Conjugate Gradients: Idea

Size: px
Start display at page:

Download "Conjugate Gradients: Idea"

Transcription

1 Overview Steepest Descent often takes steps in the same direction as earlier steps Wouldn t it be better every time we take a step to get it exactly right the first time? Again, in general we choose a new point Additionally, we could demand that the remaining error (NOT the residual) is orthogonal to our direction Unfortunately, we don t know the error (if we knew we would be done) Conjugate Gradients: Idea 81

2 Overview Instead, we demand the search direction to be A-orthogonal to the remaining error A-orthogonal vectors a,b satisfy Some A-orthogonal vectors: Conjugate Gradients: Idea 82

3 Overview Instead, we demand the search direction to be A-orthogonal to the remaining error A-orthogonal vectors a,b satisfy The remaining error shall be A-orthogonal to search direction: This is equivalent to finding the minimum point along the direction So far, everything is equivalent to Steepest Descent (except that p is not necessarily r) How to construct the A-orthogonal search directions p? Conjugate Gradients: Idea 83

4 Overview The process of making vectors orthogonal or A-orthogonal is called Gram-Schmidt orthogonalization Suppose n linear independent vectors are given. Then, one can find a new vector which is orthogonal to all previous vectors by Factors are found from the A-orthogonality condition: We can now create a vector that is A-orthogonal to all previous vectors. We can now put everything together Conjugate Gradients: Idea 84

5 We now choose the search directions to be the residual (as in Steepest Descent) but additionally make them A-orthogonal to the previous search direction. Doing so, the new search direction is A-orthogonal to ALL previous directions. Conjugate Gradients: Formulation 85

6 Conjugate Gradients: Preconditioning 86

7 J.R. Shewchuk: An Introduction to the Conjugate Gradient Method without the Agonizing Pain, Carnegiee Mellon Univ., (free on the web) Conjugate Gradients: Convergence 87

8 Conjugate Gradients: Preconditioning 88

9 Conjugate Gradients: Preconditioning 89

10 Symmetric Gauss Seidel Preconditioning 90

11 Symmetric Gauss Seidel Preconditioning 91

12 Symmetric Gauss Seidel Preconditioning 92

13 Symmetric Gauss Seidel Preconditioning 93

14 Review: Sym. Mult. Schwarz is Sym. Block Gauss Seidel 94

15 Multiplicative Schwarz DD 95

16 Multiplicative Schwarz DD 96

17 Multiplicative Schwarz DD 97

18 Multiplicative Schwarz DD 98

19 Multiplicative Schwarz DD with Coarse Grid 99

20 Multiplicative Schwarz DD with Coarse Grid 100

21 Multiplicative Schwarz DD with Coarse Grid 101

22 Multiplicative Schwarz DD with Coarse Grid 102

23 Multiplicative Schwarz DD with Coarse Grid 103

24 Multiplicative Schwarz DD with Coarse Grid 104

25 Overlapping Schwarz, the nonmatching case 105

26 Overlapping Schwarz, the multigrid case 106

27 Overlapping Schwarz, the multigrid case 107

28 Overlapping Schwarz, the multigrid case 108

29 Overlapping Schwarz, the multigrid case 109

30 Overlapping Schwarz, the multigrid case 110

31 Overlapping Schwarz, the multigrid case 111

32 Overlapping Schwarz, the multigrid case 112

33 Geometric Multigrid 113

34 Algebraic Multigrid 114

35 Algebraic Multigrid 115

36 Algebraic Multigrid: Requirements 116

37 Algebraic Multigrid: Requirements 117

38 Algebraic Multigrid: Requirements 118

39 Algebraic Multigrid: Formulation 119

40 Algebraic Multigrid: Formulation 120

41 Algebraic Multigrid: Formulation 121

42 Algebraic Multigrid: Formulation 122

43 Algebraic Multigrid: Formulation 123

44 Gram-Schmidt Orthonormalization 124

45 Algebraic Multigrid: Formulation 125

46 Algebraic Multigrid: Formulation 126

47 Algebraic Multigrid: Formulation 127

48 Algebraic Multigrid: Formulation 128

49 Algebraic Multigrid: 1D example 129

50 Algebraic Multigrid: 1D example 130

51 Algebraic Multigrid: 1D example 131

52 Smoothed Aggregation AMG (SA-AMG) 132

53 CG with SA-AMG preconditioner: 3D elasticity example 133

54 CG with SA-AMG preconditioner: 3D elasticity example 134

55 Fin 135

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

Iterative Methods for Solving A x = b

Iterative Methods for Solving A x = b Iterative Methods for Solving A x = b A good (free) online source for iterative methods for solving A x = b is given in the description of a set of iterative solvers called templates found at netlib: http

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Jason E. Hicken Aerospace Design Lab Department of Aeronautics & Astronautics Stanford University 14 July 2011 Lecture Objectives describe when CG can be used to solve Ax

More information

Algebraic Multigrid as Solvers and as Preconditioner

Algebraic Multigrid as Solvers and as Preconditioner Ò Algebraic Multigrid as Solvers and as Preconditioner Domenico Lahaye domenico.lahaye@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ domenico/ Department of Computer Science Katholieke Universiteit Leuven

More information

Some minimization problems

Some minimization problems Week 13: Wednesday, Nov 14 Some minimization problems Last time, we sketched the following two-step strategy for approximating the solution to linear systems via Krylov subspaces: 1. Build a sequence of

More information

Conjugate Gradient Tutorial

Conjugate Gradient Tutorial Conjugate Gradient Tutorial Prof. Chung-Kuan Cheng Computer Science and Engineering Department University of California, San Diego ckcheng@ucsd.edu December 1, 2015 Prof. Chung-Kuan Cheng (UC San Diego)

More information

Iterative methods for Linear System

Iterative methods for Linear System Iterative methods for Linear System JASS 2009 Student: Rishi Patil Advisor: Prof. Thomas Huckle Outline Basics: Matrices and their properties Eigenvalues, Condition Number Iterative Methods Direct and

More information

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method.

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method. Optimization Unconstrained optimization One-dimensional Multi-dimensional Newton s method Basic Newton Gauss- Newton Quasi- Newton Descent methods Gradient descent Conjugate gradient Constrained optimization

More information

Notes on Some Methods for Solving Linear Systems

Notes on Some Methods for Solving Linear Systems Notes on Some Methods for Solving Linear Systems Dianne P. O Leary, 1983 and 1999 and 2007 September 25, 2007 When the matrix A is symmetric and positive definite, we have a whole new class of algorithms

More information

6.4 Krylov Subspaces and Conjugate Gradients

6.4 Krylov Subspaces and Conjugate Gradients 6.4 Krylov Subspaces and Conjugate Gradients Our original equation is Ax = b. The preconditioned equation is P Ax = P b. When we write P, we never intend that an inverse will be explicitly computed. P

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 24: Preconditioning and Multigrid Solver Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 5 Preconditioning Motivation:

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 20 1 / 20 Overview

More information

Iterative methods for Linear System of Equations. Joint Advanced Student School (JASS-2009)

Iterative methods for Linear System of Equations. Joint Advanced Student School (JASS-2009) Iterative methods for Linear System of Equations Joint Advanced Student School (JASS-2009) Course #2: Numerical Simulation - from Models to Software Introduction In numerical simulation, Partial Differential

More information

Statistical Geometry Processing Winter Semester 2011/2012

Statistical Geometry Processing Winter Semester 2011/2012 Statistical Geometry Processing Winter Semester 2011/2012 Linear Algebra, Function Spaces & Inverse Problems Vector and Function Spaces 3 Vectors vectors are arrows in space classically: 2 or 3 dim. Euclidian

More information

Adaptive Multigrid for QCD. Lattice University of Regensburg

Adaptive Multigrid for QCD. Lattice University of Regensburg Lattice 2007 University of Regensburg Michael Clark Boston University with J. Brannick, R. Brower, J. Osborn and C. Rebbi -1- Lattice 2007, University of Regensburg Talk Outline Introduction to Multigrid

More information

Lec10p1, ORF363/COS323

Lec10p1, ORF363/COS323 Lec10 Page 1 Lec10p1, ORF363/COS323 This lecture: Conjugate direction methods Conjugate directions Conjugate Gram-Schmidt The conjugate gradient (CG) algorithm Solving linear systems Leontief input-output

More information

An Iterative Descent Method

An Iterative Descent Method Conjugate Gradient: An Iterative Descent Method The Plan Review Iterative Descent Conjugate Gradient Review : Iterative Descent Iterative Descent is an unconstrained optimization process x (k+1) = x (k)

More information

The Removal of Critical Slowing Down. Lattice College of William and Mary

The Removal of Critical Slowing Down. Lattice College of William and Mary The Removal of Critical Slowing Down Lattice 2008 College of William and Mary Michael Clark Boston University James Brannick, Rich Brower, Tom Manteuffel, Steve McCormick, James Osborn, Claudio Rebbi 1

More information

1 Extrapolation: A Hint of Things to Come

1 Extrapolation: A Hint of Things to Come Notes for 2017-03-24 1 Extrapolation: A Hint of Things to Come Stationary iterations are simple. Methods like Jacobi or Gauss-Seidel are easy to program, and it s (relatively) easy to analyze their convergence.

More information

Conjugate Gradient (CG) Method

Conjugate Gradient (CG) Method Conjugate Gradient (CG) Method by K. Ozawa 1 Introduction In the series of this lecture, I will introduce the conjugate gradient method, which solves efficiently large scale sparse linear simultaneous

More information

7.2 Steepest Descent and Preconditioning

7.2 Steepest Descent and Preconditioning 7.2 Steepest Descent and Preconditioning Descent methods are a broad class of iterative methods for finding solutions of the linear system Ax = b for symmetric positive definite matrix A R n n. Consider

More information

Course Notes: Week 1

Course Notes: Week 1 Course Notes: Week 1 Math 270C: Applied Numerical Linear Algebra 1 Lecture 1: Introduction (3/28/11) We will focus on iterative methods for solving linear systems of equations (and some discussion of eigenvalues

More information

The conjugate gradient method

The conjugate gradient method The conjugate gradient method Michael S. Floater November 1, 2011 These notes try to provide motivation and an explanation of the CG method. 1 The method of conjugate directions We want to solve the linear

More information

Parallel Numerics, WT 2016/ Iterative Methods for Sparse Linear Systems of Equations. page 1 of 1

Parallel Numerics, WT 2016/ Iterative Methods for Sparse Linear Systems of Equations. page 1 of 1 Parallel Numerics, WT 2016/2017 5 Iterative Methods for Sparse Linear Systems of Equations page 1 of 1 Contents 1 Introduction 1.1 Computer Science Aspects 1.2 Numerical Problems 1.3 Graphs 1.4 Loop Manipulations

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 9 Spring 2015 Lecture 9 REVIEW Lecture 8: Direct Methods for solving (linear) algebraic equations Gauss Elimination LU decomposition/factorization Error Analysis for Linear Systems and Condition Numbers

More information

Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes

Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes Elena Virnik, TU BERLIN Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov

More information

Geometric Modeling Summer Semester 2010 Mathematical Tools (1)

Geometric Modeling Summer Semester 2010 Mathematical Tools (1) Geometric Modeling Summer Semester 2010 Mathematical Tools (1) Recap: Linear Algebra Today... Topics: Mathematical Background Linear algebra Analysis & differential geometry Numerical techniques Geometric

More information

3D Space Charge Routines: The Software Package MOEVE and FFT Compared

3D Space Charge Routines: The Software Package MOEVE and FFT Compared 3D Space Charge Routines: The Software Package MOEVE and FFT Compared Gisela Pöplau DESY, Hamburg, December 4, 2007 Overview Algorithms for 3D space charge calculations Properties of FFT and iterative

More information

Lecture 17 Methods for System of Linear Equations: Part 2. Songting Luo. Department of Mathematics Iowa State University

Lecture 17 Methods for System of Linear Equations: Part 2. Songting Luo. Department of Mathematics Iowa State University Lecture 17 Methods for System of Linear Equations: Part 2 Songting Luo Department of Mathematics Iowa State University MATH 481 Numerical Methods for Differential Equations Songting Luo ( Department of

More information

INNER PRODUCT SPACE. Definition 1

INNER PRODUCT SPACE. Definition 1 INNER PRODUCT SPACE Definition 1 Suppose u, v and w are all vectors in vector space V and c is any scalar. An inner product space on the vectors space V is a function that associates with each pair of

More information

ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS

ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS YOUSEF SAAD University of Minnesota PWS PUBLISHING COMPANY I(T)P An International Thomson Publishing Company BOSTON ALBANY BONN CINCINNATI DETROIT LONDON MADRID

More information

Iterative Methods for Smooth Objective Functions

Iterative Methods for Smooth Objective Functions Optimization Iterative Methods for Smooth Objective Functions Quadratic Objective Functions Stationary Iterative Methods (first/second order) Steepest Descent Method Landweber/Projected Landweber Methods

More information

Lab 1: Iterative Methods for Solving Linear Systems

Lab 1: Iterative Methods for Solving Linear Systems Lab 1: Iterative Methods for Solving Linear Systems January 22, 2017 Introduction Many real world applications require the solution to very large and sparse linear systems where direct methods such as

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2018/19 Part 4: Iterative Methods PD

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 3: Iterative Methods PD

More information

From Stationary Methods to Krylov Subspaces

From Stationary Methods to Krylov Subspaces Week 6: Wednesday, Mar 7 From Stationary Methods to Krylov Subspaces Last time, we discussed stationary methods for the iterative solution of linear systems of equations, which can generally be written

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method The minimization problem We are given a symmetric positive definite matrix R n n and a right hand side vector b R n We want to solve the linear system Find u R n such that

More information

1 Conjugate gradients

1 Conjugate gradients Notes for 2016-11-18 1 Conjugate gradients We now turn to the method of conjugate gradients (CG), perhaps the best known of the Krylov subspace solvers. The CG iteration can be characterized as the iteration

More information

Linear and Non-Linear Preconditioning

Linear and Non-Linear Preconditioning and Non- martin.gander@unige.ch University of Geneva July 2015 Joint work with Victorita Dolean, Walid Kheriji, Felix Kwok and Roland Masson (1845): First Idea of After preconditioning, it takes only three

More information

6. Iterative Methods: Roots and Optima. Citius, Altius, Fortius!

6. Iterative Methods: Roots and Optima. Citius, Altius, Fortius! Citius, Altius, Fortius! Numerisches Programmieren, Hans-Joachim Bungartz page 1 of 1 6.1. Large Sparse Systems of Linear Equations I Relaxation Methods Introduction Systems of linear equations, which

More information

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v

More information

New Multigrid Solver Advances in TOPS

New Multigrid Solver Advances in TOPS New Multigrid Solver Advances in TOPS R D Falgout 1, J Brannick 2, M Brezina 2, T Manteuffel 2 and S McCormick 2 1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O.

More information

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc.

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc. Lecture 11: CMSC 878R/AMSC698R Iterative Methods An introduction Outline Direct Solution of Linear Systems Inverse, LU decomposition, Cholesky, SVD, etc. Iterative methods for linear systems Why? Matrix

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

KRYLOV SUBSPACE ITERATION

KRYLOV SUBSPACE ITERATION KRYLOV SUBSPACE ITERATION Presented by: Nab Raj Roshyara Master and Ph.D. Student Supervisors: Prof. Dr. Peter Benner, Department of Mathematics, TU Chemnitz and Dipl.-Geophys. Thomas Günther 1. Februar

More information

Preface to Second Edition... vii. Preface to First Edition...

Preface to Second Edition... vii. Preface to First Edition... Contents Preface to Second Edition..................................... vii Preface to First Edition....................................... ix Part I Linear Algebra 1 Basic Vector/Matrix Structure and

More information

An Introduction to the Conjugate Gradient Method Without the Agonizing Pain

An Introduction to the Conjugate Gradient Method Without the Agonizing Pain An Introduction to the Conjugate Gradient Method Without the Agonizing Pain Edition 1 1 Jonathan Richard Shewchuk August, 199 School of Computer Science Carnegie Mellon University Pittsburgh, PA 1513 Abstract

More information

Solving PDEs with Multigrid Methods p.1

Solving PDEs with Multigrid Methods p.1 Solving PDEs with Multigrid Methods Scott MacLachlan maclachl@colorado.edu Department of Applied Mathematics, University of Colorado at Boulder Solving PDEs with Multigrid Methods p.1 Support and Collaboration

More information

Robust solution of Poisson-like problems with aggregation-based AMG

Robust solution of Poisson-like problems with aggregation-based AMG Robust solution of Poisson-like problems with aggregation-based AMG Yvan Notay Université Libre de Bruxelles Service de Métrologie Nucléaire Paris, January 26, 215 Supported by the Belgian FNRS http://homepages.ulb.ac.be/

More information

1. Fast Iterative Solvers of SLE

1. Fast Iterative Solvers of SLE 1. Fast Iterative Solvers of crucial drawback of solvers discussed so far: they become slower if we discretize more accurate! now: look for possible remedies relaxation: explicit application of the multigrid

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

An Introduction to the Conjugate Gradient Method Without the Agonizing Pain

An Introduction to the Conjugate Gradient Method Without the Agonizing Pain An Introduction to the Conjugate Gradient Method Without the Agonizing Pain Edition Jonathan Richard Shewchuk August, 99 School of Computer Science Carnegie Mellon University Pittsburgh, PA 53 Abstract

More information

Math 411 Preliminaries

Math 411 Preliminaries Math 411 Preliminaries Provide a list of preliminary vocabulary and concepts Preliminary Basic Netwon s method, Taylor series expansion (for single and multiple variables), Eigenvalue, Eigenvector, Vector

More information

Conjugate Gradient Method

Conjugate Gradient Method Conjugate Gradient Method Hung M Phan UMass Lowell April 13, 2017 Throughout, A R n n is symmetric and positive definite, and b R n 1 Steepest Descent Method We present the steepest descent method for

More information

Simple iteration procedure

Simple iteration procedure Simple iteration procedure Solve Known approximate solution Preconditionning: Jacobi Gauss-Seidel Lower triangle residue use of pre-conditionner correction residue use of pre-conditionner Convergence Spectral

More information

GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS

GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS Methods in Geochemistry and Geophysics, 36 GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS Michael S. ZHDANOV University of Utah Salt Lake City UTAH, U.S.A. 2OO2 ELSEVIER Amsterdam - Boston - London

More information

M.A. Botchev. September 5, 2014

M.A. Botchev. September 5, 2014 Rome-Moscow school of Matrix Methods and Applied Linear Algebra 2014 A short introduction to Krylov subspaces for linear systems, matrix functions and inexact Newton methods. Plan and exercises. M.A. Botchev

More information

Lecture 22. r i+1 = b Ax i+1 = b A(x i + α i r i ) =(b Ax i ) α i Ar i = r i α i Ar i

Lecture 22. r i+1 = b Ax i+1 = b A(x i + α i r i ) =(b Ax i ) α i Ar i = r i α i Ar i 8.409 An Algorithmist s oolkit December, 009 Lecturer: Jonathan Kelner Lecture Last time Last time, we reduced solving sparse systems of linear equations Ax = b where A is symmetric and positive definite

More information

APPLIED NUMERICAL LINEAR ALGEBRA

APPLIED NUMERICAL LINEAR ALGEBRA APPLIED NUMERICAL LINEAR ALGEBRA James W. Demmel University of California Berkeley, California Society for Industrial and Applied Mathematics Philadelphia Contents Preface 1 Introduction 1 1.1 Basic Notation

More information

Conjugate gradient method. Descent method. Conjugate search direction. Conjugate Gradient Algorithm (294)

Conjugate gradient method. Descent method. Conjugate search direction. Conjugate Gradient Algorithm (294) Conjugate gradient method Descent method Hestenes, Stiefel 1952 For A N N SPD In exact arithmetic, solves in N steps In real arithmetic No guaranteed stopping Often converges in many fewer than N steps

More information

Solving Sparse Linear Systems: Iterative methods

Solving Sparse Linear Systems: Iterative methods Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccs Lecture Notes for Unit VII Sparse Matrix Computations Part 2: Iterative Methods Dianne P. O Leary c 2008,2010

More information

Solving Sparse Linear Systems: Iterative methods

Solving Sparse Linear Systems: Iterative methods Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit VII Sparse Matrix Computations Part 2: Iterative Methods Dianne P. O Leary

More information

Lecture 17: Iterative Methods and Sparse Linear Algebra

Lecture 17: Iterative Methods and Sparse Linear Algebra Lecture 17: Iterative Methods and Sparse Linear Algebra David Bindel 25 Mar 2014 Logistics HW 3 extended to Wednesday after break HW 4 should come out Monday after break Still need project description

More information

Scientific Computing II

Scientific Computing II Technische Universität München ST 008 Institut für Informatik Dr. Miriam Mehl Scientific Computing II Final Exam, July, 008 Iterative Solvers (3 pts + 4 extra pts, 60 min) a) Steepest Descent and Conjugate

More information

Adaptive algebraic multigrid methods in lattice computations

Adaptive algebraic multigrid methods in lattice computations Adaptive algebraic multigrid methods in lattice computations Karsten Kahl Bergische Universität Wuppertal January 8, 2009 Acknowledgements Matthias Bolten, University of Wuppertal Achi Brandt, Weizmann

More information

Adaptive Beamforming Algorithms

Adaptive Beamforming Algorithms S. R. Zinka srinivasa_zinka@daiict.ac.in October 29, 2014 Outline 1 Least Mean Squares 2 Sample Matrix Inversion 3 Recursive Least Squares 4 Accelerated Gradient Approach 5 Conjugate Gradient Method Outline

More information

High Performance Nonlinear Solvers

High Performance Nonlinear Solvers What is a nonlinear system? High Performance Nonlinear Solvers Michael McCourt Division Argonne National Laboratory IIT Meshfree Seminar September 19, 2011 Every nonlinear system of equations can be described

More information

Conjugate Gradients I: Setup

Conjugate Gradients I: Setup Conjugate Gradients I: Setup CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Conjugate Gradients I: Setup 1 / 22 Time for Gaussian Elimination

More information

Math 5630: Conjugate Gradient Method Hung M. Phan, UMass Lowell March 29, 2019

Math 5630: Conjugate Gradient Method Hung M. Phan, UMass Lowell March 29, 2019 Math 563: Conjugate Gradient Method Hung M. Phan, UMass Lowell March 29, 219 hroughout, A R n n is symmetric and positive definite, and b R n. 1 Steepest Descent Method We present the steepest descent

More information

Schwarz-type methods and their application in geomechanics

Schwarz-type methods and their application in geomechanics Schwarz-type methods and their application in geomechanics R. Blaheta, O. Jakl, K. Krečmer, J. Starý Institute of Geonics AS CR, Ostrava, Czech Republic E-mail: stary@ugn.cas.cz PDEMAMIP, September 7-11,

More information

Topics. The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems

Topics. The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems Topics The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems What about non-spd systems? Methods requiring small history Methods requiring large history Summary of solvers 1 / 52 Conjugate

More information

Iterative Methods for Sparse Linear Systems

Iterative Methods for Sparse Linear Systems Iterative Methods for Sparse Linear Systems Luca Bergamaschi e-mail: berga@dmsa.unipd.it - http://www.dmsa.unipd.it/ berga Department of Mathematical Methods and Models for Scientific Applications University

More information

the method of steepest descent

the method of steepest descent MATH 3511 Spring 2018 the method of steepest descent http://www.phys.uconn.edu/ rozman/courses/m3511_18s/ Last modified: February 6, 2018 Abstract The Steepest Descent is an iterative method for solving

More information

Multigrid and Domain Decomposition Methods for Electrostatics Problems

Multigrid and Domain Decomposition Methods for Electrostatics Problems Multigrid and Domain Decomposition Methods for Electrostatics Problems Michael Holst and Faisal Saied Abstract. We consider multigrid and domain decomposition methods for the numerical solution of electrostatics

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

6. Iterative Methods for Linear Systems. The stepwise approach to the solution...

6. Iterative Methods for Linear Systems. The stepwise approach to the solution... 6 Iterative Methods for Linear Systems The stepwise approach to the solution Miriam Mehl: 6 Iterative Methods for Linear Systems The stepwise approach to the solution, January 18, 2013 1 61 Large Sparse

More information

The Conjugate Gradient Method for Solving Linear Systems of Equations

The Conjugate Gradient Method for Solving Linear Systems of Equations The Conjugate Gradient Method for Solving Linear Systems of Equations Mike Rambo Mentor: Hans de Moor May 2016 Department of Mathematics, Saint Mary s College of California Contents 1 Introduction 2 2

More information

A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS

A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS MICHAEL HOLST AND FAISAL SAIED Abstract. We consider multigrid and domain decomposition methods for the numerical

More information

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A.

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A. AMSC/CMSC 661 Scientific Computing II Spring 2005 Solution of Sparse Linear Systems Part 2: Iterative methods Dianne P. O Leary c 2005 Solving Sparse Linear Systems: Iterative methods The plan: Iterative

More information

4.6 Iterative Solvers for Linear Systems

4.6 Iterative Solvers for Linear Systems 4.6 Iterative Solvers for Linear Systems Why use iterative methods? Virtually all direct methods for solving Ax = b require O(n 3 ) floating point operations. In practical applications the matrix A often

More information

Linear Algebra II. 7 Inner product spaces. Notes 7 16th December Inner products and orthonormal bases

Linear Algebra II. 7 Inner product spaces. Notes 7 16th December Inner products and orthonormal bases MTH6140 Linear Algebra II Notes 7 16th December 2010 7 Inner product spaces Ordinary Euclidean space is a 3-dimensional vector space over R, but it is more than that: the extra geometric structure (lengths,

More information

A Novel Aggregation Method based on Graph Matching for Algebraic MultiGrid Preconditioning of Sparse Linear Systems

A Novel Aggregation Method based on Graph Matching for Algebraic MultiGrid Preconditioning of Sparse Linear Systems A Novel Aggregation Method based on Graph Matching for Algebraic MultiGrid Preconditioning of Sparse Linear Systems Pasqua D Ambra, Alfredo Buttari, Daniela Di Serafino, Salvatore Filippone, Simone Gentile,

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

Geometric Modeling Summer Semester 2012 Linear Algebra & Function Spaces

Geometric Modeling Summer Semester 2012 Linear Algebra & Function Spaces Geometric Modeling Summer Semester 2012 Linear Algebra & Function Spaces (Recap) Announcement Room change: On Thursday, April 26th, room 024 is occupied. The lecture will be moved to room 021, E1 4 (the

More information

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 1 SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 2 OUTLINE Sparse matrix storage format Basic factorization

More information

On nonlinear adaptivity with heterogeneity

On nonlinear adaptivity with heterogeneity On nonlinear adaptivity with heterogeneity Jed Brown jed@jedbrown.org (CU Boulder) Collaborators: Mark Adams (LBL), Matt Knepley (UChicago), Dave May (ETH), Laetitia Le Pourhiet (UPMC), Ravi Samtaney (KAUST)

More information

STEEPEST DESCENT AND CONJUGATE GRADIENT METHODS WITH VARIABLE PRECONDITIONING

STEEPEST DESCENT AND CONJUGATE GRADIENT METHODS WITH VARIABLE PRECONDITIONING SIAM J. MATRIX ANAL. APPL. Vol.?, No.?, pp.?? c 2007 Society for Industrial and Applied Mathematics STEEPEST DESCENT AND CONJUGATE GRADIENT METHODS WITH VARIABLE PRECONDITIONING ANDREW V. KNYAZEV AND ILYA

More information

Preconditioning Techniques Analysis for CG Method

Preconditioning Techniques Analysis for CG Method Preconditioning Techniques Analysis for CG Method Huaguang Song Department of Computer Science University of California, Davis hso@ucdavis.edu Abstract Matrix computation issue for solve linear system

More information

Comparison of the deflated preconditioned conjugate gradient method and algebraic multigrid for composite materials

Comparison of the deflated preconditioned conjugate gradient method and algebraic multigrid for composite materials Comput Mech (2012) 50:321 333 DOI 10.1007/s00466-011-0661-y ORIGINAL PAPER Comparison of the deflated preconditioned conjugate gradient method and algebraic multigrid for composite materials T. B. Jönsthövel

More information

A Comparison of Adaptive Algebraic Multigrid and Lüscher s Inexact Deflation

A Comparison of Adaptive Algebraic Multigrid and Lüscher s Inexact Deflation A Comparison of Adaptive Algebraic Multigrid and Lüscher s Inexact Deflation Andreas Frommer, Karsten Kahl, Stefan Krieg, Björn Leder and Matthias Rottmann Bergische Universität Wuppertal April 11, 2013

More information

Parallel sparse linear solvers and applications in CFD

Parallel sparse linear solvers and applications in CFD Parallel sparse linear solvers and applications in CFD Jocelyne Erhel Joint work with Désiré Nuentsa Wakam () and Baptiste Poirriez () SAGE team, Inria Rennes, France journée Calcul Intensif Distribué

More information

Multigrid and Multilevel Preconditioners for Computational Photography

Multigrid and Multilevel Preconditioners for Computational Photography Multigrid and Multilevel Preconditioners for Computational Photography Dilip Krishnan Department of Computer Science New York University dilip@cs.nyu.edu Richard Szeliski Interactive Visual Media Group

More information

FEM and sparse linear system solving

FEM and sparse linear system solving FEM & sparse linear system solving, Lecture 9, Nov 19, 2017 1/36 Lecture 9, Nov 17, 2017: Krylov space methods http://people.inf.ethz.ch/arbenz/fem17 Peter Arbenz Computer Science Department, ETH Zürich

More information

AMSC 600 /CMSC 760 Advanced Linear Numerical Analysis Fall 2007 Krylov Minimization and Projection (KMP) Dianne P. O Leary c 2006, 2007.

AMSC 600 /CMSC 760 Advanced Linear Numerical Analysis Fall 2007 Krylov Minimization and Projection (KMP) Dianne P. O Leary c 2006, 2007. AMSC 600 /CMSC 760 Advanced Linear Numerical Analysis Fall 2007 Krylov Minimization and Projection (KMP) Dianne P. O Leary c 2006, 2007 This unit: So far: A survey of iterative methods for solving linear

More information

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES 48 Arnoldi Iteration, Krylov Subspaces and GMRES We start with the problem of using a similarity transformation to convert an n n matrix A to upper Hessenberg form H, ie, A = QHQ, (30) with an appropriate

More information

Linear and Non-Linear Preconditioning

Linear and Non-Linear Preconditioning and Non- martin.gander@unige.ch University of Geneva June 2015 Invents an Iterative Method in a Letter (1823), in a letter to Gerling: in order to compute a least squares solution based on angle measurements

More information