials from Approximate Flow

Lecture Approximate Potentials from Approximate Flow ORIE 6334 Spectral Graph Theory October 20, 2016 Lecturer: David P. Williamson Lecture 17 Scribe: Yingjie Bi 1 Approximate Potentials from Approximate Flow In the last lecture, we presented a combinatorial

More information

ITERATIVE METHODS BASED ON KRYLOV SUBSPACES

ITERATIVE METHODS BASED ON KRYLOV SUBSPACES ITERATIVE METHODS BASED ON KRYLOV SUBSPACES LONG CHEN We shall present iterative methods for solving linear algebraic equation Au = b based on Krylov subspaces We derive conjugate gradient (CG) method

More information

Lecture 9: Numerical Linear Algebra Primer (February 11st)

Lecture 9: Numerical Linear Algebra Primer (February 11st) 10-725/36-725: Convex Optimization Spring 2015 Lecture 9: Numerical Linear Algebra Primer (February 11st) Lecturer: Ryan Tibshirani Scribes: Avinash Siravuru, Guofan Wu, Maosheng Liu Note: LaTeX template

More information

The solution of the discretized incompressible Navier-Stokes equations with iterative methods

The solution of the discretized incompressible Navier-Stokes equations with iterative methods The solution of the discretized incompressible Navier-Stokes equations with iterative methods Report 93-54 C. Vuik Technische Universiteit Delft Delft University of Technology Faculteit der Technische

More information

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 1 SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 2 OUTLINE Sparse matrix storage format Basic factorization

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725 Consider Last time: proximal Newton method min x g(x) + h(x) where g, h convex, g twice differentiable, and h simple. Proximal

More information

Parallel Discontinuous Galerkin Method

Parallel Discontinuous Galerkin Method Parallel Discontinuous Galerkin Method Yin Ki, NG The Chinese University of Hong Kong Aug 5, 2015 Mentors: Dr. Ohannes Karakashian, Dr. Kwai Wong Overview Project Goal Implement parallelization on Discontinuous

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

Parallel Simulation of Subsurface Fluid Flow

Parallel Simulation of Subsurface Fluid Flow Parallel Simulation of Subsurface Fluid Flow Scientific Achievement A new mortar domain decomposition method was devised to compute accurate velocities of underground fluids efficiently using massively

More information

Fast solvers for steady incompressible flow

Fast solvers for steady incompressible flow ICFD 25 p.1/21 Fast solvers for steady incompressible flow Andy Wathen Oxford University wathen@comlab.ox.ac.uk http://web.comlab.ox.ac.uk/~wathen/ Joint work with: Howard Elman (University of Maryland,

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

Sparsification by Effective Resistance Sampling

Sparsification by Effective Resistance Sampling Spectral raph Theory Lecture 17 Sparsification by Effective Resistance Sampling Daniel A. Spielman November 2, 2015 Disclaimer These notes are not necessarily an accurate representation of what happened

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

A greedy strategy for coarse-grid selection

A greedy strategy for coarse-grid selection A greedy strategy for coarse-grid selection S. MacLachlan Yousef Saad August 3, 2006 Abstract Efficient solution of the very large linear systems that arise in numerical modelling of real-world applications

More information

Approximate Spectral Clustering via Randomized Sketching

Approximate Spectral Clustering via Randomized Sketching Approximate Spectral Clustering via Randomized Sketching Christos Boutsidis Yahoo! Labs, New York Joint work with Alex Gittens (Ebay), Anju Kambadur (IBM) The big picture: sketch and solve Tradeoff: Speed

More information

Large-Scale Graph-Based Semi-Supervised Learning via Tree Laplacian Solver

Large-Scale Graph-Based Semi-Supervised Learning via Tree Laplacian Solver Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) Large-Scale Graph-Based Semi-Supervised Learning via Tree Laplacian Solver Yan-Ming Zhang and Xu-Yao Zhang National Laboratory

More information

The flexible incomplete LU preconditioner for large nonsymmetric linear systems. Takatoshi Nakamura Takashi Nodera

The flexible incomplete LU preconditioner for large nonsymmetric linear systems. Takatoshi Nakamura Takashi Nodera Research Report KSTS/RR-15/006 The flexible incomplete LU preconditioner for large nonsymmetric linear systems by Takatoshi Nakamura Takashi Nodera Takatoshi Nakamura School of Fundamental Science and

More information

On factor width and symmetric H -matrices

On factor width and symmetric H -matrices Linear Algebra and its Applications 405 (2005) 239 248 www.elsevier.com/locate/laa On factor width and symmetric H -matrices Erik G. Boman a,,1, Doron Chen b, Ojas Parekh c, Sivan Toledo b,2 a Department

More information

Dedicated to J. Brahms Symphony No. 1 in C minor, Op. 68

Dedicated to J. Brahms Symphony No. 1 in C minor, Op. 68 LEAN ALGEBRAIC MULTIGRID (LAMG): FAST GRAPH LAPLACIAN LINEAR SOLVER OREN E. LIVNE AND ACHI BRANDT Dedicated to J. Brahms Symphony No. in C minor, Op. 68 Abstract. Laplacian matrices of graphs arise in

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9 Spring 2015 Lecture 9 REVIEW Lecture 8: Direct Methods for solving (linear) algebraic equations Gauss Elimination LU decomposition/factorization Error Analysis for Linear Systems and Condition Numbers

More information

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU Preconditioning Techniques for Solving Large Sparse Linear Systems Arnold Reusken Institut für Geometrie und Praktische Mathematik RWTH-Aachen OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative

More information

Sparse Matrix Techniques for MCAO

Sparse Matrix Techniques for MCAO Sparse Matrix Techniques for MCAO Luc Gilles lgilles@mtu.edu Michigan Technological University, ECE Department Brent Ellerbroek bellerbroek@gemini.edu Gemini Observatory Curt Vogel vogel@math.montana.edu

More information

Aggregation-based algebraic multigrid

Aggregation-based algebraic multigrid Aggregation-based algebraic multigrid from theory to fast solvers Yvan Notay Université Libre de Bruxelles Service de Métrologie Nucléaire CEMRACS, Marseille, July 18, 2012 Supported by the Belgian FNRS

More information

Graph Partitioning Using Random Walks

Graph Partitioning Using Random Walks Graph Partitioning Using Random Walks A Convex Optimization Perspective Lorenzo Orecchia Computer Science Why Spectral Algorithms for Graph Problems in practice? Simple to implement Can exploit very efficient

More information

ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS

ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS YOUSEF SAAD University of Minnesota PWS PUBLISHING COMPANY I(T)P An International Thomson Publishing Company BOSTON ALBANY BONN CINCINNATI DETROIT LONDON MADRID

More information

Numerical Analysis: Solutions of System of. Linear Equation. Natasha S. Sharma, PhD

Numerical Analysis: Solutions of System of. Linear Equation. Natasha S. Sharma, PhD Mathematical Question we are interested in answering numerically How to solve the following linear system for x Ax = b? where A is an n n invertible matrix and b is vector of length n. Notation: x denote

More information

Numerical Programming I (for CSE)

Numerical Programming I (for CSE) Technische Universität München WT 1/13 Fakultät für Mathematik Prof. Dr. M. Mehl B. Gatzhammer January 1, 13 Numerical Programming I (for CSE) Tutorial 1: Iterative Methods 1) Relaxation Methods a) Let

More information

Graphs, Vectors, and Matrices Daniel A. Spielman Yale University. AMS Josiah Willard Gibbs Lecture January 6, 2016

Graphs, Vectors, and Matrices Daniel A. Spielman Yale University. AMS Josiah Willard Gibbs Lecture January 6, 2016 Graphs, Vectors, and Matrices Daniel A. Spielman Yale University AMS Josiah Willard Gibbs Lecture January 6, 2016 From Applied to Pure Mathematics Algebraic and Spectral Graph Theory Sparsification: approximating

More information

Lecture 10 Preconditioning, Software, Parallelisation

Lecture 10 Preconditioning, Software, Parallelisation March 26, 2018 Lecture 10 Preconditioning, Software, Parallelisation A Incorporating a preconditioner We are interested in solving Ax = b (10.1) for x. Here, A is an n n non-singular matrix and b is a

More information

6. Iterative Methods for Linear Systems. The stepwise approach to the solution...

6. Iterative Methods for Linear Systems. The stepwise approach to the solution... 6 Iterative Methods for Linear Systems The stepwise approach to the solution Miriam Mehl: 6 Iterative Methods for Linear Systems The stepwise approach to the solution, January 18, 2013 1 61 Large Sparse

More information

Jacobi-Davidson Eigensolver in Cusolver Library. Lung-Sheng Chien, NVIDIA

Jacobi-Davidson Eigensolver in Cusolver Library. Lung-Sheng Chien, NVIDIA Jacobi-Davidson Eigensolver in Cusolver Library Lung-Sheng Chien, NVIDIA lchien@nvidia.com Outline CuSolver library - cusolverdn: dense LAPACK - cusolversp: sparse LAPACK - cusolverrf: refactorization

More information

Spectral element agglomerate AMGe

Spectral element agglomerate AMGe Spectral element agglomerate AMGe T. Chartier 1, R. Falgout 2, V. E. Henson 2, J. E. Jones 4, T. A. Manteuffel 3, S. F. McCormick 3, J. W. Ruge 3, and P. S. Vassilevski 2 1 Department of Mathematics, Davidson

More information

CLASSICAL ITERATIVE METHODS

CLASSICAL ITERATIVE METHODS CLASSICAL ITERATIVE METHODS LONG CHEN In this notes we discuss classic iterative methods on solving the linear operator equation (1) Au = f, posed on a finite dimensional Hilbert space V = R N equipped

More information

Algebraic Coarse Spaces for Overlapping Schwarz Preconditioners

Algebraic Coarse Spaces for Overlapping Schwarz Preconditioners Algebraic Coarse Spaces for Overlapping Schwarz Preconditioners 17 th International Conference on Domain Decomposition Methods St. Wolfgang/Strobl, Austria July 3-7, 2006 Clark R. Dohrmann Sandia National

More information