Lecture Approximate Potentials from Approximate Flow

Size: px
Start display at page:

Download "Lecture Approximate Potentials from Approximate Flow"

Transcription

1 ORIE 6334 Spectral Graph Theory October 20, 2016 Lecturer: David P. Williamson Lecture 17 Scribe: Yingjie Bi 1 Approximate Potentials from Approximate Flow In the last lecture, we presented a combinatorial algorithm to find potentials p that solve the Laplacian system L G p = b. The electrical flow f minimizes the energy Ef = f 2 i, jri, j. {i,j} E We showed that in each iteration the expected decrease in energy for the maintained flow f k is E[Ef k Ef k+1 ] = 1 τ E[gapf k, p k ] 1 τ E[Ef k Ef ], 1 where τ is the tree condition number, p k is the tree-defined potentials for f k, and The above inequality 1 implies gapf, p = Ef 2b T p p T L G p. E[Ef k+1 Ef ] We also showed that the initial flow f 0 satisfies 1 1 E[Ef k Ef ]. τ Ef 0 Ef st T G 1Ef. Therefore, after k = τ lnst T Gτ/ iterations, E[Ef k Ef ] 1 1 k st T G 1Ef τ e lnst T Gτ/ st T G 1Ef τ Ef, where the inequality 1 x e x is used in the second step. In the following, we will see how to bound the error between the obtained approximate potentials p k and the desired potentials p = L + Gb based on the above bound on energy. Denote x L = x T L G x. We want to show that p k p L p L, 0 This lecture is based in part on the paper by Kelner, Orecchia, Sidford, and Zhu from 2013, and in part by a survey of Arora, Hazan, and Kale 2012 http: //theoryofcomputing.org/articles/v008a006/v008a006.pdf. 17-1

2 so that the potentials p k are close to p under x L. Note that p 2 L = pt L G p = Ef, so we are trying to show that p k is within of the energy of the optimal electrical flow f. We have that Observe that 1 also implies Hence p k p 2 L = p k L + G b 2 L = p k L + G bt L G p k L + G b = p T k L Gp k 2p T k L GL + G b + pt L G p = 2p T k b pt k L Gp k + Ef = gapf, p k. E[gapf k, p k ] = τe[ef k Ef k+1 ] τe[ef k Ef ]. E[ p k p 2 L ] = E[gapf, p k ] = E[gapf k, p k ] E[Ef k Ef ] τ 1E[Ef k Ef ] Ef = p T L G p = p 2 L, and E[ p k p L ] p L. There are some research questions related to the above algorithm: Can this algorithm be made deterministic without changing the running time? Can we find a nearly-linear-time Laplacian solver without using low-stretch trees? The paper proposing the above algorithm claimed that the low-stretch tree can be replaced by the Bartal tree, but it did not spell out the details. 2 The Multiplicative Weights Update Algorithm In this section, we will introduce a very useful algorithm that has been repeatedly discovered by different people in many fields. At first glance, this algorithm seems have no relationship with the main subject of our course. However, in the future lecture, we will demonstrate a fast algorithm for maximum flows combining electrical flows and the idea here. Assume at each time step, there are N choices for a decision to be made. At time t, we will gain an unknown value v t i [0, 1] for making decision i, and the values of all decisions will be revealed after the decision is made. Surprisingly, there is a simple strategy which guarantees to do as well as the best fixed decision over the time. In the multiplicative weights update algorithm Algorithm 1, a weight is maintained for each decision i. If we let w t i be weight for decision i at start of time step t and W t = w t i, then decision i is chosen with probability proportional to w t i, so the probability we make decision i at time t is p t i = w t i/w t. After making the decision, the weights will be updated so as to be larger for decisions that get larger values. When the algorithm terminates, 17-2

3 the expected value gained by the algorithm is p t iv t i. Algorithm 1: Multiplicative Weights w 1 i 1, i = 1,..., N for t 1 to T do Pick i with probability p t i, get value v t i w t+1 i 1 + v t iw t i, i = 1,..., N end Theorem 1 Assume 1/2, then for any j, p t iv t i 1 v t j 1 ln N. Proof: The proof idea is to find both the upper and lower bound on W T +1. Note that W t+1 = w t+1 i = w t i1 + v t i N = W t + W t p t iv t i = W t 1 + p t iv t i W t exp p t iv t i. Therefore, W T +1 W 1 exp p t iv t i = N exp p t iv t i. On the other hand, for any given j, W T +1 w T +1 j = T 1 + v t j 1 + T using the result 1 + x 1 + x for x [0, 1]. vtj, 17-3

4 Combining the above two inequalities, we get 1 + T vtj N exp p t iv t i. Taking the logarithm of each side, which implies ln1 + v t j ln N + p t iv t i, p t iv t i ln1 + v t j 1 T ln N 1 v t j 1 ln N. Here in the last step we are using the inequality ln1 + x x x 2 for x 1/2. For the case where each decision i is associated with a cost c t i [ 1, 1] instead of value v t i, Algorithm 1 can be modified accordingly to guarantee the expected cost p t ic t i c t j + c t j + 1 ln N for each j. For a good overview of multiplicative weights method, see the survey written by Arora, Hazan and Kale. 3 Multiplicative Weights for Packing Problems In this section, we apply the multiplicative weights method to find feasible solutions to the system: Ax e, x Q. 2 Here A R m n, e R m is the vector of all ones, and Q R n is a convex set. Assume Ax 0 for each x Q. We also assume that it is easy to optimize over Q, i.e., we have an oracle which can find x Q such that p T Ax p T e if such an x exists given any nonnegative vector p R m. If no such x Q exists, then we can conclude that the system 2 is infeasible. Since p T Ax is a linear function in x, we have an oracle as long as we can optimize linear functions over Q. The goal is to find approximate solution x Q to 2 such that Ax 1 + x, which can be solved by Algorithm 2 based on the multiplicative weights method. For convenience, define the width ρ of the oracle to be ρ = max,...,m max Axi. x Q returned by oracle The idea in Algorithm 2 is to run multiplicative weights algorithm in which each decision corresponds to a row of A and its value is Ax t i/ρ, where x t is a vector returned by the oracle. 17-4

5 Algorithm 2: Finding Feasible Solution to 2 w 1 i 1, i = 1,..., m for t 1 to T do W t m w ti, p t i w t i/w t Run oracle to find x t Q such that p T t Ax t p T t e v t i Ax t i/ρ observe the value is in [0, 1] by the definition of width ρ w t+1 i 1 + v t iw t i, i = 1,..., m end return x = T x t/t The running time is OT m time plus OT oracle calls and additional matrix-vector multiplications. The intuition in Algorithm 2 is to increase the weights most on the most violated inequalities, so in later iterations the oracle will work harder to find x t satisfying these constraints. The returned value x is always in Q by the convexity of Q. What remains to do is to bound A x. Observe that By Theorem 1, for any j, m p t iv t i = 1 ρ pt t Ax t 1 ρ pt t e = 1 ρ. T T ρ = 1 p t iv t i 1 v t j 1 ln m 1 ρ Ax tj 1 ln m = 1 T ρ A xj 1 ln m. Hence Set T = ρ ln m/ 2, 1 T ρ A xj T ρ + 1 ln m. A xj ρ ln m = T for 1/3, which gives A x 1 + 4e. The running time is mρ ρ O 2 ln m + O 2 ln m oracle calls. 17-5

ORIE 6334 Spectral Graph Theory October 25, Lecture 18

ORIE 6334 Spectral Graph Theory October 25, Lecture 18 ORIE 6334 Spectral Graph Theory October 25, 2016 Lecturer: David P Williamson Lecture 18 Scribe: Venus Lo 1 Max Flow in Undirected Graphs 11 Max flow We start by reviewing the maximum flow problem We are

More information

ORIE 6334 Spectral Graph Theory November 22, Lecture 25

ORIE 6334 Spectral Graph Theory November 22, Lecture 25 ORIE 64 Spectral Graph Theory November 22, 206 Lecture 25 Lecturer: David P. Williamson Scribe: Pu Yang In the remaining three lectures, we will cover a prominent result by Arora, Rao, and Vazirani for

More information

Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm. Lecturer: Sanjeev Arora

Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm. Lecturer: Sanjeev Arora princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm Lecturer: Sanjeev Arora Scribe: (Today s notes below are

More information

Lecture notes for quantum semidefinite programming (SDP) solvers

Lecture notes for quantum semidefinite programming (SDP) solvers CMSC 657, Intro to Quantum Information Processing Lecture on November 15 and 0, 018 Fall 018, University of Maryland Prepared by Tongyang Li, Xiaodi Wu Lecture notes for quantum semidefinite programming

More information

7. Lecture notes on the ellipsoid algorithm

7. Lecture notes on the ellipsoid algorithm Massachusetts Institute of Technology Michel X. Goemans 18.433: Combinatorial Optimization 7. Lecture notes on the ellipsoid algorithm The simplex algorithm was the first algorithm proposed for linear

More information

ORIE 6334 Spectral Graph Theory December 1, Lecture 27 Remix

ORIE 6334 Spectral Graph Theory December 1, Lecture 27 Remix ORIE 6334 Spectral Graph Theory December, 06 Lecturer: David P. Williamson Lecture 7 Remix Scribe: Qinru Shi Note: This is an altered version of the lecture I actually gave, which followed the structure

More information

Lecture notes on the ellipsoid algorithm

Lecture notes on the ellipsoid algorithm Massachusetts Institute of Technology Handout 1 18.433: Combinatorial Optimization May 14th, 007 Michel X. Goemans Lecture notes on the ellipsoid algorithm The simplex algorithm was the first algorithm

More information

ORIE 6334 Spectral Graph Theory October 13, Lecture 15

ORIE 6334 Spectral Graph Theory October 13, Lecture 15 ORIE 6334 Spectral Graph heory October 3, 206 Lecture 5 Lecturer: David P. Williamson Scribe: Shijin Rajakrishnan Iterative Methods We have seen in the previous lectures that given an electrical network,

More information

0.1 Motivating example: weighted majority algorithm

0.1 Motivating example: weighted majority algorithm princeton univ. F 16 cos 521: Advanced Algorithm Design Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm Lecturer: Sanjeev Arora Scribe: Sanjeev Arora (Today s notes

More information

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016 AM 1: Advanced Optimization Spring 016 Prof. Yaron Singer Lecture 11 March 3rd 1 Overview In this lecture we will introduce the notion of online convex optimization. This is an extremely useful framework

More information

Lecture 7. 1 Normalized Adjacency and Laplacian Matrices

Lecture 7. 1 Normalized Adjacency and Laplacian Matrices ORIE 6334 Spectral Graph Theory September 3, 206 Lecturer: David P. Williamson Lecture 7 Scribe: Sam Gutekunst In this lecture, we introduce normalized adjacency and Laplacian matrices. We state and begin

More information

Lecture #21. c T x Ax b. maximize subject to

Lecture #21. c T x Ax b. maximize subject to COMPSCI 330: Design and Analysis of Algorithms 11/11/2014 Lecture #21 Lecturer: Debmalya Panigrahi Scribe: Samuel Haney 1 Overview In this lecture, we discuss linear programming. We first show that the

More information

Lecture 10: October 27, 2016

Lecture 10: October 27, 2016 Mathematical Toolkit Autumn 206 Lecturer: Madhur Tulsiani Lecture 0: October 27, 206 The conjugate gradient method In the last lecture we saw the steepest descent or gradient descent method for finding

More information

15-780: LinearProgramming

15-780: LinearProgramming 15-780: LinearProgramming J. Zico Kolter February 1-3, 2016 1 Outline Introduction Some linear algebra review Linear programming Simplex algorithm Duality and dual simplex 2 Outline Introduction Some linear

More information

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 8 Dr. Ted Ralphs ISE 418 Lecture 8 1 Reading for This Lecture Wolsey Chapter 2 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Duality for Mixed-Integer

More information

Lecture 3. 1 Polynomial-time algorithms for the maximum flow problem

Lecture 3. 1 Polynomial-time algorithms for the maximum flow problem ORIE 633 Network Flows August 30, 2007 Lecturer: David P. Williamson Lecture 3 Scribe: Gema Plaza-Martínez 1 Polynomial-time algorithms for the maximum flow problem 1.1 Introduction Let s turn now to considering

More information

Introduction to Integer Linear Programming

Introduction to Integer Linear Programming Lecture 7/12/2006 p. 1/30 Introduction to Integer Linear Programming Leo Liberti, Ruslan Sadykov LIX, École Polytechnique liberti@lix.polytechnique.fr sadykov@lix.polytechnique.fr Lecture 7/12/2006 p.

More information

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

1 Regression with High Dimensional Data

1 Regression with High Dimensional Data 6.883 Learning with Combinatorial Structure ote for Lecture 11 Instructor: Prof. Stefanie Jegelka Scribe: Xuhong Zhang 1 Regression with High Dimensional Data Consider the following regression problem:

More information

CS261: A Second Course in Algorithms Lecture #12: Applications of Multiplicative Weights to Games and Linear Programs

CS261: A Second Course in Algorithms Lecture #12: Applications of Multiplicative Weights to Games and Linear Programs CS26: A Second Course in Algorithms Lecture #2: Applications of Multiplicative Weights to Games and Linear Programs Tim Roughgarden February, 206 Extensions of the Multiplicative Weights Guarantee Last

More information

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018 Section Notes 9 Midterm 2 Review Applied Math / Engineering Sciences 121 Week of December 3, 2018 The following list of topics is an overview of the material that was covered in the lectures and sections

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture 24 Scribe: Sachin Ravi May 2, 2013

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture 24 Scribe: Sachin Ravi May 2, 2013 COS 5: heoretical Machine Learning Lecturer: Rob Schapire Lecture 24 Scribe: Sachin Ravi May 2, 203 Review of Zero-Sum Games At the end of last lecture, we discussed a model for two player games (call

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016 U.C. Berkeley CS294: Spectral Methods and Expanders Handout Luca Trevisan February 29, 206 Lecture : ARV In which we introduce semi-definite programming and a semi-definite programming relaxation of sparsest

More information

Notes taken by Graham Taylor. January 22, 2005

Notes taken by Graham Taylor. January 22, 2005 CSC4 - Linear Programming and Combinatorial Optimization Lecture : Different forms of LP. The algebraic objects behind LP. Basic Feasible Solutions Notes taken by Graham Taylor January, 5 Summary: We first

More information

Lecture 15: October 15

Lecture 15: October 15 10-725: Optimization Fall 2012 Lecturer: Barnabas Poczos Lecture 15: October 15 Scribes: Christian Kroer, Fanyi Xiao Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

Advanced Mathematical Programming IE417. Lecture 24. Dr. Ted Ralphs

Advanced Mathematical Programming IE417. Lecture 24. Dr. Ted Ralphs Advanced Mathematical Programming IE417 Lecture 24 Dr. Ted Ralphs IE417 Lecture 24 1 Reading for This Lecture Sections 11.2-11.2 IE417 Lecture 24 2 The Linear Complementarity Problem Given M R p p and

More information

Efficient Primal- Dual Graph Algorithms for Map Reduce

Efficient Primal- Dual Graph Algorithms for Map Reduce Efficient Primal- Dual Graph Algorithms for Map Reduce Joint work with Bahman Bahmani Ashish Goel, Stanford Kamesh Munagala Duke University Modern Data Models Over the past decade, many commodity distributed

More information

MS&E338 Reinforcement Learning Lecture 1 - April 2, Introduction

MS&E338 Reinforcement Learning Lecture 1 - April 2, Introduction MS&E338 Reinforcement Learning Lecture 1 - April 2, 2018 Introduction Lecturer: Ben Van Roy Scribe: Gabriel Maher 1 Reinforcement Learning Introduction In reinforcement learning (RL) we consider an agent

More information

Lecture Simplex Issues: Number of Pivots. ORIE 6300 Mathematical Programming I October 9, 2014

Lecture Simplex Issues: Number of Pivots. ORIE 6300 Mathematical Programming I October 9, 2014 ORIE 6300 Mathematical Programming I October 9, 2014 Lecturer: David P. Williamson Lecture 14 Scribe: Calvin Wylie 1 Simplex Issues: Number of Pivots Question: How many pivots does the simplex algorithm

More information

Lecture 24: August 28

Lecture 24: August 28 10-725: Optimization Fall 2012 Lecture 24: August 28 Lecturer: Geoff Gordon/Ryan Tibshirani Scribes: Jiaji Zhou,Tinghui Zhou,Kawa Cheung Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Topics in Theoretical Computer Science: An Algorithmist's Toolkit Fall 2007

Topics in Theoretical Computer Science: An Algorithmist's Toolkit Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.409 Topics in Theoretical Computer Science: An Algorithmist's Toolkit Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

The simplex algorithm

The simplex algorithm The simplex algorithm The simplex algorithm is the classical method for solving linear programs. Its running time is not polynomial in the worst case. It does yield insight into linear programs, however,

More information

The Simplex Algorithm

The Simplex Algorithm 8.433 Combinatorial Optimization The Simplex Algorithm October 6, 8 Lecturer: Santosh Vempala We proved the following: Lemma (Farkas). Let A R m n, b R m. Exactly one of the following conditions is true:.

More information

Lecture 13: Spectral Graph Theory

Lecture 13: Spectral Graph Theory CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 13: Spectral Graph Theory Lecturer: Shayan Oveis Gharan 11/14/18 Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

Algorithms: COMP3121/3821/9101/9801

Algorithms: COMP3121/3821/9101/9801 NEW SOUTH WALES Algorithms: COMP3121/3821/9101/9801 Aleks Ignjatović School of Computer Science and Engineering University of New South Wales LECTURE 9: INTRACTABILITY COMP3121/3821/9101/9801 1 / 29 Feasibility

More information

Introduction to Integer Programming

Introduction to Integer Programming Lecture 3/3/2006 p. /27 Introduction to Integer Programming Leo Liberti LIX, École Polytechnique liberti@lix.polytechnique.fr Lecture 3/3/2006 p. 2/27 Contents IP formulations and examples Total unimodularity

More information

ORIE 6334 Spectral Graph Theory November 8, Lecture 22

ORIE 6334 Spectral Graph Theory November 8, Lecture 22 ORIE 6334 Spectral Graph Theory November 8, 206 Lecture 22 Lecturer: David P. Williamson Scribe: Shijin Rajakrishnan Recap In the previous lectures, we explored the problem of finding spectral sparsifiers

More information

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010 Section Notes 9 IP: Cutting Planes Applied Math 121 Week of April 12, 2010 Goals for the week understand what a strong formulations is. be familiar with the cutting planes algorithm and the types of cuts

More information

16.1 Min-Cut as an LP

16.1 Min-Cut as an LP 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: LPs as Metrics: Min Cut and Multiway Cut Date: 4//5 Scribe: Gabriel Kaptchuk 6. Min-Cut as an LP We recall the basic definition

More information

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory Instructor: Shengyu Zhang 1 LP Motivating examples Introduction to algorithms Simplex algorithm On a particular example General algorithm Duality An application to game theory 2 Example 1: profit maximization

More information

A Quantum Interior Point Method for LPs and SDPs

A Quantum Interior Point Method for LPs and SDPs A Quantum Interior Point Method for LPs and SDPs Iordanis Kerenidis 1 Anupam Prakash 1 1 CNRS, IRIF, Université Paris Diderot, Paris, France. September 26, 2018 Semi Definite Programs A Semidefinite Program

More information

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization Convex Optimization Ofer Meshi Lecture 6: Lower Bounds Constrained Optimization Lower Bounds Some upper bounds: #iter μ 2 M #iter 2 M #iter L L μ 2 Oracle/ops GD κ log 1/ε M x # ε L # x # L # ε # με f

More information

Data Structures in Java

Data Structures in Java Data Structures in Java Lecture 21: Introduction to NP-Completeness 12/9/2015 Daniel Bauer Algorithms and Problem Solving Purpose of algorithms: find solutions to problems. Data Structures provide ways

More information

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 12 Dr. Ted Ralphs ISE 418 Lecture 12 1 Reading for This Lecture Nemhauser and Wolsey Sections II.2.1 Wolsey Chapter 9 ISE 418 Lecture 12 2 Generating Stronger Valid

More information

Decision Procedures An Algorithmic Point of View

Decision Procedures An Algorithmic Point of View An Algorithmic Point of View ILP References: Integer Programming / Laurence Wolsey Deciding ILPs with Branch & Bound Intro. To mathematical programming / Hillier, Lieberman Daniel Kroening and Ofer Strichman

More information

CSC Linear Programming and Combinatorial Optimization Lecture 8: Ellipsoid Algorithm

CSC Linear Programming and Combinatorial Optimization Lecture 8: Ellipsoid Algorithm CSC2411 - Linear Programming and Combinatorial Optimization Lecture 8: Ellipsoid Algorithm Notes taken by Shizhong Li March 15, 2005 Summary: In the spring of 1979, the Soviet mathematician L.G.Khachian

More information

Ann-Brith Strömberg. Lecture 4 Linear and Integer Optimization with Applications 1/10

Ann-Brith Strömberg. Lecture 4 Linear and Integer Optimization with Applications 1/10 MVE165/MMG631 Linear and Integer Optimization with Applications Lecture 4 Linear programming: degeneracy; unbounded solution; infeasibility; starting solutions Ann-Brith Strömberg 2017 03 28 Lecture 4

More information

Today s class. Constrained optimization Linear programming. Prof. Jinbo Bi CSE, UConn. Numerical Methods, Fall 2011 Lecture 12

Today s class. Constrained optimization Linear programming. Prof. Jinbo Bi CSE, UConn. Numerical Methods, Fall 2011 Lecture 12 Today s class Constrained optimization Linear programming 1 Midterm Exam 1 Count: 26 Average: 73.2 Median: 72.5 Maximum: 100.0 Minimum: 45.0 Standard Deviation: 17.13 Numerical Methods Fall 2011 2 Optimization

More information

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs Computational Integer Programming Lecture 2: Modeling and Formulation Dr. Ted Ralphs Computational MILP Lecture 2 1 Reading for This Lecture N&W Sections I.1.1-I.1.6 Wolsey Chapter 1 CCZ Chapter 2 Computational

More information

Linear Programming Duality

Linear Programming Duality Summer 2011 Optimization I Lecture 8 1 Duality recap Linear Programming Duality We motivated the dual of a linear program by thinking about the best possible lower bound on the optimal value we can achieve

More information

A An Overview of Complexity Theory for the Algorithm Designer

A An Overview of Complexity Theory for the Algorithm Designer A An Overview of Complexity Theory for the Algorithm Designer A.1 Certificates and the class NP A decision problem is one whose answer is either yes or no. Two examples are: SAT: Given a Boolean formula

More information

A strongly polynomial algorithm for linear systems having a binary solution

A strongly polynomial algorithm for linear systems having a binary solution A strongly polynomial algorithm for linear systems having a binary solution Sergei Chubanov Institute of Information Systems at the University of Siegen, Germany e-mail: sergei.chubanov@uni-siegen.de 7th

More information

IE 400: Principles of Engineering Management. Simplex Method Continued

IE 400: Principles of Engineering Management. Simplex Method Continued IE 400: Principles of Engineering Management Simplex Method Continued 1 Agenda Simplex for min problems Alternative optimal solutions Unboundedness Degeneracy Big M method Two phase method 2 Simplex for

More information

Designing Competitive Online Algorithms via a Primal-Dual Approach. Niv Buchbinder

Designing Competitive Online Algorithms via a Primal-Dual Approach. Niv Buchbinder Designing Competitive Online Algorithms via a Primal-Dual Approach Niv Buchbinder Designing Competitive Online Algorithms via a Primal-Dual Approach Research Thesis Submitted in Partial Fulfillment of

More information

Lecture 18 Oct. 30, 2014

Lecture 18 Oct. 30, 2014 CS 224: Advanced Algorithms Fall 214 Lecture 18 Oct. 3, 214 Prof. Jelani Nelson Scribe: Xiaoyu He 1 Overview In this lecture we will describe a path-following implementation of the Interior Point Method

More information

Operations Research Lecture 6: Integer Programming

Operations Research Lecture 6: Integer Programming Operations Research Lecture 6: Integer Programming Notes taken by Kaiquan Xu@Business School, Nanjing University May 12th 2016 1 Integer programming (IP) formulations The integer programming (IP) is the

More information

Santa Claus Schedules Jobs on Unrelated Machines

Santa Claus Schedules Jobs on Unrelated Machines Santa Claus Schedules Jobs on Unrelated Machines Ola Svensson (osven@kth.se) Royal Institute of Technology - KTH Stockholm, Sweden March 22, 2011 arxiv:1011.1168v2 [cs.ds] 21 Mar 2011 Abstract One of the

More information

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 17: Duality and MinMax Theorem Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 17: Duality and MinMax Theorem Lecturer: Sanjeev Arora princeton univ F 13 cos 521: Advanced Algorithm Design Lecture 17: Duality and MinMax Theorem Lecturer: Sanjeev Arora Scribe: Today we first see LP duality, which will then be explored a bit more in the

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Game Theory. Greg Plaxton Theory in Programming Practice, Spring 2004 Department of Computer Science University of Texas at Austin

Game Theory. Greg Plaxton Theory in Programming Practice, Spring 2004 Department of Computer Science University of Texas at Austin Game Theory Greg Plaxton Theory in Programming Practice, Spring 2004 Department of Computer Science University of Texas at Austin Bimatrix Games We are given two real m n matrices A = (a ij ), B = (b ij

More information

Lecture 7: Passive Learning

Lecture 7: Passive Learning CS 880: Advanced Complexity Theory 2/8/2008 Lecture 7: Passive Learning Instructor: Dieter van Melkebeek Scribe: Tom Watson In the previous lectures, we studied harmonic analysis as a tool for analyzing

More information

LINEAR PROGRAMMING I. a refreshing example standard form fundamental questions geometry linear algebra simplex algorithm

LINEAR PROGRAMMING I. a refreshing example standard form fundamental questions geometry linear algebra simplex algorithm Linear programming Linear programming. Optimize a linear function subject to linear inequalities. (P) max c j x j n j= n s. t. a ij x j = b i i m j= x j 0 j n (P) max c T x s. t. Ax = b Lecture slides

More information

An Empirical Comparison of Graph Laplacian Solvers

An Empirical Comparison of Graph Laplacian Solvers An Empirical Comparison of Graph Laplacian Solvers Kevin Deweese 1 Erik Boman 2 John Gilbert 1 1 Department of Computer Science University of California, Santa Barbara 2 Scalable Algorithms Department

More information

The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006

The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006 The Primal-Dual Algorithm P&S Chapter 5 Last Revised October 30, 2006 1 Simplex solves LP by starting at a Basic Feasible Solution (BFS) and moving from BFS to BFS, always improving the objective function,

More information

Math 5490 Network Flows

Math 5490 Network Flows Math 90 Network Flows Lecture 8: Flow Decomposition Algorithm Stephen Billups University of Colorado at Denver Math 90Network Flows p./6 Flow Decomposition Algorithms Two approaches to modeling network

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source

More information

Lecture slides by Kevin Wayne

Lecture slides by Kevin Wayne LINEAR PROGRAMMING I a refreshing example standard form fundamental questions geometry linear algebra simplex algorithm Lecture slides by Kevin Wayne Last updated on 7/25/17 11:09 AM Linear programming

More information

Online Learning with Experts & Multiplicative Weights Algorithms

Online Learning with Experts & Multiplicative Weights Algorithms Online Learning with Experts & Multiplicative Weights Algorithms CS 159 lecture #2 Stephan Zheng April 1, 2016 Caltech Table of contents 1. Online Learning with Experts With a perfect expert Without perfect

More information

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. If necessary,

More information

In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight.

In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight. In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight. In the multi-dimensional knapsack problem, additional

More information

CS 6820 Fall 2014 Lectures, October 3-20, 2014

CS 6820 Fall 2014 Lectures, October 3-20, 2014 Analysis of Algorithms Linear Programming Notes CS 6820 Fall 2014 Lectures, October 3-20, 2014 1 Linear programming The linear programming (LP) problem is the following optimization problem. We are given

More information

Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P

Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P Marc Uetz University of Twente m.uetz@utwente.nl Lecture 8: sheet 1 / 32 Marc Uetz Discrete Optimization Outline 1 Lagrangian

More information

CS6999 Probabilistic Methods in Integer Programming Randomized Rounding Andrew D. Smith April 2003

CS6999 Probabilistic Methods in Integer Programming Randomized Rounding Andrew D. Smith April 2003 CS6999 Probabilistic Methods in Integer Programming Randomized Rounding April 2003 Overview 2 Background Randomized Rounding Handling Feasibility Derandomization Advanced Techniques Integer Programming

More information

Simplex tableau CE 377K. April 2, 2015

Simplex tableau CE 377K. April 2, 2015 CE 377K April 2, 2015 Review Reduced costs Basic and nonbasic variables OUTLINE Review by example: simplex method demonstration Outline Example You own a small firm producing construction materials for

More information

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. Problem 1 Consider

More information

Duality. Peter Bro Mitersen (University of Aarhus) Optimization, Lecture 9 February 28, / 49

Duality. Peter Bro Mitersen (University of Aarhus) Optimization, Lecture 9 February 28, / 49 Duality Maximize c T x for x F = {x (R + ) n Ax b} If we guess x F, we can say that c T x is a lower bound for the optimal value without executing the simplex algorithm. Can we make similar easy guesses

More information

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12

Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Advanced Topics in Machine Learning and Algorithmic Game Theory Fall semester, 2011/12 Lecture 4: Multiarmed Bandit in the Adversarial Model Lecturer: Yishay Mansour Scribe: Shai Vardi 4.1 Lecture Overview

More information

Linear Programming, Lecture 4

Linear Programming, Lecture 4 Linear Programming, Lecture 4 Corbett Redden October 3, 2016 Simplex Form Conventions Examples Simplex Method To run the simplex method, we start from a Linear Program (LP) in the following standard simplex

More information

AM 121: Intro to Optimization! Models and Methods! Fall 2018!

AM 121: Intro to Optimization! Models and Methods! Fall 2018! AM 121: Intro to Optimization Models and Methods Fall 2018 Lecture 15: Cutting plane methods Yiling Chen SEAS Lesson Plan Cut generation and the separation problem Cutting plane methods Chvatal-Gomory

More information

Reducing contextual bandits to supervised learning

Reducing contextual bandits to supervised learning Reducing contextual bandits to supervised learning Daniel Hsu Columbia University Based on joint work with A. Agarwal, S. Kale, J. Langford, L. Li, and R. Schapire 1 Learning to interact: example #1 Practicing

More information

Lecture 2. 1 More N P-Compete Languages. Notes on Complexity Theory: Fall 2005 Last updated: September, Jonathan Katz

Lecture 2. 1 More N P-Compete Languages. Notes on Complexity Theory: Fall 2005 Last updated: September, Jonathan Katz Notes on Complexity Theory: Fall 2005 Last updated: September, 2005 Jonathan Katz Lecture 2 1 More N P-Compete Languages It will be nice to find more natural N P-complete languages. To that end, we ine

More information

Approximation Basics

Approximation Basics Approximation Basics, Concepts, and Examples Xiaofeng Gao Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China Fall 2012 Special thanks is given to Dr. Guoqiang Li for

More information

Discrete Optimization

Discrete Optimization Prof. Friedrich Eisenbrand Martin Niemeier Due Date: April 15, 2010 Discussions: March 25, April 01 Discrete Optimization Spring 2010 s 3 You can hand in written solutions for up to two of the exercises

More information

Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning

Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning David Steurer Cornell Approximation Algorithms and Hardness, Banff, August 2014 for many problems (e.g., all UG-hard ones): better guarantees

More information

TIM 206 Lecture 3: The Simplex Method

TIM 206 Lecture 3: The Simplex Method TIM 206 Lecture 3: The Simplex Method Kevin Ross. Scribe: Shane Brennan (2006) September 29, 2011 1 Basic Feasible Solutions Have equation Ax = b contain more columns (variables) than rows (constraints),

More information

Lecture 21 November 11, 2014

Lecture 21 November 11, 2014 CS 224: Advanced Algorithms Fall 2-14 Prof. Jelani Nelson Lecture 21 November 11, 2014 Scribe: Nithin Tumma 1 Overview In the previous lecture we finished covering the multiplicative weights method and

More information

ORF 522. Linear Programming and Convex Analysis

ORF 522. Linear Programming and Convex Analysis ORF 5 Linear Programming and Convex Analysis Initial solution and particular cases Marco Cuturi Princeton ORF-5 Reminder: Tableaux At each iteration, a tableau for an LP in standard form keeps track of....................

More information

A Robust Event-Triggered Consensus Strategy for Linear Multi-Agent Systems with Uncertain Network Topology

A Robust Event-Triggered Consensus Strategy for Linear Multi-Agent Systems with Uncertain Network Topology A Robust Event-Triggered Consensus Strategy for Linear Multi-Agent Systems with Uncertain Network Topology Amir Amini, Amir Asif, Arash Mohammadi Electrical and Computer Engineering,, Montreal, Canada.

More information

Lecture: Cone programming. Approximating the Lorentz cone.

Lecture: Cone programming. Approximating the Lorentz cone. Strong relaxations for discrete optimization problems 10/05/16 Lecture: Cone programming. Approximating the Lorentz cone. Lecturer: Yuri Faenza Scribes: Igor Malinović 1 Introduction Cone programming is

More information

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora Scribe: Today we continue the

More information

MTAT Complexity Theory October 20th-21st, Lecture 7

MTAT Complexity Theory October 20th-21st, Lecture 7 MTAT.07.004 Complexity Theory October 20th-21st, 2011 Lecturer: Peeter Laud Lecture 7 Scribe(s): Riivo Talviste Polynomial hierarchy 1 Turing reducibility From the algorithmics course, we know the notion

More information

ORIE 6334 Spectral Graph Theory September 8, Lecture 6. In order to do the first proof, we need to use the following fact.

ORIE 6334 Spectral Graph Theory September 8, Lecture 6. In order to do the first proof, we need to use the following fact. ORIE 6334 Spectral Graph Theory September 8, 2016 Lecture 6 Lecturer: David P. Williamson Scribe: Faisal Alkaabneh 1 The Matrix-Tree Theorem In this lecture, we continue to see the usefulness of the graph

More information

The Avis-Kalunzy Algorithm is designed to find a basic feasible solution (BFS) of a given set of constraints. Its input: A R m n and b R m such that

The Avis-Kalunzy Algorithm is designed to find a basic feasible solution (BFS) of a given set of constraints. Its input: A R m n and b R m such that Lecture 4 Avis-Kaluzny and the Simplex Method Last time, we discussed some applications of Linear Programming, such as Max-Flow, Matching, and Vertex-Cover. The broad range of applications to Linear Programming

More information

Duality of LPs and Applications

Duality of LPs and Applications Lecture 6 Duality of LPs and Applications Last lecture we introduced duality of linear programs. We saw how to form duals, and proved both the weak and strong duality theorems. In this lecture we will

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 18

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 18 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 18 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 31, 2012 Andre Tkacenko

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

Linear Programming. Linear Programming I. Lecture 1. Linear Programming. Linear Programming

Linear Programming. Linear Programming I. Lecture 1. Linear Programming. Linear Programming Linear Programming Linear Programming Lecture Linear programming. Optimize a linear function subject to linear inequalities. (P) max " c j x j n j= n s. t. " a ij x j = b i # i # m j= x j 0 # j # n (P)

More information

15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018

15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018 15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018 Usual rules. :) Exercises 1. Lots of Flows. Suppose you wanted to find an approximate solution to the following

More information

University of California Berkeley CS170: Efficient Algorithms and Intractable Problems November 19, 2001 Professor Luca Trevisan. Midterm 2 Solutions

University of California Berkeley CS170: Efficient Algorithms and Intractable Problems November 19, 2001 Professor Luca Trevisan. Midterm 2 Solutions University of California Berkeley Handout MS2 CS170: Efficient Algorithms and Intractable Problems November 19, 2001 Professor Luca Trevisan Midterm 2 Solutions Problem 1. Provide the following information:

More information