Part 13: The Central Limit Theorem

Size: px
Start display at page:

Download "Part 13: The Central Limit Theorem"

Transcription

1 Part 13: The Central Limit Theorem As discussed in Part 12, the normal distribution is a very good model for a wide variety of real world data. And in this section we will give even further evidence of the normal distribution s utility, even in situations where you might not expect it. Suppose that we have a population of size N with mean and standard deviation. Now suppose that we devise an experiment that consists of randomly selecting a sample of size n (with n N of course) from the population and computing its mean. Then, we can now consider a new population of s that consists of all possible values for. That is, we are now thinking of the sample mean as a random variable: (now denoting it using a capital letter). We then ask: What is the mean of this random variable, denoted, and what is the standard deviation of this random variable, denoted here.. Let us look at a very simple example to illustrate what we mean Example 1: Suppose our population consists of the set {1, 2}. We take samples of size n=2, with replacement by choosing 1, replacing it, then choosing 2. So, by the Fundamental Principle of Counting there will be 4 samples of size 2: 2 ways to choose the first data unit, 2 ways to choose the second data unit; thus, 2*2 ways to choose both, with replacement of course. The samples are as follows: (1,1), (1,2), (2,1), (2,2). Accordingly, their means are listed in the distribution table below: Sample Random (1,1) 1 Variable Frequency (1,2) 1.5 Frequency Probability 2.5 (2,1) /4 2 (2,2) / / What are and as well as and? Example 2: Note that the above original population was symmetric about the mean. What if it is not? Again, we will chose a small original population in order to keep the work more manageable. 1

2 Frequency {1,2,7,10} Samples 8 (1,2,7) 3.33 (2,1,7) 3.33 (7,1,2) 3.33 (10,1,2) (1,2,10) 4.33 (2,1,10) 4.33 (7,1,10) 6.00 (10,1,7) (1,7,2) 3.33 (2,7,1) 3.33 (7,2,1) 3.33 (10,2,1) (1,7,10) 6.00 (2,7,10) 6.33 (7,2,10) 6.33 (10,2,7) (1,10,2) 4.33 (2,10,1) 4.33 (7,10,1) 6.00 (10,7,1) /3 13/3 6 19/3 (1,10,7) 6.00 (2,10,7) 6.33 (7,10,2) 6.33 (10,7,2) 6.33 Frequency 10/3 6 13/ /3 6 Note the distributions of means is symmetric even though the population is not and again, the mean of the means is the population mean. But, it doesn t yield a roughly, bell-shape curve here because our population is very small and the sample size is almost the same as the population size. In the first example, we sampled with replacement. In this case, we did not. By not replacing, we are changing the nature of the population because it is so small. When applying the Central Limit Theorem we should be conscious that the population is large in comparison to the sample size and that the sample is large as well. If the original population is normally distributed, then there are no concerns about size. Example 3: Let us look at another case with a bit larger population than the first and again use replacement: Samples Freq Distr Table {3,4,5} Frequency Prob (3,3) /9 (3,4) /9 (3,5) /9 (4,3) /9 (4,4) /9 (4,5) 4.5 (5,3) 4 (5,4) 4.5 (5,5) 5 What are and as well as and? Even before seeing the answers to our investigation questions, we probably could have taken an educated guess at them. Certainly some values of will lie below the value of and some will lie above the value of But, on average we would expect the values of to be close to. In other words, a good guess is =. As for, it seems from our examples that our statistic is 2

3 not matching our parameter. This seems reasonable since we would expect that would be affected by both and n. That is, if is large, then the values for are quite spread out and so the values for should likewise be more spread out. On the other hand, if n is quite large, then there just isn t much room for to vary (think of the extreme case n=n). Thus, larger values of n should correspond to smaller values of. To answer our questions about precisely, we must first specify two possibilities: Case 1: We select n separate values for our calculation of. That is, there are no repeats among our sample values unless there were also repeats among the values. (Most likely this is the scenario you imagined while reading the above description of the random variable.) Case 2: We select the values one at a time, replacing them back to the population each time. Here, there is a possibility of selecting a particular value twice. In Case 1, we will have = and ; and in Case 2, we will have = and. Note, however, that when n is much smaller than N (as is almost always the case in any practical setting), then for case 1, the formula is approximately equal. Thus, it s reasonable to use the formula for for either Case 1 or 2. n Now, not only do we have nice formulas for µ and σ. The most amazing part is that the distribution for the random variable is a very familiar one, regardless of what distribution the underlying population follows! The Central Limit Theorem: The distribution of the sample means, drawn from essentially any population with mean and standard deviation, is approximately normal with mean = and standard deviation, provided the sample size n is large enough. A keen observer may have noted the phrase n is large enough and wondered, How large is large enough?. The answer depends. If the initial population is normally distributed, then any n will do. If the population is at least symmetric, then n 10 or so should suffice. But if the distribution of is unknown, n 30 is probably enough to guarantee that is at least reasonably normally distributed. In general, larger sample sizes are better. How does this apply to our previous discussions? Well, we know that the sample means are approximately normally distributed with large populations and large enough samples; therefore, we can ask a question about probabilities using the normal curve. Example 1: The annual rainfall in a region has a distribution with a mean of 100 inches and a standard deviation of 12 inches. What is the approximate probability that the mean annual rainfall during 36 randomly picked years will exceed inches? Note that we do not know that the distribution is normal. However, we do know that the population is very large and so we can 3

4 assume the distribution of sample means is normal distributed and that the mean of the sample means is the population mean and the sample standard deviation is the population standard deviation divided by the square root of n. Example 2: An airplane with room for 100 passengers has a total baggage limit of 6000 pounds. Suppose the total weight of the baggage checked by an individual passenger is a random variable with mean of 56 pounds and standard deviation of 23 pounds. (a) If a flight is full, what is the approximate probability that the total weight of the passengers baggage will exceed the limit? (b) Find a new baggage limit so that the total weight of the passengers baggage on a full flight will only exceed the limit about once every 100 flights. Example 3: Suppose 100 dice are tossed. Estimate the probability that the sum of the numbers on the top faces of the dice exceeds 370. (Note: What is the expected value of 6 rolls, namely, what is the expected value of the random variable = 1,2,3,4,5,6? In this case, the empirical mean value from 100 rolls is 370/100.) 4

5 Now let us turn our attention to a portion of a population having a certain property. For example, we might want to know the proportion of a population exposed to the H1N1 virus, or the percentage of classmates with black hair. Again, we are interested in knowing about the entire population by examining a sample. Is the population proportion statistic from a sample a good approximation for the parameter? Let us look at an example from above with the population {3,4,5}. What is the proportion of odd numbers? Obviously, it is 2/3. But, what if we can only sample the population. Looking at our samples from before we see the mean of the sample proportions is the population proportion: Sample Proportion of odds (3,3) 1 (3,4) 1/2 (3,5) 1 (4,3) 1/2 (4,4) 0 (4,5) 1/2 (5,3) 1 (5,4) 1/2 (5,5) 1 2/3 Mean of Proportions It appears there is a connection to the Central Limit Theorem! Well, let us form that connection. Now consider a very different looking situation. Suppose the proportion of a population having some property (call it Property A) is p. Now we form a new experiment that consists of randomly selecting n units from the population and computing the proportion in that sample having Property A. We denote this calculation by x/n and call it the sample proportion. Then, since our sample proportions can vary over all possible choices of n units from the population, we again arrive at a random variable, denoted /n, and we again may ask: What is the mean of this variable, denoted µ(/n,) and what is the standard deviation of this variable, denoted σ(/n )? But rather than try to answer these questions by working from scratch, we instead make a shrewd observation. Computing a sample proportion is equivalent to the following: For each of the units in our sample, first record a 1 for each unit that has Property A and record a 0 otherwise. Then add up all these values and divide by n. In other words, we re calculating the sample mean of 1s and 0s. So, if we relabel the initial population so that each unit having Property A is replaced with a 1 and the rest are replaced with a 0, then /n is simply a special case of. Therefore, we can simply apply the Central Limit Theorem once we calculate µ and σ for the initial population, suitably relabeled with 1s and 0s. This should look familiar. Our set is made of only 1 s and 0 s. So, the P( = 1) = p and using the complement of set P( = 0) = 1 p. Thus, direct calculation yields µ = p and p p 2 p1 p. Now applying the Central Limit Theorem we can say: The sample proportion /n is approximately normally distributed with mean p and standard deviation, provided n is suitable large. 5

6 As before, we should ask what suitably large means. Here, the initial population is not symmetric unless p = 0.5. Moreover, the further p is from 0.5 the more lopsided the distribution will be. Taking both of these into account, to see if our sample size is suitably large we can check that both of the following hold: np 10 and n(1 p) 10. In general we will assume our requirements are satisfied. Nonetheless, we should keep a list of such requirements (an upcoming assignment) so that we don t waste our time on useless data. Example 4: The College wishes to estimate student reaction to having all course text books be available online. The college takes a random sample of 50 students and 20 said they are in favor of the idea. Assuming the sample is representative of the student population, what is the proportion of all student who are in favor of the idea? What is the standard deviation for this estimate? Example 5: If 30% of all people have blood type O, what is the approximate probability that, for a random sample of 560 people, the percentage having blood type O will be less than 25% or greater than 35%? 6

Chapter 18. Sampling Distribution Models /51

Chapter 18. Sampling Distribution Models /51 Chapter 18 Sampling Distribution Models 1 /51 Homework p432 2, 4, 6, 8, 10, 16, 17, 20, 30, 36, 41 2 /51 3 /51 Objective Students calculate values of central 4 /51 The Central Limit Theorem for Sample

More information

Density curves and the normal distribution

Density curves and the normal distribution Density curves and the normal distribution - Imagine what would happen if we measured a variable X repeatedly and make a histogram of the values. What shape would emerge? A mathematical model of this shape

More information

Chapter 18. Sampling Distribution Models. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Chapter 18. Sampling Distribution Models. Copyright 2010, 2007, 2004 Pearson Education, Inc. Chapter 18 Sampling Distribution Models Copyright 2010, 2007, 2004 Pearson Education, Inc. Normal Model When we talk about one data value and the Normal model we used the notation: N(μ, σ) Copyright 2010,

More information

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2 Probability Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application. However, probability models underlie

More information

Lecture 27. DATA 8 Spring Sample Averages. Slides created by John DeNero and Ani Adhikari

Lecture 27. DATA 8 Spring Sample Averages. Slides created by John DeNero and Ani Adhikari DATA 8 Spring 2018 Lecture 27 Sample Averages Slides created by John DeNero (denero@berkeley.edu) and Ani Adhikari (adhikari@berkeley.edu) Announcements Questions for This Week How can we quantify natural

More information

Probability and Statistics

Probability and Statistics Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be CHAPTER 4: IT IS ALL ABOUT DATA 4a - 1 CHAPTER 4: IT

More information

STA Why Sampling? Module 6 The Sampling Distributions. Module Objectives

STA Why Sampling? Module 6 The Sampling Distributions. Module Objectives STA 2023 Module 6 The Sampling Distributions Module Objectives In this module, we will learn the following: 1. Define sampling error and explain the need for sampling distributions. 2. Recognize that sampling

More information

Senior Math Circles November 19, 2008 Probability II

Senior Math Circles November 19, 2008 Probability II University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Senior Math Circles November 9, 2008 Probability II Probability Counting There are many situations where

More information

Why should you care?? Intellectual curiosity. Gambling. Mathematically the same as the ESP decision problem we discussed in Week 4.

Why should you care?? Intellectual curiosity. Gambling. Mathematically the same as the ESP decision problem we discussed in Week 4. I. Probability basics (Sections 4.1 and 4.2) Flip a fair (probability of HEADS is 1/2) coin ten times. What is the probability of getting exactly 5 HEADS? What is the probability of getting exactly 10

More information

Margin of Error. What is margin of error and why does it exist?

Margin of Error. What is margin of error and why does it exist? Trig Honors Margin of Error Name: What is margin of error and why does it exist? Thanks to a network of GEO stationary and polar orbiting satellites providing better data, faster supercomputers, and improved

More information

- a value calculated or derived from the data.

- a value calculated or derived from the data. Descriptive statistics: Note: I'm assuming you know some basics. If you don't, please read chapter 1 on your own. It's pretty easy material, and it gives you a good background as to why we need statistics.

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

Math 140 Introductory Statistics

Math 140 Introductory Statistics 5. Models of Random Behavior Math 40 Introductory Statistics Professor Silvia Fernández Chapter 5 Based on the book Statistics in Action by A. Watkins, R. Scheaffer, and G. Cobb. Outcome: Result or answer

More information

Math 140 Introductory Statistics

Math 140 Introductory Statistics Math 140 Introductory Statistics Professor Silvia Fernández Lecture 8 Based on the book Statistics in Action by A. Watkins, R. Scheaffer, and G. Cobb. 5.1 Models of Random Behavior Outcome: Result or answer

More information

Introduction to Probability, Fall 2013

Introduction to Probability, Fall 2013 Introduction to Probability, Fall 2013 Math 30530 Section 01 Homework 4 Solutions 1. Chapter 2, Problem 1 2. Chapter 2, Problem 2 3. Chapter 2, Problem 3 4. Chapter 2, Problem 5 5. Chapter 2, Problem 6

More information

Math 111, Math & Society. Probability

Math 111, Math & Society. Probability Math 111, Math & Society Probability 1 Counting Probability consists in the assignment of likelihoods to the possible outcomes of an experiment, activity, or phenomenon. Correctly calculating probabilities

More information

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Topic -2 Probability Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Probability Experiments Experiment : An experiment is an act that can be repeated under given condition. Rolling a

More information

Unit 22: Sampling Distributions

Unit 22: Sampling Distributions Unit 22: Sampling Distributions Summary of Video If we know an entire population, then we can compute population parameters such as the population mean or standard deviation. However, we generally don

More information

Elementary Discrete Probability

Elementary Discrete Probability Elementary Discrete Probability MATH 472 Financial Mathematics J Robert Buchanan 2018 Objectives In this lesson we will learn: the terminology of elementary probability, elementary rules of probability,

More information

Name: Exam 2 Solutions. March 13, 2017

Name: Exam 2 Solutions. March 13, 2017 Department of Mathematics University of Notre Dame Math 00 Finite Math Spring 07 Name: Instructors: Conant/Galvin Exam Solutions March, 07 This exam is in two parts on pages and contains problems worth

More information

Probability. Chapter 1 Probability. A Simple Example. Sample Space and Probability. Sample Space and Event. Sample Space (Two Dice) Probability

Probability. Chapter 1 Probability. A Simple Example. Sample Space and Probability. Sample Space and Event. Sample Space (Two Dice) Probability Probability Chapter 1 Probability 1.1 asic Concepts researcher claims that 10% of a large population have disease H. random sample of 100 people is taken from this population and examined. If 20 people

More information

Do students sleep the recommended 8 hours a night on average?

Do students sleep the recommended 8 hours a night on average? BIEB100. Professor Rifkin. Notes on Section 2.2, lecture of 27 January 2014. Do students sleep the recommended 8 hours a night on average? We first set up our null and alternative hypotheses: H0: μ= 8

More information

THE SAMPLING DISTRIBUTION OF THE MEAN

THE SAMPLING DISTRIBUTION OF THE MEAN THE SAMPLING DISTRIBUTION OF THE MEAN COGS 14B JANUARY 26, 2017 TODAY Sampling Distributions Sampling Distribution of the Mean Central Limit Theorem INFERENTIAL STATISTICS Inferential statistics: allows

More information

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0.

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0. () () a. X is a binomial distribution with n = 000, p = /6 b. The expected value, variance, and standard deviation of X is: E(X) = np = 000 = 000 6 var(x) = np( p) = 000 5 6 666 stdev(x) = np( p) = 000

More information

Section 5.4. Ken Ueda

Section 5.4. Ken Ueda Section 5.4 Ken Ueda Students seem to think that being graded on a curve is a positive thing. I took lasers 101 at Cornell and got a 92 on the exam. The average was a 93. I ended up with a C on the test.

More information

Epsilon Delta proofs

Epsilon Delta proofs Epsilon Delta proofs Before reading this guide, please go over inequalities (if needed). Eample Prove lim(4 3) = 5 2 First we have to know what the definition of a limit is: i.e rigorous way of saying

More information

MAT Mathematics in Today's World

MAT Mathematics in Today's World MAT 1000 Mathematics in Today's World Last Time We discussed the four rules that govern probabilities: 1. Probabilities are numbers between 0 and 1 2. The probability an event does not occur is 1 minus

More information

RVs and their probability distributions

RVs and their probability distributions RVs and their probability distributions RVs and their probability distributions In these notes, I will use the following notation: The probability distribution (function) on a sample space will be denoted

More information

Lecture 8: Conditional probability I: definition, independence, the tree method, sampling, chain rule for independent events

Lecture 8: Conditional probability I: definition, independence, the tree method, sampling, chain rule for independent events Lecture 8: Conditional probability I: definition, independence, the tree method, sampling, chain rule for independent events Discrete Structures II (Summer 2018) Rutgers University Instructor: Abhishek

More information

REPEATED TRIALS. p(e 1 ) p(e 2 )... p(e k )

REPEATED TRIALS. p(e 1 ) p(e 2 )... p(e k ) REPEATED TRIALS We first note a basic fact about probability and counting. Suppose E 1 and E 2 are independent events. For example, you could think of E 1 as the event of tossing two dice and getting a

More information

Volume vs. Diameter. Teacher Lab Discussion. Overview. Picture, Data Table, and Graph

Volume vs. Diameter. Teacher Lab Discussion. Overview. Picture, Data Table, and Graph 5 6 7 Middle olume Length/olume vs. Diameter, Investigation page 1 of olume vs. Diameter Teacher Lab Discussion Overview Figure 1 In this experiment we investigate the relationship between the diameter

More information

Probability COMP 245 STATISTICS. Dr N A Heard. 1 Sample Spaces and Events Sample Spaces Events Combinations of Events...

Probability COMP 245 STATISTICS. Dr N A Heard. 1 Sample Spaces and Events Sample Spaces Events Combinations of Events... Probability COMP 245 STATISTICS Dr N A Heard Contents Sample Spaces and Events. Sample Spaces........................................2 Events........................................... 2.3 Combinations

More information

Probability Year 10. Terminology

Probability Year 10. Terminology Probability Year 10 Terminology Probability measures the chance something happens. Formally, we say it measures how likely is the outcome of an event. We write P(result) as a shorthand. An event is some

More information

Sampling Distribution Models. Chapter 17

Sampling Distribution Models. Chapter 17 Sampling Distribution Models Chapter 17 Objectives: 1. Sampling Distribution Model 2. Sampling Variability (sampling error) 3. Sampling Distribution Model for a Proportion 4. Central Limit Theorem 5. Sampling

More information

The area under a probability density curve between any two values a and b has two interpretations:

The area under a probability density curve between any two values a and b has two interpretations: Chapter 7 7.1 The Standard Normal Curve Introduction Probability density curve: The area under a probability density curve between any two values a and b has two interpretations: 1. 2. The region above

More information

V. Probability. by David M. Lane and Dan Osherson

V. Probability. by David M. Lane and Dan Osherson V. Probability by David M. Lane and Dan Osherson Prerequisites none F.Introduction G.Basic Concepts I.Gamblers Fallacy Simulation K.Binomial Distribution L.Binomial Demonstration M.Base Rates Probability

More information

Big-oh stuff. You should know this definition by heart and be able to give it,

Big-oh stuff. You should know this definition by heart and be able to give it, Big-oh stuff Definition. if asked. You should know this definition by heart and be able to give it, Let f and g both be functions from R + to R +. Then f is O(g) (pronounced big-oh ) if and only if there

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 Introduction One of the key properties of coin flips is independence: if you flip a fair coin ten times and get ten

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

Vocabulary: Samples and Populations

Vocabulary: Samples and Populations Vocabulary: Samples and Populations Concept Different types of data Categorical data results when the question asked in a survey or sample can be answered with a nonnumerical answer. For example if we

More information

3.2 Probability Rules

3.2 Probability Rules 3.2 Probability Rules The idea of probability rests on the fact that chance behavior is predictable in the long run. In the last section, we used simulation to imitate chance behavior. Do we always need

More information

STAT/SOC/CSSS 221 Statistical Concepts and Methods for the Social Sciences. Random Variables

STAT/SOC/CSSS 221 Statistical Concepts and Methods for the Social Sciences. Random Variables STAT/SOC/CSSS 221 Statistical Concepts and Methods for the Social Sciences Random Variables Christopher Adolph Department of Political Science and Center for Statistics and the Social Sciences University

More information

P (E) = P (A 1 )P (A 2 )... P (A n ).

P (E) = P (A 1 )P (A 2 )... P (A n ). Lecture 9: Conditional probability II: breaking complex events into smaller events, methods to solve probability problems, Bayes rule, law of total probability, Bayes theorem Discrete Structures II (Summer

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Introduction The markets can be thought of as a complex interaction of a large number of random

More information

TEMPORAL EXPONENTIAL- FAMILY RANDOM GRAPH MODELING (TERGMS) WITH STATNET

TEMPORAL EXPONENTIAL- FAMILY RANDOM GRAPH MODELING (TERGMS) WITH STATNET 1 TEMPORAL EXPONENTIAL- FAMILY RANDOM GRAPH MODELING (TERGMS) WITH STATNET Prof. Steven Goodreau Prof. Martina Morris Prof. Michal Bojanowski Prof. Mark S. Handcock Source for all things STERGM Pavel N.

More information

Sampling (Statistics)

Sampling (Statistics) Systems & Biomedical Engineering Department SBE 304: Bio-Statistics Random Sampling and Sampling Distributions Dr. Ayman Eldeib Fall 2018 Sampling (Statistics) Sampling is that part of statistical practice

More information

University of California, Berkeley, Statistics 134: Concepts of Probability. Michael Lugo, Spring Exam 1

University of California, Berkeley, Statistics 134: Concepts of Probability. Michael Lugo, Spring Exam 1 University of California, Berkeley, Statistics 134: Concepts of Probability Michael Lugo, Spring 2011 Exam 1 February 16, 2011, 11:10 am - 12:00 noon Name: Solutions Student ID: This exam consists of seven

More information

CS1800: Sequences & Sums. Professor Kevin Gold

CS1800: Sequences & Sums. Professor Kevin Gold CS1800: Sequences & Sums Professor Kevin Gold Moving Toward Analysis of Algorithms Today s tools help in the analysis of algorithms. We ll cover tools for deciding what equation best fits a sequence of

More information

MAT2377. Ali Karimnezhad. Version September 9, Ali Karimnezhad

MAT2377. Ali Karimnezhad. Version September 9, Ali Karimnezhad MAT2377 Ali Karimnezhad Version September 9, 2015 Ali Karimnezhad Comments These slides cover material from Chapter 1. In class, I may use a blackboard. I recommend reading these slides before you come

More information

Probability, For the Enthusiastic Beginner (Exercises, Version 1, September 2016) David Morin,

Probability, For the Enthusiastic Beginner (Exercises, Version 1, September 2016) David Morin, Chapter 8 Exercises Probability, For the Enthusiastic Beginner (Exercises, Version 1, September 2016) David Morin, morin@physics.harvard.edu 8.1 Chapter 1 Section 1.2: Permutations 1. Assigning seats *

More information

Outline. Probability. Math 143. Department of Mathematics and Statistics Calvin College. Spring 2010

Outline. Probability. Math 143. Department of Mathematics and Statistics Calvin College. Spring 2010 Outline Math 143 Department of Mathematics and Statistics Calvin College Spring 2010 Outline Outline 1 Review Basics Random Variables Mean, Variance and Standard Deviation of Random Variables 2 More Review

More information

Probability Year 9. Terminology

Probability Year 9. Terminology Probability Year 9 Terminology Probability measures the chance something happens. Formally, we say it measures how likely is the outcome of an event. We write P(result) as a shorthand. An event is some

More information

Chapter 3: Probability 3.1: Basic Concepts of Probability

Chapter 3: Probability 3.1: Basic Concepts of Probability Chapter 3: Probability 3.1: Basic Concepts of Probability Objectives Identify the sample space of a probability experiment and a simple event Use the Fundamental Counting Principle Distinguish classical

More information

4. Probability of an event A for equally likely outcomes:

4. Probability of an event A for equally likely outcomes: University of California, Los Angeles Department of Statistics Statistics 110A Instructor: Nicolas Christou Probability Probability: A measure of the chance that something will occur. 1. Random experiment:

More information

Basic Probability. Introduction

Basic Probability. Introduction Basic Probability Introduction The world is an uncertain place. Making predictions about something as seemingly mundane as tomorrow s weather, for example, is actually quite a difficult task. Even with

More information

4.4-Multiplication Rule: Basics

4.4-Multiplication Rule: Basics .-Multiplication Rule: Basics The basic multiplication rule is used for finding P (A and, that is, the probability that event A occurs in a first trial and event B occurs in a second trial. If the outcome

More information

P (A B) P ((B C) A) P (B A) = P (B A) + P (C A) P (A) = P (B A) + P (C A) = Q(A) + Q(B).

P (A B) P ((B C) A) P (B A) = P (B A) + P (C A) P (A) = P (B A) + P (C A) = Q(A) + Q(B). Lectures 7-8 jacques@ucsdedu 41 Conditional Probability Let (Ω, F, P ) be a probability space Suppose that we have prior information which leads us to conclude that an event A F occurs Based on this information,

More information

Binomial random variable

Binomial random variable Binomial random variable Toss a coin with prob p of Heads n times X: # Heads in n tosses X is a Binomial random variable with parameter n,p. X is Bin(n, p) An X that counts the number of successes in many

More information

Determinants of 2 2 Matrices

Determinants of 2 2 Matrices Determinants In section 4, we discussed inverses of matrices, and in particular asked an important question: How can we tell whether or not a particular square matrix A has an inverse? We will be able

More information

MATH MW Elementary Probability Course Notes Part I: Models and Counting

MATH MW Elementary Probability Course Notes Part I: Models and Counting MATH 2030 3.00MW Elementary Probability Course Notes Part I: Models and Counting Tom Salisbury salt@yorku.ca York University Winter 2010 Introduction [Jan 5] Probability: the mathematics used for Statistics

More information

STA111 - Lecture 1 Welcome to STA111! 1 What is the difference between Probability and Statistics?

STA111 - Lecture 1 Welcome to STA111! 1 What is the difference between Probability and Statistics? STA111 - Lecture 1 Welcome to STA111! Some basic information: Instructor: Víctor Peña (email: vp58@duke.edu) Course Website: http://stat.duke.edu/~vp58/sta111. 1 What is the difference between Probability

More information

Chapter 8: An Introduction to Probability and Statistics

Chapter 8: An Introduction to Probability and Statistics Course S3, 200 07 Chapter 8: An Introduction to Probability and Statistics This material is covered in the book: Erwin Kreyszig, Advanced Engineering Mathematics (9th edition) Chapter 24 (not including

More information

Recap. The study of randomness and uncertainty Chances, odds, likelihood, expected, probably, on average,... PROBABILITY INFERENTIAL STATISTICS

Recap. The study of randomness and uncertainty Chances, odds, likelihood, expected, probably, on average,... PROBABILITY INFERENTIAL STATISTICS Recap. Probability (section 1.1) The study of randomness and uncertainty Chances, odds, likelihood, expected, probably, on average,... PROBABILITY Population Sample INFERENTIAL STATISTICS Today. Formulation

More information

THEORETICAL NUCLEAR PHYSICS BY JOHN MARKUS BLATT, VICTOR FREDERICK WEISSKOPF

THEORETICAL NUCLEAR PHYSICS BY JOHN MARKUS BLATT, VICTOR FREDERICK WEISSKOPF Read Online and Download Ebook THEORETICAL NUCLEAR PHYSICS BY JOHN MARKUS BLATT, VICTOR FREDERICK WEISSKOPF DOWNLOAD EBOOK : THEORETICAL NUCLEAR PHYSICS BY JOHN MARKUS Click link bellow and free register

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

The point value of each problem is in the left-hand margin. You must show your work to receive any credit, except on problems 1 & 2. Work neatly.

The point value of each problem is in the left-hand margin. You must show your work to receive any credit, except on problems 1 & 2. Work neatly. Introduction to Statistics Math 1040 Sample Exam III Chapters 8-10 4 Problem Pages 3 Formula/Table Pages Time Limit: 90 Minutes 1 No Scratch Paper Calculator Allowed: Scientific Name: The point value of

More information

Probability and the Second Law of Thermodynamics

Probability and the Second Law of Thermodynamics Probability and the Second Law of Thermodynamics Stephen R. Addison January 24, 200 Introduction Over the next several class periods we will be reviewing the basic results of probability and relating probability

More information

STEP Support Programme. Statistics STEP Questions

STEP Support Programme. Statistics STEP Questions STEP Support Programme Statistics STEP Questions This is a selection of STEP I and STEP II questions. The specification is the same for both papers, with STEP II questions designed to be more difficult.

More information

*Karle Laska s Sections: There is no class tomorrow and Friday! Have a good weekend! Scores will be posted in Compass early Friday morning

*Karle Laska s Sections: There is no class tomorrow and Friday! Have a good weekend! Scores will be posted in Compass early Friday morning STATISTICS 100 EXAM 3 Spring 2016 PRINT NAME (Last name) (First name) *NETID CIRCLE SECTION: Laska MWF L1 Laska Tues/Thurs L2 Robin Tu Write answers in appropriate blanks. When no blanks are provided CIRCLE

More information

1. Rolling a six sided die and observing the number on the uppermost face is an experiment with six possible outcomes; 1, 2, 3, 4, 5 and 6.

1. Rolling a six sided die and observing the number on the uppermost face is an experiment with six possible outcomes; 1, 2, 3, 4, 5 and 6. Section 7.1: Introduction to Probability Almost everybody has used some conscious or subconscious estimate of the likelihood of an event happening at some point in their life. Such estimates are often

More information

Math 308 Midterm Answers and Comments July 18, Part A. Short answer questions

Math 308 Midterm Answers and Comments July 18, Part A. Short answer questions Math 308 Midterm Answers and Comments July 18, 2011 Part A. Short answer questions (1) Compute the determinant of the matrix a 3 3 1 1 2. 1 a 3 The determinant is 2a 2 12. Comments: Everyone seemed to

More information

Stat 20 Midterm 1 Review

Stat 20 Midterm 1 Review Stat 20 Midterm Review February 7, 2007 This handout is intended to be a comprehensive study guide for the first Stat 20 midterm exam. I have tried to cover all the course material in a way that targets

More information

Toss 1. Fig.1. 2 Heads 2 Tails Heads/Tails (H, H) (T, T) (H, T) Fig.2

Toss 1. Fig.1. 2 Heads 2 Tails Heads/Tails (H, H) (T, T) (H, T) Fig.2 1 Basic Probabilities The probabilities that we ll be learning about build from the set theory that we learned last class, only this time, the sets are specifically sets of events. What are events? Roughly,

More information

1 Probability Theory. 1.1 Introduction

1 Probability Theory. 1.1 Introduction 1 Probability Theory Probability theory is used as a tool in statistics. It helps to evaluate the reliability of our conclusions about the population when we have only information about a sample. Probability

More information

Chapter 4: An Introduction to Probability and Statistics

Chapter 4: An Introduction to Probability and Statistics Chapter 4: An Introduction to Probability and Statistics 4. Probability The simplest kinds of probabilities to understand are reflected in everyday ideas like these: (i) if you toss a coin, the probability

More information

# of 6s # of times Test the null hypthesis that the dice are fair at α =.01 significance

# of 6s # of times Test the null hypthesis that the dice are fair at α =.01 significance Practice Final Exam Statistical Methods and Models - Math 410, Fall 2011 December 4, 2011 You may use a calculator, and you may bring in one sheet (8.5 by 11 or A4) of notes. Otherwise closed book. The

More information

Confidence Intervals

Confidence Intervals Quantitative Foundations Project 3 Instructor: Linwei Wang Confidence Intervals Contents 1 Introduction 3 1.1 Warning....................................... 3 1.2 Goals of Statistics..................................

More information

Fourier and Stats / Astro Stats and Measurement : Stats Notes

Fourier and Stats / Astro Stats and Measurement : Stats Notes Fourier and Stats / Astro Stats and Measurement : Stats Notes Andy Lawrence, University of Edinburgh Autumn 2013 1 Probabilities, distributions, and errors Laplace once said Probability theory is nothing

More information

P (A) = P (B) = P (C) = P (D) =

P (A) = P (B) = P (C) = P (D) = STAT 145 CHAPTER 12 - PROBABILITY - STUDENT VERSION The probability of a random event, is the proportion of times the event will occur in a large number of repititions. For example, when flipping a coin,

More information

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1 Math 66/566 - Midterm Solutions NOTE: These solutions are for both the 66 and 566 exam. The problems are the same until questions and 5. 1. The moment generating function of a random variable X is M(t)

More information

3 PROBABILITY TOPICS

3 PROBABILITY TOPICS Chapter 3 Probability Topics 135 3 PROBABILITY TOPICS Figure 3.1 Meteor showers are rare, but the probability of them occurring can be calculated. (credit: Navicore/flickr) Introduction It is often necessary

More information

STAT 201 Chapter 5. Probability

STAT 201 Chapter 5. Probability STAT 201 Chapter 5 Probability 1 2 Introduction to Probability Probability The way we quantify uncertainty. Subjective Probability A probability derived from an individual's personal judgment about whether

More information

Detailed Solutions to Problem Solving Exercises

Detailed Solutions to Problem Solving Exercises 1. A Guessing Game First of all, we should note that the objective is to determine the best strategy in order to maximize our average score per game. We are not trying to beat our classmates, although

More information

In economics, the amount of a good x demanded is a function of the price of that good. In other words,

In economics, the amount of a good x demanded is a function of the price of that good. In other words, I. UNIVARIATE CALCULUS Given two sets X and Y, a function is a rule that associates each member of X with eactly one member of Y. That is, some goes in, and some y comes out. These notations are used to

More information

PROBABILITY. Contents Preface 1 1. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8. Preface

PROBABILITY. Contents Preface 1 1. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8. Preface PROBABILITY VITTORIA SILVESTRI Contents Preface. Introduction. Combinatorial analysis 5 3. Stirling s formula 8 Preface These lecture notes are for the course Probability IA, given in Lent 09 at the University

More information

2016 King s College Math Competition. Instructions

2016 King s College Math Competition. Instructions 06 King s College Math Competition King s College welcomes you to this year s mathematics competition and to our campus. We wish you success in this competition and in your future studies. Instructions

More information

Honors Math 2 Unit 5 Exponential Functions. *Quiz* Common Logs Solving for Exponents Review and Practice

Honors Math 2 Unit 5 Exponential Functions. *Quiz* Common Logs Solving for Exponents Review and Practice Honors Math 2 Unit 5 Exponential Functions Notes and Activities Name: Date: Pd: Unit Objectives: Objectives: N-RN.2 Rewrite expressions involving radicals and rational exponents using the properties of

More information

C.6 Normal Distributions

C.6 Normal Distributions C.6 Normal Distributions APPENDIX C.6 Normal Distributions A43 Find probabilities for continuous random variables. Find probabilities using the normal distribution. Find probabilities using the standard

More information

Lecture 6: The Pigeonhole Principle and Probability Spaces

Lecture 6: The Pigeonhole Principle and Probability Spaces Lecture 6: The Pigeonhole Principle and Probability Spaces Anup Rao January 17, 2018 We discuss the pigeonhole principle and probability spaces. Pigeonhole Principle The pigeonhole principle is an extremely

More information

1. Sample spaces, events and conditional probabilities. A sample space is a finite or countable set S together with a function. P (x) = 1.

1. Sample spaces, events and conditional probabilities. A sample space is a finite or countable set S together with a function. P (x) = 1. DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA, BERKELEY Probability theory H.W. Lenstra, Jr. These notes contain material on probability for Math 55, Discrete mathematics. They were written to supplement

More information

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 15. Random Variables: Distributions, Independence, and Expectations

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 15. Random Variables: Distributions, Independence, and Expectations EECS 70 Discrete Mathematics and Probability Theory Fall 204 Anant Sahai Note 5 Random Variables: Distributions, Independence, and Expectations In the last note, we saw how useful it is to have a way of

More information

DISCRETE RANDOM VARIABLES EXCEL LAB #3

DISCRETE RANDOM VARIABLES EXCEL LAB #3 DISCRETE RANDOM VARIABLES EXCEL LAB #3 ECON/BUSN 180: Quantitative Methods for Economics and Business Department of Economics and Business Lake Forest College Lake Forest, IL 60045 Copyright, 2011 Overview

More information

Elements of probability theory

Elements of probability theory The role of probability theory in statistics We collect data so as to provide evidentiary support for answers we give to our many questions about the world (and in our particular case, about the business

More information

Topic 2 Multiple events, conditioning, and independence, I. 2.1 Two or more events on the same sample space

Topic 2 Multiple events, conditioning, and independence, I. 2.1 Two or more events on the same sample space CSE 103: Probability and statistics Fall 2010 Topic 2 Multiple events, conditioning, and independence, I 2.1 Two or more events on the same sample space Frequently we end up dealing with multiple events

More information

Measures of Dispersion

Measures of Dispersion Measures of Dispersion MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Introduction Recall that a measure of central tendency is a number which is typical of all

More information

DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS Ma 62 Final Exam December 4, 20 Instructions: No cell phones or network-capable devices are allowed during the exam. You may use calculators, but you must show your work to receive

More information

Continuous distributions

Continuous distributions Continuous distributions In contrast to discrete random variables, like the Binomial distribution, in many situations the possible values of a random variable cannot be counted. For example, the measurement

More information

Statistics 1L03 - Midterm #2 Review

Statistics 1L03 - Midterm #2 Review Statistics 1L03 - Midterm # Review Atinder Bharaj Made with L A TEX October, 01 Introduction As many of you will soon find out, I will not be holding the next midterm review. To make it a bit easier on

More information

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary)

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary) Chapter 14 From Randomness to Probability How to measure a likelihood of an event? How likely is it to answer correctly one out of two true-false questions on a quiz? Is it more, less, or equally likely

More information

Midterm Exam 2 Answers

Midterm Exam 2 Answers Economics 31 Menzie D. Chinn Fall 4 Social Sciences 7418 University of Wisconsin-Madison Midterm Exam Answers This exam is 6 minutes long. There are 8 questions on the exam be sure to check that you answer

More information