REMOTE SENSING OF ATMOSPHERIC TRACE GASES BY OPTICAL CORRELATION SPECTROSCOPY AND LIDAR

Size: px
Start display at page:

Download "REMOTE SENSING OF ATMOSPHERIC TRACE GASES BY OPTICAL CORRELATION SPECTROSCOPY AND LIDAR"

Transcription

1 REMOTE SENSING OF ATMOSPHERIC TRACE GASES BY OPTICAL CORRELATION SPECTROSCOPY AND LIDAR by Benjamin Thomas Grégory David, Christophe Anselmo, Alain Miffre, Jean-Pierre Cariou and Patrick Rairoux Institute of Light and Matter, Lyon 1 University Lyon 1 University, Institute of Light and Matter, Mirthe Summer Workshop

2 Lyon 1 University 2

3 Study of Trace Gases Impact on climate Change the Earth s radiation budget [IPCC 27] Impact on human health Lung cancer (World Health Organization) Harm the cardiopulmonary system Hazardous gases (methane, benzene, natural gas, hydrogen...) Need for local and global spatial distribution of trace gases Sources and sinks Localization Mass flux measurements Atmospheric model improvements Gas pipeline in Lybia. Numerical simulation of the atmosphere dynamics. 3

4 Aim of the work Goal: Remotely retrieve the concentration profile of a specific trace gas in the atmosphere A new approach based on: Lidar [Fiocco et al., Nature, 1963] [Weitkamp, Springer Ed., 25] Correlation Spectroscopy [Sandroni et al., Atm. Env., 1977] [Dakin et al., Sens. Actuators B, 23] [Lou et al., App. Phys. B, 29] The Optical Correlation Spectroscopy Lidar (OCS-lidar) Gas correlation spectroscopy lidar [Edner et al., Opt. Lett., 1984] [Minato et al, Jap. J. Appl. Phys., 1999] Inspired by previous works: Patent [J. Kasparian, J.P. Wolf: FR A1A1] 4

5 Outline I. OCS-lidar methodology a. Principle b. Numerical simulations II. First experimental results a. Experimental set-up b. Water vapor measurements III. Conclusion and outlook 5

6 Outline I. OCS-lidar methodology a. Principle b. Numerical simulations II. First experimental results a. Experimental set-up b. Water vapor measurements III. Conclusion and outlook 6

7 Optical Correlation Spectroscopy and Lidar P NC P C Range (a.u) Difficulties Advantages Concentration Atmosphere variations measurements (P atm, are T atm, sensitive clouds, interfering to a specific species) trace gas (OCS) Range Measurement and time of resolved a few percents measurements of extinction (lidar) on weak optical signal (β 1-7 m -1.sr -1 ) OCS-lidar signals Controlling the power density spectrum of the laser pulse (emission, pulse shaping, transmission through the atmosphere) 7

8 OCS Lidar formalism OCS Lidar Equations : Using the ratio Kr () Pr = Pλ M λ β rλ T rλ dλ 2 i() ( ) i( ) (, ) (, ) r² λ PC () r P () r NC cumulative concentration CC(r) : we obtain a third order polynomial where the unknown is the A () r CC() r + A () r CC() r + A() r CC() r + A () r With r CCr () = Cr ( ') dr ' Cr ( ) = ( r) r CC and A 3, A 2, A 1 and A depending on Measured signals P NC and P C Laser pulse P (λ) Modulator transmission M C (λ) and M NC (λ) Absorption Cross-Section σ(λ) B. Thomas et al., «Remote Sensing of Trace Gases with Optical Correlation Spectroscopy and Lidar», APB, 18, 212 8

9 The OCS-lidar numerical model Study of systematic and statistical errors through the concentration relative error: C input C C B. Thomas et al., «Remote Sensing of Trace Gases with Optical Correlation Spectroscopy and Lidar», APB, 18, 212 = input output 9

10 Simulation results for high CH 4 concentration [CH 4 ] (ppm) OCS-lidar signals (a.u) Range corr P C.6 P NC C input C ouput Parameters: Methane: 4 ppm Wavelength : 1.66 µm 25 µj/pulse 6 laser shots 15 m range resolution Range r (m) B. Thomas et al., Remote sensing of trace gases with optical correlation spectroscopy and lidar, APB,

11 Outline I. OCS-lidar methodology a. Principle b. Numerical simulations II. First experimental results a. Experimental set-up b. Water vapor measurements III. Conclusion and outlook 11

12 OCS-lidar experiment First experimental proof of the OCS-lidar methodology for water vapor measurements in the visible spectral range. Experimental set-up, three main parts : A femtosecond laser source coupled with an OPA The amplitude modulation achieved by an Acousto Optical Programmable Dispersif Filter (AOPDF) The detection system 3 cm diameter Newtonian Telescope Hammatsu photodiode 12

13 Active modulation with the AOPDF Acousto Optical Programmable Dispersive Filter [Kaplan et al., Ultrafast Opt. IV, 24] Based on acousto-optic effect in a birefringent crystal An acoustic wave ( MHz), with angular frequency ω and wavenumber k, generates a refraction index forming a diffraction pattern: n ( z, t) = n + n cos( ωt kz) e e e n e : undisturbed extraordinary refractive index Δn e : amplitude of variation in the extraordinary refractive index. Power spectral density (a.u.) Input Optical beam 1 4 Acoustic wave 3 transducer 2 1 TeO 2 crystal nm 4.6 nm Achieve pulse shaping with a 1 nm spectral resolution. Wavelength (nm) 13

14 Experimental results for H 2 O Set-up with the AOPDF Without spectral modulation : M C = M NC = 1 OCS-lidar signals (a.u) Range corr P A P B Control measurement 5 µj/pulse 15 minutes average 35 m spatial resolution 1. P B /P A Range (m) B. Thomas et al., Remote sensing of atmospheric gases with optical correlation spectroscopy and lidar: first experimental results on water vapor profile measurements, Appl. Phys. B,

15 First experimental results for H 2 O (AMR) OCS-lidar signals (a.u) Range corr P NC (r) P C (r) Water Vapor measurement 5 µj/pulse 15 minutes average 23 m spatial resolution P C /P NC.9.8 [H 2 O] (ppm) Range (m) B. Thomas et al., Remote sensing of atmospheric gases with optical correlation spectroscopy and lidar: first experimental results on water vapor profile measurements, Appl. Phys. B, 213 Ground concentration [H 2 O] = 9 2 ppm 15

16 Outline I. OCS-lidar methodology a. Principle b. Numerical simulations II. First experimental results a. Experimental set-up b. Water vapor measurements III. Conclusion and outlook 16

17 Conclusion New approach for remote sensing of atmospheric trace gases by coupling Optical Correlation Spectroscopy with lidar (OCS-lidar). Based on a spectrally broadband light source and amplitude modulation. Development of a new algorithm to retrieve the trace gas concentration. Development of a numerical simulation to study the statistical and systematic errors for methane and water vapor. First experimental proof of the OCS-lidar by measuring water vapor profiles in the atmosphere. B. Thomas et al., Remote sensing of trace gases with optical correlation spectroscopy and Lidar : Theoretical and numerical approach, Appl. Phys B, 18, , (212). B. Thomas et al., Remote sensing of methane with broadband laser and optical correlation spectroscopy on the Q-branch of the 2ν 3 band, J. Mol. Spec., Special issue on methane, 291, 3-8, (213). B. Thomas et al., Remote sensing of atmospheric gases with optical correlation spectroscopy and lidar: first experimental result on water vapor profile measurements, Appl. Phys. B, DOI: 1.17/s (213). 17

18 Outlook Methane measurement in the infrared spectral range Amplitude modulation Micro joule infrared lidar signals Range corrected Lidar signal(mv.m²) Range r (km) Multiple gas monitoring (N 2 O, CO 2, O 3, hydrocarbons ) further investigation on the amplitude modulation and other spectral ranges. Validation with standard measurement techniques. Field measurements, further investigation on light sources. 18

19 Thank you for your attention Contact : bthomas2@ccny.cuny.edu Lyon 1 University, Institute of Light and Matter, 19

20 Amplitude modulation for H 2 O measurement Limitation: AOPDF energy threshold: 5 µj Intensity (a.u.) H 2 O Absorption Cross-section P (λ).m C (λ) P (λ).m NC (λ).e Wavelength (nm) 2.E E-22 1.E-22 5.E-23 Absorption cross-section (cm²) 2

21 AOPDF spectral resolution 5 4 Power spectral density (a.u.) nm 4.6 nm Wavelength (nm) Measured specifications for active narrow band modulation (peaks) 1.1 nm FWHM 6 % peak transmission Measured specifications for narrow band depletion (hole) 3. nm FWHM < 1 % hole transmission Power spectral density (a.u) Wavelength (nm) 21

22 OCS-lidar experiment in the Infrared InGaAs APD infrared detector 4 MHz acquisition system, 12 bits 11 cm diameter Newtonian telescope 22

23 OCS-lidar experiment in the Infrared YAG:Nd laser source 164 nm wavelength 9 mj per pulse 1 Hz repetition rate OPA laser source 15 nm wavelength 5 µj per pulse 1 khz repetition rate Range (km) 8 6 Range r (km) Lidar signal * r² (V.m²) Lidar signal * r² (mv.m²) 23

24 Optimization procedures Amplitude modulation functions Transmission (%) M(λ M, λ) λ M Wavelength (nm) H 2 O Absorption cross-section (x 1-22 cm²).95 T ( r, λ ) H2O M = λ P( λ) M( λ, λ) Tr (, λ) dλ λ P( λ) M( λ, λ) dλ M M T H2O.9.85 maximum minimum Central wavelength of M(λ) (nm) B. Thomas et al., «Remote sensing of atmospheric gases with optical correlation spectroscopy and lidar: first experimental result on water vapor profile measurements», APB, April

25 Statistical error: The signal noise Due to : The detector noise σ D The background noise σ B σ = σ + σ N D B Theoretical evaluation: σ D Detector Noise Equivalent Power σ B Assess by simulation (Libatran) Experimental evaluation: Lidar signal (mv) Range (m) Relative Frequency Signal (Volt) σ N 25

26 Systematic error: The model bias r ( r ) ( r ) 2 σ( λ) C( r ') dr ' 2 σ( λ) C( r ') dr ' TTG ( r, λ) = 1 2 σ( λ) Cr ( ') dr ' O 2 6. [CH 4 ] relative error Methane Optical Depth OD CH4 Development of a correction algorithm to reduce the model bias: C output C C input input <

27 Optical Correlation Spectroscopy Concentration measurement of a target gas in a cell Light switch Detectors Signal (a.u.) ON OFF Source 1 Source Input Signal Detector Measurement Signal Detector Time (a.u.) a b Modulation factor m (a.u.) m C meas (ppmv) I I 1 2 = 2 I1+ I2 27

28 OCS-Lidar formalism 2 K( λ) Or (, λ) P ( λ) MC ( λ) β( r, λ) T ( r, λ) ηλ ( ) dλ PC () r = + PNC () r Kλ Orλ P λ M λ βrλ T rλ ηλ dλ 2 ( ) (, ) ( ) NC ( ) (, ) (, ) ( ) P N K(λ) and O(r, λ) are achromatic β(r, λ) = β(r) is assumed to be wavelength independent η(λ) is assume to be part of the amplitude modulation M C (λ) or M NC (λ) PC () r P () r NC = 2 ( ) C ( ) (, ) P λ M λ T r λ dλ 2 ( ) NC ( ) (, ) P λ M λ T r λ dλ B. Thomas et al., «Remote Sensing of Trace Gases with Optical Correlation Spectroscopy and Lidar», APB, 18,

29 1.E-19 OH H 2 O 8.E-2 HCl C 2 H 2 Cross section (cm²) 6.E-2 4.E-2 2.E-2 Benzène CH4.E+ -2.E λ (nm) 29

30 Systematic error due to interfering species 2.E-2 1.E-2.E CH 4 Absorption Cross-section (cm²) 2.E-23 1.E-23.E E-22 5.E-23.E+ 1.5E-28 1.E-28 5.E E H 2 O N 2 O CO 3.E-21 2.E-21 1.E-21.E C 6 H 6 Wavelength (nm) B. Thomas et al., Remote Sensing of Trace Gases with Optical Correlation Spectroscopy and Lidar, APB, 212 3

31 Methane spectroscopy CH 4 absorption cross-section (cm²) 1E-18 2ν 3 band 1E-2 1E-22 1E-24 1E CH 4 absorption cross-section (cm²) 1.5E-2 1.E-2 5.E-21 R branch Wavelength (nm) Q branch.e Wavelength (nm) P branch 2ν 3 band Spectroscopic data from the HITRAN database 31

32 Methane (CH 4 ) The 2 nd most important anthropogenic greenhouse gas Global warming potential 25 times higher than carbon dioxide World average concentration: 1.8 ppm Global average methane concentration (NOAA credit) Methane concentration peaks in Boston, up to 15 times the background concentration (Crosson, GRL) 32

33 Water vapor spectroscopy H 2 O absorption cross-section (cm²) H 2 O absorption cross-section (cm²) 1E-2 1E-22 1E-24 1E-26 1E-28 1E-3 1E-32 6.E-23 4.E-23 2.E ν band 4ν band Wavelength (nm).e Wavelength (nm) Spectroscopic data from the HITRAN database 33

34 Systematic error due to water vapor Interfering species: Presence of water vapor interferes with the methane measurement Methane concentration relative error for different relative humidity (RH) error bar: [CH 4 ] relative error Optical extinction (m -1 ) 1.2x1-4 8.x1-5 4.x CH 4 Extinction (1.7 ppm) H 2 O Extinction (1 ppm) Wavelength (nm) 1E [CH 4 ] (ppm) B. Thomas et al., Remote Sensing of Trace Gases with Optical Correlation Spectroscopy and Lidar, APB, 212 RH +/- 4 % RH +/- 2 % RH +/- 1 % 34

35 Lidar formalism The lidar equation Pr () : Optical power K Pr () = Or (, λ) P λ) r ηλ ( ) dλ+ r² 2 ( β(, r λ) T (, λ) PN K : Constant (optics and electronics) Orλ (, ) : Overlap function P ( λ) : Laser power density ηλ ( ) P N : Detector quantum efficiency : Noise power (background and electronic noise) β(, r λ) Trλ (, ) : Atmospheric backscattering coefficient : Atmospheric transmission The extinction coefficient α : β(, r λ) = β (, r λ) + β (, r λ) m ( r ) T ( r, λ) = exp α( r ', λ) dr ' α(, r λ) = α (, r λ) + α (, r λ) m p p 35

36 OCS-lidar formalism OCS-lidar equation K 2 C() (, ) ( ) M C ( λ) (, ) T (, ) ( λ) r² P r = Orλ P λ β rλ rλ η dλ+ P N T(, r λ) = T (, r λ) T (, r λ) T (, r λ) m p TG ( r ) T ( r, λ) = exp σ( r ', λ) C( r ') dr ' TG Absorption cross-section: Absorption cross-section (a.u.) Wavelength (a.u.) σ(, r λ) Range resolved target gas (TG) concentration profile Cr ()? 36

37 Lidar: Light Detection And Ranging Elastic backscattering of laser pulses by molecules and particles Remote sensing measurements Time and range-resolved Range (km) Range corrected signal (V.m²) 37

38 Error analysis, accuracy and sensitivity Statistical errors Systematic errors Laser spectral fluctuations Photodetector noise Sky and background noise The OCS-lidar model Temperature and pressure Interfering species Spectroscopic data uncertainty Molecules and aerosols contribution Accuracy and sensitivity optimization Laser central wavelength Amplitude modulation functions B. Thomas et al., «Remote Sensing of Trace Gases with Optical Correlation Spectroscopy and Lidar», APB, 18,

Spectroscopic Applications of Quantum Cascade Lasers

Spectroscopic Applications of Quantum Cascade Lasers Spectroscopic Applications of Quantum Cascade Lasers F.K. Tittel, A. Kosterev, and R.F. Curl Rice University Houston, USA OUTLINE fkt@rice.edu http://www.ruf.rice.edu/~lasersci/ PQE 2000 Snowbird, UT Motivation

More information

Lecture 21. Constituent Lidar (3)

Lecture 21. Constituent Lidar (3) Lecture 21. Constituent Lidar (3) Motivations to study atmosphere constituents Lidar detection of atmospheric constituents (spectroscopic signatures to distinguish species) Metal atoms by resonance fluorescence

More information

Compact Hydrogen Peroxide Sensor for Sterilization Cycle Monitoring

Compact Hydrogen Peroxide Sensor for Sterilization Cycle Monitoring Physical Sciences Inc. VG15-012 Compact Hydrogen Peroxide Sensor for Sterilization Cycle Monitoring January 26, 2015 Krishnan R. Parameswaran, Clinton J. Smith, Kristin L. Galbally-Kinney, William J. Kessler

More information

CH4 IPDA LIDAR MISSION DATA SIMULATOR AND PROCESSOR FOR MERLIN:

CH4 IPDA LIDAR MISSION DATA SIMULATOR AND PROCESSOR FOR MERLIN: CH4 IPDA LIDAR MISSION DATA SIMULATOR AND PROCESSOR FOR MERLIN: PROTOTYPE DEVELOPMENT AT LMD/CNRS/ECOLE POLYTECHNIQUE Chomette Olivier 1 *, Raymond Armante 1, Cyril Crevoisier 1, Thibault Delahaye 1, Dimitri

More information

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Richard Miles and Arthur Dogariu Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Workshop on Oxygen Plasma Kinetics Sept 20, 2016 Financial support: ONR and MetroLaser

More information

9/5/16. Section 3-4: Radiation, Energy, Climate. Common Forms of Energy Transfer in Climate. Electromagnetic radiation.

9/5/16. Section 3-4: Radiation, Energy, Climate. Common Forms of Energy Transfer in Climate. Electromagnetic radiation. Section 3-4: Radiation, Energy, Climate Learning outcomes types of energy important to the climate system Earth energy balance (top of atm., surface) greenhouse effect natural and anthropogenic forcings

More information

Lecture 33. Aerosol Lidar (2)

Lecture 33. Aerosol Lidar (2) Lecture 33. Aerosol Lidar (2) Elastic Scattering, Raman, HSRL q Elastic-scattering lidar for aerosol detection q Single-channel vs multi-channel aerosol lidars q Measurement of aerosol extinction from

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

Lidar and radiosonde measurement campaign for the validation of ENVISAT atmospheric products

Lidar and radiosonde measurement campaign for the validation of ENVISAT atmospheric products Lidar and radiosonde measurement campaign for the validation of ENVISAT atmospheric products V. Cuomo, G. Pappalardo, A. Amodeo, C. Cornacchia, L. Mona, M. Pandolfi IMAA-CNR Istituto di Metodologie per

More information

Pulsed Photoacoustic Spectroscopy of I 2 and NO 2

Pulsed Photoacoustic Spectroscopy of I 2 and NO 2 Int J Thermophys (2012) 33:2055 2061 DOI 10.1007/s10765-012-1323-9 Pulsed Photoacoustic Spectroscopy of I 2 and NO 2 Fahem Yehya Anil K. Chaudhary Received: 30 January 2012 / Accepted: 26 September 2012

More information

Optical solitons and its applications

Optical solitons and its applications Physics 568 (Nonlinear optics) 04/30/007 Final report Optical solitons and its applications 04/30/007 1 1 Introduction to optical soliton. (temporal soliton) The optical pulses which propagate in the lossless

More information

Frequency combs for ultrasensitive molecular detection

Frequency combs for ultrasensitive molecular detection Frequency combs for ultrasensitive molecular detection Konstantin Vodopyanov CREOL Ind. Affil Symp., CREOL, March 13, 2015 Konstantin Vodopyanov p. 1 What are frequency combs? Theodor W. Hänsch and John

More information

Lecture 31. Constituent Lidar (3)

Lecture 31. Constituent Lidar (3) Lecture 31. Constituent Lidar (3) otational Vibrational-otational (V) aman DIAL Multiwavelength DIAL Comparison of Constituent Lidar Techniques Summary for Constituent Lidar Conventional aman DIAL for

More information

Chap.1. Introduction to Optical Remote Sensing

Chap.1. Introduction to Optical Remote Sensing Chap.1. Introduction to Optical Remote Sensing ORS active: LIDAR Francesc Rocadenbosch ETSETB, Dep. TSC, EEF Group Campus Nord, D4-016 roca@tsc.upc.edu INTRODUCTION LIDAR (LIgth Detection And Ranging)

More information

Lecture 32. Lidar Error and Sensitivity Analysis

Lecture 32. Lidar Error and Sensitivity Analysis Lecture 3. Lidar Error and Sensitivity Analysis Introduction Accuracy in lidar measurements Precision in lidar measurements Error analysis for Na Doppler lidar Sensitivity analysis Summary 1 Errors vs.

More information

Lecture 28. Aerosol Lidar (4) HSRL for Aerosol Measurements

Lecture 28. Aerosol Lidar (4) HSRL for Aerosol Measurements Lecture 28. Aerosol Lidar (4) HSRL for Aerosol Measurements Review of single- and multi-channel aerosol lidars Principle of High Spectral Resolution Lidar (HSRL) HSRL instrumentation University of Wisconsin

More information

Inaugural University of Michigan Science Olympiad Tournament

Inaugural University of Michigan Science Olympiad Tournament Inaugural University of Michigan Science Olympiad Tournament The test may be taken apart. Ties will be broken based on predetermined questions and quality of response. Remote Sensing Test length: 50 Minutes

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar Physical processes in lidar (continued) Doppler effect (Doppler shift and broadening) Boltzmann distribution Reflection

More information

Lecture 07. Fundamentals of Lidar Remote Sensing (5) Physical Processes in Lidar

Lecture 07. Fundamentals of Lidar Remote Sensing (5) Physical Processes in Lidar Lecture 07. Fundamentals of Lidar Remote Sensing (5) Physical Processes in Lidar Light interaction with objects (continued) Polarization of light Polarization in scattering Comparison of lidar equations

More information

II. WAVELENGTH SELECTION

II. WAVELENGTH SELECTION Ozone detection by DFB QCL absorption technique using Multipass cell S.S. Yenaganti 1, S.S.Kulkarni 2, A.J.Verma 3, N.Sreevalsen 4, V.Rathore 5 1 Department of Electronics and Telecommunications Engineering,

More information

OPTICAL MEASUREMENT OF ASIAN DUST OVER DAEJEON CITY IN 2016 BY DEPOLARIZATION LIDAR IN AD-NETWORK

OPTICAL MEASUREMENT OF ASIAN DUST OVER DAEJEON CITY IN 2016 BY DEPOLARIZATION LIDAR IN AD-NETWORK OPTICAL MEASUREMENT OF ASIAN DUST OVER DAEJEON CITY IN 2016 BY DEPOLARIZATION LIDAR IN AD-NETWORK Park Chan Bong 1*, Atsushi Shimizu 2, Nobuo Sugimoto 2 1 Dept. of Electronic Engineering, Mokwon University,

More information

1 Fundamentals of Lidar

1 Fundamentals of Lidar 1 Fundamentals of Lidar The lidar profiling technique (Fiocco, 1963) is based on the study of the interaction between a laser radiation sent into the atmosphere and the atmospheric constituents. The interaction

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

A-SCOPE: Objectives and concepts for an ESA mission to measure CO 2 from space with a lidar

A-SCOPE: Objectives and concepts for an ESA mission to measure CO 2 from space with a lidar A-SCOPE: Objectives and concepts for an ESA mission to measure CO 2 from space with a lidar Yannig Durand, Jérôme Caron, Paolo Bensi, Paul Ingmann, Jean-Loup Bézy, Roland Meynart European Space Agency

More information

First water vapor measurements over Athens, Greece, obtained by a combined Raman-elastic backscatter lidar system.

First water vapor measurements over Athens, Greece, obtained by a combined Raman-elastic backscatter lidar system. First water vapor measurements over Athens, Greece, obtained by a combined Raman-elastic backscatter lidar system. R.E. MAMOURI 1, A. PAPAYANNIS 1, G. TSAKNAKIS 1, V. AMIRIDIS 2 and M. KOUKOULI 3 1 National

More information

Optical Remote Sensing Techniques Characterize the Properties of Atmospheric Aerosols

Optical Remote Sensing Techniques Characterize the Properties of Atmospheric Aerosols Optical Remote Sensing Techniques Characterize the Properties of Atmospheric Aerosols Russell Philbrick a,b,c, Hans Hallen a, Andrea Wyant c, Tim Wright b, and Michelle Snyder a a Physics Department, and

More information

Application of high-precision temperature-controlled FBG f ilter and light source self-calibration technique in the BOTDR sensor system

Application of high-precision temperature-controlled FBG f ilter and light source self-calibration technique in the BOTDR sensor system Application of high-precision temperature-controlled FBG f ilter and light source self-calibration technique in the BOTDR sensor system Jiacheng Hu ( ) 1,2, Fuchang Chen ( ) 1,2, Chengtao Zhang ( ) 1,2,

More information

Atmospheric Methane: Untangling an Enigma

Atmospheric Methane: Untangling an Enigma Atmospheric Methane: Untangling an Enigma Julia Marshall, Martin Heimann, MPI for Biogeochemistry ESA UNCLASSIFIED - For Official Use Why are we interested in methane? Second-most important wellmixed greenhouse

More information

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases Radiation in the Earth's Atmosphere Part 1: Absorption and Emission by Atmospheric Gases Electromagnetic Waves Electromagnetic waves are transversal. Electric and magnetic fields are perpendicular. In

More information

4.2 CHARACTERISTICS OF ATMOSPHERIC AEROSOLS USING OPTICAL REMOTE SENSING

4.2 CHARACTERISTICS OF ATMOSPHERIC AEROSOLS USING OPTICAL REMOTE SENSING 4.2 CHARACTERISTICS OF ATMOSPHERIC AEROSOLS USING OPTICAL REMOTE SENSING C. Russell Philbrick *, Timothy Wright, Michelle Snyder, Hans Hallen North Carolina State University, Raleigh NC Andrea M. Brown,

More information

Optic Detectors Calibration for Measuring Ultra-High Energy Extensive Air Showers Cherenkov Radiation by 532 nm Laser

Optic Detectors Calibration for Measuring Ultra-High Energy Extensive Air Showers Cherenkov Radiation by 532 nm Laser Optic Detectors Calibration for Measuring Ultra-High Energy Extensive Air Showers Cherenkov Radiation by 532 nm Laser S. P. Knurenko 1, a, Yu. A. Egorov 1, b, I. S. Petrov 1, c Yu.G. Shafer Institute of

More information

Schemes to generate entangled photon pairs via spontaneous parametric down conversion

Schemes to generate entangled photon pairs via spontaneous parametric down conversion Schemes to generate entangled photon pairs via spontaneous parametric down conversion Atsushi Yabushita Department of Electrophysics National Chiao-Tung University? Outline Introduction Optical parametric

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

Atmospheric applications of laser filamentation from space

Atmospheric applications of laser filamentation from space Atmospheric applications of laser filamentation from space Vytautas Jukna, Arnaud Couairon, Carles Milián Centre de Physique théorique, CNRS École Polytechnique Palaiseau, France Christophe Praz, Leopold

More information

Frontiers in quantum cascade laser based analysis of greenhouse gas stable isotopes

Frontiers in quantum cascade laser based analysis of greenhouse gas stable isotopes Isotope - Ecology Course at the ETHZ 2018 Frontiers in quantum cascade laser based analysis of greenhouse gas stable isotopes Joachim Mohn joachim.mohn@empa.ch Air Pollution / Environmental Technology

More information

Thermal And Near infrared Sensor for carbon Observation (TANSO) On board the Greenhouse gases Observing SATellite (GOSAT) Research Announcement

Thermal And Near infrared Sensor for carbon Observation (TANSO) On board the Greenhouse gases Observing SATellite (GOSAT) Research Announcement Thermal And Near infrared Sensor for carbon Observation (TANSO) On board the Greenhouse gases Observing SATellite (GOSAT) Research Announcement Appendix A Outlines of GOSAT and TANSO Sensor GOSAT (Greenhouse

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition Contents Preface to the Second Edition Preface to the First Edition iii v 1 Introduction 1 1.1 Relevance for Climate and Weather........... 1 1.1.1 Solar Radiation.................. 2 1.1.2 Thermal Infrared

More information

Absorption and scattering

Absorption and scattering Absorption and scattering When a beam of radiation goes through the atmosphere, it encounters gas molecules, aerosols, cloud droplets, and ice crystals. These objects perturb the radiation field. Part

More information

A few Experimental methods for optical spectroscopy Classical methods Modern methods. Remember class #1 Generating fast LASER pulses

A few Experimental methods for optical spectroscopy Classical methods Modern methods. Remember class #1 Generating fast LASER pulses A few Experimental methods for optical spectroscopy Classical methods Modern methods Shorter class Remember class #1 Generating fast LASER pulses, 2017 Uwe Burghaus, Fargo, ND, USA W. Demtröder, Laser

More information

Let s make a simple climate model for Earth.

Let s make a simple climate model for Earth. Let s make a simple climate model for Earth. What is the energy balance of the Earth? How is it controlled? ó How is it affected by humans? Energy balance (radiant energy) Greenhouse Effect (absorption

More information

The Planck Blackbody Equation and Atmospheric Radiative Transfer

The Planck Blackbody Equation and Atmospheric Radiative Transfer The Planck Blackbody Equation and Atmospheric Radiative Transfer Roy Clark Ventura Photonics There appears to be a lot of confusion over the use of the terms blackbody absorption and equilibrium in the

More information

THz field strength larger than MV/cm generated in organic crystal

THz field strength larger than MV/cm generated in organic crystal SwissFEL Wir schaffen Wissen heute für morgen 1 2 C. Vicario 1, R. Clemens 1 and C. P. Hauri 1,2 THz field strength larger than MV/cm generated in organic crystal 10/16/12 Workshop on High Field THz science

More information

High Sensitivity Gas Sensor Based on IR Spectroscopy Technology and Application

High Sensitivity Gas Sensor Based on IR Spectroscopy Technology and Application PHOTONIC SENSORS / Vol. 6, No. 2, 2016: 127 131 High Sensitivity Gas Sensor Based on IR Spectroscopy Technology and Application Hengyi LI Department of Electronic Information Engineering, Jincheng College

More information

Multi-cycle THz pulse generation in poled lithium niobate crystals

Multi-cycle THz pulse generation in poled lithium niobate crystals Laser Focus World April 2005 issue (pp. 67-72). Multi-cycle THz pulse generation in poled lithium niobate crystals Yun-Shik Lee and Theodore B. Norris Yun-Shik Lee is an assistant professor of physics

More information

First water vapor measurements over Athens, Greece, obtained by a combined Raman-elastic backscatter lidar system

First water vapor measurements over Athens, Greece, obtained by a combined Raman-elastic backscatter lidar system First water vapor measurements over Athens, Greece, obtained by a combined Raman-elastic backscatter lidar system R. E. Mamouri (1,*), A. Papayannis (1), G. Tsaknakis (1), V. Amiridis (2) and M. Koukouli

More information

Exploring the Atmosphere with Lidars

Exploring the Atmosphere with Lidars Exploring the Atmosphere with Lidars 2. Types of Lidars S Veerabuthiran S Veerabuthiran is working as a research fellow in Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum. His research

More information

The Quest for Consistency and Accuracy of Spectroscopic Parameters in HITRAN:

The Quest for Consistency and Accuracy of Spectroscopic Parameters in HITRAN: The Quest for Consistency and Accuracy of Spectroscopic Parameters in HITRAN: Bridge between Archive and Application Laurence S. Rothman Harvard-Smithsonian Center for Astrophysics Cambridge MA HITRAN

More information

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Information for Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Figure 1. Simulated from pristine graphene gratings at different Fermi energy

More information

Behavior and Energy States of Photogenerated Charge Carriers

Behavior and Energy States of Photogenerated Charge Carriers S1 Behavior and Energy States of Photogenerated Charge Carriers on Pt- or CoOx-loaded LaTiO2N Photocatalysts: Time-resolved Visible to mid-ir Absorption Study Akira Yamakata, 1,2* Masayuki Kawaguchi, 1

More information

Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs)

Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs) Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs) FRISNO-9 Dominique Elser 15/02/2007 GAWBS Theory Thermally excited acoustic fiber vibrations at certain resonance frequencies

More information

Fundamentals of Atmospheric Radiation and its Parameterization

Fundamentals of Atmospheric Radiation and its Parameterization Source Materials Fundamentals of Atmospheric Radiation and its Parameterization The following notes draw extensively from Fundamentals of Atmospheric Physics by Murry Salby and Chapter 8 of Parameterization

More information

Study of the Influence of Thin Cirrus Clouds on Satellite Radiances Using Raman Lidar and GOES Data

Study of the Influence of Thin Cirrus Clouds on Satellite Radiances Using Raman Lidar and GOES Data Study of the Influence of Thin Cirrus Clouds on Satellite Radiances Using Raman Lidar and GOES Data D. N. Whiteman, D. O C. Starr, and G. Schwemmer National Aeronautics and Space Administration Goddard

More information

Lecture 6 - spectroscopy

Lecture 6 - spectroscopy Lecture 6 - spectroscopy 1 Light Electromagnetic radiation can be thought of as either a wave or as a particle (particle/wave duality). For scattering of light by particles, air, and surfaces, wave theory

More information

Lecture 2: principles of electromagnetic radiation

Lecture 2: principles of electromagnetic radiation Remote sensing for agricultural applications: principles and methods Lecture 2: principles of electromagnetic radiation Instructed by Prof. Tao Cheng Nanjing Agricultural University March Crop 11, Circles

More information

Observation of Tropospheric Aerosol Using Mie Scattering LIDAR at Srisamrong, Sukhothai Province

Observation of Tropospheric Aerosol Using Mie Scattering LIDAR at Srisamrong, Sukhothai Province NU Science Journal 27; 4(1): - Observation of Tropospheric Aerosol Using Mie Scattering LIDAR at Srisamrong, Sukhothai Province Siriluk Ruangrungrote 1 *, Arunee Intasorn 1 and Akkaneewut Chabangbon 2

More information

NTUA. A. Georgakopoulou. A. Papayannis1, A. Aravantinos2 NATIONAL TECHNICAL UNIVERSITY OF ATHENS TECHNOLOGICAL EDUCATIONAL INSTIDUTION OF ATHENS SIENA

NTUA. A. Georgakopoulou. A. Papayannis1, A. Aravantinos2 NATIONAL TECHNICAL UNIVERSITY OF ATHENS TECHNOLOGICAL EDUCATIONAL INSTIDUTION OF ATHENS SIENA High Spectral Resolution LIDAR Receivers, to Measure Aerosol to Molecular Scattering Ratio in Bistatic Mode, for use in Atmospheric Monitoring for EAS Detectors E. Fokitis1, P. Fetfatzis1, 1, S. Maltezos1

More information

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean C. Marty, R. Storvold, and X. Xiong Geophysical Institute University of Alaska Fairbanks, Alaska K. H. Stamnes Stevens Institute

More information

Electromagnetic Radiation and Scientific Instruments. PTYS April 1, 2008

Electromagnetic Radiation and Scientific Instruments. PTYS April 1, 2008 Electromagnetic Radiation and Scientific Instruments PTYS 206-2 April 1, 2008 Announcements Deep Impact 6 PM Wednesday Night Pizza, no beer Watch at home if you can t watch here. It will be discussed in

More information

Chem 155 Midterm Exam Page 1 of 10 Spring 2010 Terrill

Chem 155 Midterm Exam Page 1 of 10 Spring 2010 Terrill Chem 155 Midterm Exam Page 1 of 10 ame Signature 1. Mercury (Hg) is is believed to be hazardous to human neurological health at extremely low concentrations. Fortunately EPA Method 45.7 cold vapor atomic

More information

Detection of HONO using Incoherent Broadband Cavity-Enhanced Absorption Spectroscopy (IBBCEAS)

Detection of HONO using Incoherent Broadband Cavity-Enhanced Absorption Spectroscopy (IBBCEAS) Detection of HONO using Incoherent Broadband Cavity-Enhanced Absorption Spectroscopy (IBBCEAS) A. A. Ruth Department of Physics, University College Cork, Cork, Ireland Hans-Peter Dorn (FZ Jülich, J IEK-8)

More information

Plasmonic sensing of heat transport and phase change near solid-liquid interfaces

Plasmonic sensing of heat transport and phase change near solid-liquid interfaces Plasmonic sensing of heat transport and phase change near solid-liquid interfaces David G. Cahill and Jonglo Park Department of Materials Science and Engineering University of Illinois at Urbana-Champaign

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

The Spectral Radiative Effects of Inhomogeneous Clouds and Aerosols

The Spectral Radiative Effects of Inhomogeneous Clouds and Aerosols The Spectral Radiative Effects of Inhomogeneous Clouds and Aerosols S. Schmidt, B. Kindel, & P. Pilewskie Laboratory for Atmospheric and Space Physics University of Colorado SORCE Science Meeting, 13-16

More information

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Kinds of energy Energy transfer mechanisms Radiation: electromagnetic spectrum, properties & principles Solar constant Atmospheric influence

More information

Time and space resolved spectroscopy of nanoenergetic materials Dana Dlott

Time and space resolved spectroscopy of nanoenergetic materials Dana Dlott Time and space resolved spectroscopy of nanoenergetic materials Dana Dlott Hyunung Yu Selezion A. Hambir School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory University of Illinois

More information

ВЛИЯНИЕ ТОЧНОСТИ СПЕКТРОСКОПИЧЕСКОЙ ИНФОРМАЦИИ В ЗАДАЧАХ МОНИТОРИНГА МЕТАНА

ВЛИЯНИЕ ТОЧНОСТИ СПЕКТРОСКОПИЧЕСКОЙ ИНФОРМАЦИИ В ЗАДАЧАХ МОНИТОРИНГА МЕТАНА ВЛИЯНИЕ ТОЧНОСТИ СПЕКТРОСКОПИЧЕСКОЙ ИНФОРМАЦИИ В ЗАДАЧАХ МОНИТОРИНГА МЕТАНА М.Ю.Катаев, А.В.Никитин Институт оптики атмосферы СО РАН INFLUENCE OF THE SPECTROSCOPIC INFORMATION ACCURACY IN TASKS OF THE

More information

Lecture 7: Optical Spectroscopy. Astrophysical Spectroscopy. Broadband Filters. Fabry-Perot Filters. Interference Filters. Prism Spectrograph

Lecture 7: Optical Spectroscopy. Astrophysical Spectroscopy. Broadband Filters. Fabry-Perot Filters. Interference Filters. Prism Spectrograph Lecture 7: Optical Spectroscopy Outline 1 Astrophysical Spectroscopy 2 Broadband Filters 3 Fabry-Perot Filters 4 Interference Filters 5 Prism Spectrograph 6 Grating Spectrograph 7 Fourier Transform Spectrometer

More information

Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006

Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006 Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006 1. Examples of advantages and disadvantages with laser-based combustion diagnostic techniques: + Nonintrusive + High

More information

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology Highlights of 2004 Micronova Department of Electrical and Communications Engineering Micronova Seminar 3 December 2004 Group Leader: Hanne Ludvigsen Postdoctoral researcher: Goëry Genty Postgraduate students:

More information

E-PROFILE: Glossary of lidar and ceilometer variables. compiled by: I. Mattis and F. Wagner

E-PROFILE: Glossary of lidar and ceilometer variables. compiled by: I. Mattis and F. Wagner E-PROFILE: Glossary of lidar and ceilometer variables compiled by: I. Mattis and F. Wagner March 14 th, 2014 Contents 1 Introduction 4 2 Glossary 5 Theoretical background............................ 5

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/331/6014/189/dc1 Supporting Online Material for Light-Induced Superconductivity in a Stripe-Ordered Cuprate D. Fausti,* R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M.

More information

CHAPTER 1. MEASURES OF ATMOSPHERIC COMPOSITION

CHAPTER 1. MEASURES OF ATMOSPHERIC COMPOSITION 1 CHAPTER 1. MEASURES OF ATMOSPHERIC COMPOSITION The objective of atmospheric chemistry is to understand the factors that control the concentrations of chemical species in the atmosphere. In this book

More information

Modeling of Trace Gas Sensors

Modeling of Trace Gas Sensors Modeling of Trace Gas Sensors Susan E. Minkoff 1, Noémi Petra 2, John Zweck 1, Anatoliy Kosterev 3, and James Doty 3 1 Department of Mathematical Sciences, University of Texas at Dallas 2 Institute for

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

How to measure packaging-induced strain in high-brightness diode lasers?

How to measure packaging-induced strain in high-brightness diode lasers? How to measure packaging-induced strain in high-brightness diode lasers? Jens W. Tomm Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie Berlin Max-Born-Str. 2 A, D-12489 Berlin, Germany

More information

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing in in December 4, 27 Outline in 2 : RTE Consider plane parallel Propagation of a signal with intensity (radiance) I ν from the top of the to a receiver on Earth Take a layer of thickness dz Layer will

More information

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave spectroscopy for hyperfine structure t measurements Energy of a hyperfine state Hyperfine coupling constants: A:

More information

OPTICAL COMMUNICATIONS S

OPTICAL COMMUNICATIONS S OPTICAL COMMUNICATIONS S-108.3110 1 Course program 1. Introduction and Optical Fibers 2. Nonlinear Effects in Optical Fibers 3. Fiber-Optic Components I 4. Transmitters and Receivers 5. Fiber-Optic Measurements

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Lecture 11: Doppler wind lidar

Lecture 11: Doppler wind lidar Lecture 11: Doppler wind lidar Why do we study winds? v Winds are the most important variable studying dynamics and transport in the atmosphere. v Wind measurements are critical to improvement of numerical

More information

Atmospheric CO 2 Concentration Measurements to Cloud Tops with an Airborne Lidar

Atmospheric CO 2 Concentration Measurements to Cloud Tops with an Airborne Lidar Atmospheric CO 2 Concentration Measurements to Cloud Tops with an Airborne Lidar Jianping Mao 1, Anand Ramanathan 1, James B. Abshire 2, S. Randy Kawa 2, Haris Riris 2, Graham R. Allan 3, Michael Rodriguez

More information

Chapter 5 Telescopes

Chapter 5 Telescopes Chapter 5 Telescopes Units of Chapter 5 Telescope Design Images and Detectors The Hubble Space Telescope Telescope Size High-Resolution Astronomy Radio Astronomy Interferometry Space-Based Astronomy Full-Spectrum

More information

Improved diode laser spectrometer for ortho/para ratio measurements in water vapor

Improved diode laser spectrometer for ortho/para ratio measurements in water vapor Improved diode laser spectrometer for ortho/para ratio measurements in water vapor A.I. Nadezhdinskii, D.Yu.Namestnikov, K.P.Pavlova, Ya.Ya. Ponurovskii, D.B. Stavrovskii A. M. Prokhorov General Physics

More information

Lecture 26. Wind Lidar (4) Direct Detection Doppler Lidar

Lecture 26. Wind Lidar (4) Direct Detection Doppler Lidar Lecture 26. Wind Lidar (4) Direct Detection Doppler Lidar Considerations (Accuracy and Precision) for DDL Na-DEMOF DDL -- Multi-frequency edge-filter DDL New development of DDL -- DDL based on Fizeau etalon

More information

PB I FEL Gas-Monitor Detectors for FEL Online Photon Beam Diagnostics BESSY

PB I FEL Gas-Monitor Detectors for FEL Online Photon Beam Diagnostics BESSY FEL 2004 Gas-Monitor Detectors for FEL Online Photon Beam Diagnostics M. Richter S.V. Bobashev, J. Feldhaus A. Gottwald, U. Hahn A.A. Sorokin, K. Tiedtke BESSY PTB s Radiometry Laboratory at BESSY II 1

More information

Future Light Sources March 5-9, 2012 Low- alpha mode at SOLEIL 1

Future Light Sources March 5-9, 2012 Low- alpha mode at SOLEIL 1 Introduction: bunch length measurements Reminder of optics Non- linear dynamics Low- alpha operation On the user side: THz and X- ray short bunch science CSR measurement and modeling Future Light Sources

More information

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS 1 CHAPTER 8 AEROSOLS Aerosols in the atmosphere have several important environmental effects They are a respiratory health hazard at the high concentrations found in urban environments They scatter and

More information

Ultrafast laser-plasma sources for 50-fs hard x-ray pulse generation and laser pump x-ray probe measurements of solvated transition metal complexes

Ultrafast laser-plasma sources for 50-fs hard x-ray pulse generation and laser pump x-ray probe measurements of solvated transition metal complexes Ultrafast laser-plasma sources for 50-fs hard x-ray pulse generation and laser pump x-ray probe measurements of solvated transition metal complexes ERL Workshop, Cornell University June 2006 C. Rose-Petruck

More information

Attosecond laser systems and applications

Attosecond laser systems and applications Attosecond laser systems and applications Adrian N. Pfeiffer Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 8th Annual Laser Safety Officer Workshop September

More information

Lecture 16. Temperature Lidar (5) Resonance Doppler Techniques

Lecture 16. Temperature Lidar (5) Resonance Doppler Techniques LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 06 Lecture 6. Temperature Lidar (5) Resonance Doppler Techniques q Resonance Fluorescence Na Doppler Lidar Ø Na Structure and Spectroscopy Ø Scanning

More information

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space.

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space. www.esa.int EarthCARE mission instruments ESA s EarthCARE satellite payload comprises four instruments: the Atmospheric Lidar, the Cloud Profiling Radar, the Multi-Spectral Imager and the Broad-Band Radiometer.

More information

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca Femtosecond laser microfabrication in polymers Prof. Dr. Cleber R. Mendonca laser microfabrication focus laser beam on material s surface laser microfabrication laser microfabrication laser microfabrication

More information

Compact and low-noise quartz-enhanced photoacoustic sensor for sub-ppm ethylene detection in atmosphere

Compact and low-noise quartz-enhanced photoacoustic sensor for sub-ppm ethylene detection in atmosphere Compact and low-noise quartz-enhanced photoacoustic sensor for sub-ppm ethylene detection in atmosphere P. Patimisco a,b A. Sampaolo a, M. Giglio a, F. Sgobba a, H. Rossmadl c, V. Mackowiak c, B. Gross

More information

LIDAR. Natali Kuzkova Ph.D. seminar February 24, 2015

LIDAR. Natali Kuzkova Ph.D. seminar February 24, 2015 LIDAR Natali Kuzkova Ph.D. seminar February 24, 2015 What is LIDAR? Lidar (Light Detection And Ranging) is an optical remote sensing technology that measures distance by illuminating a target with a laser

More information

ELTECdata #138 Computing the Relationship of Pyroelectric Detector Output to Gas Concentration

ELTECdata #138 Computing the Relationship of Pyroelectric Detector Output to Gas Concentration ELTEC INSTRUMENTS, INC. ELTECdata #138 Computing the Relationship of Pyroelectric Detector Output to Gas Concentration We are often asked what the relationship is between the changes in detector output

More information

Supplemental material for Bound electron nonlinearity beyond the ionization threshold

Supplemental material for Bound electron nonlinearity beyond the ionization threshold Supplemental material for Bound electron nonlinearity beyond the ionization threshold 1. Experimental setup The laser used in the experiments is a λ=800 nm Ti:Sapphire amplifier producing 42 fs, 10 mj

More information

Cantilever enhanced tunable diode laser photoacoustic spectroscopy in gas purity measurement case study: acetylene in ethylene

Cantilever enhanced tunable diode laser photoacoustic spectroscopy in gas purity measurement case study: acetylene in ethylene Cantilever enhanced tunable diode laser photoacoustic spectroscopy in gas purity measurement case study: acetylene in ethylene Juho Uotila, Jussi Raittila, Ismo Kauppinen ¹Gasera Ltd., Tykistökatu 4, 20520

More information

Raman and elastic lidar techniques for aerosol observation at CIAO

Raman and elastic lidar techniques for aerosol observation at CIAO Raman and elastic lidar techniques for aerosol observation at CIAO F. Madonna, A. Amodeo, I. Binietoglou, G. D Amico, A. Giunta, L. Mona, G. Pappalardo Consiglio Nazionale delle Ricerche, Istituto di Metodologie

More information

Composition, Structure and Energy. ATS 351 Lecture 2 September 14, 2009

Composition, Structure and Energy. ATS 351 Lecture 2 September 14, 2009 Composition, Structure and Energy ATS 351 Lecture 2 September 14, 2009 Composition of the Atmosphere Atmospheric Properties Temperature Pressure Wind Moisture (i.e. water vapor) Density Temperature A measure

More information