Graphing Your Motion. Name Period Group

Size: px
Start display at page:

Download "Graphing Your Motion. Name Period Group"

Transcription

1 Graphing Your Motion Name Period Group Graphs made using a computer-interfaced motion detector can be used to study motion. A motion detector measures the distance to the nearest object in front of it by emitting and receiving pulses of ultrasound. The computer reports these measurements as position along a line and can calculate velocity and acceleration values. In this experiment, you will use a computer-interfaced motion detector to produce graphs of your own motion. Purpose: Use a motion detector to measure position and velocity. Use a computer to produce graphs of your motion and analyze and interpret the graphs. Materials: COW, USB cord, motion detector, meter stick, and masking tape Procedure: Part A Distance 1. Find a clear spot to work where you won t interfere with another group s data. 2. Fasten a motion detector to a table top facing an aisle. Connect the motion detector to the computer. 3. Use masking tape to tape a 4m straight line on the floor directly in front of the motion detector. Mark the tape at meter intervals from the motion detector. 4. Prepare the computer for data collection. Open the Logger Pro program on the desktop. From the File menu, choose Open and then find the folder Physical Science with Vernier. Next, you will need to open the file 35a Graphing Your Motion. A blank position vs. time graph should appear on the screen. 5. Have someone stand at the 1m mark on the tape line facing the motion detector and the computer screen. Click Collect, then have them slowly walk backwards away from the motion detector. Walk along the tape line and watch the screen. 6. Choose Store Latest Run on the Experiment menu. Repeat step 5, moving faster this time. 7. Sketch the graph produced on the screen.

2 Questions: Part A Distance 1. Describe the difference between the two lines on the graph you made in Step 7. Explain why the lines are different. 2. How would the graph change if you walked toward the motion detector rather than away from it? Test your answer using the motion detector and then sketch it below. Procedure: Part B Distance 8. Open the file, 35b Graphing Your Motion. A position vs. time graph should appear on the screen. 9. Try to match the line by moving toward or away from the motion detector. Have everyone in your group try to match the broken line. Each person should sketch their own results. Questions: Part B Distance 3. What did you have to do to match the graph you were given in Step 8? 4. Sketch a position vs. time graph for a car that starts slowly, moves down the street, stops at the stop sign, and then starts slowly again. Procedure: Part C Velocity 10. Open the file, 35c Graphing Your Motion. A blank velocity vs. time graph should appear on the screen. The vertical axis will have the velocity scaled from -2 to 2 m/s. The horizontal axis will have time scaled from 0 to 3 seconds.

3 11. On the Experiment menu, choose Data Collection. You need to change the Sampling Ratio to 20 samples/second. Then click Done. 12. Have someone stand at the 1m mark on the tape line facing the motion detector and the computer screen. Click Collect, then slowly walk backwards away from the motion detector. 13. Choose Store Latest Run on the Experiment menu. Repeat Step 12, moving faster this time. 14. Sketch your graph. Questions: Part C Velocity 5. Describe the difference between the two lines on the graph made in Step 14. Explain why the lines are different. 6. What is the definition of velocity? Procedure: Part D Velocity 15. Open the file, 35d Graphing Your Motion. A velocity vs. time graph, with a line, should appear on the screen. 16. On the Experiment menu, choose Data Collection. You need to change the Sampling Ratio to 10 samples/second. 17. Try to match the line by moving toward or away from the motion detector. Have everyone in the group try to match the line. Each person in the group should sketch their own results.

4 Questions: Part D Velocity 7. What did you have to do to match the graph you were given in Step 15? How well does your graph agree with the graph provided? 8. Describe the acceleration part of your velocity vs. time graph. 9. Describe the deceleration part of your velocity vs. time graph. 10. What is acceleration? 11. Sketch a velocity vs. time graph for a person who walks, stops for a few seconds, and then starts to run. 12. Describe the motion needed to make this graph. You can check your answers using the motion detector. Position Time

5 13. Describe the motion needed to make this graph. You can check your answers using the motion detector. Velocity Time

Graphing Motion (Part 1 Distance)

Graphing Motion (Part 1 Distance) Unit Graphing Motion (Part 1 Distance) Directions: Work in your group (2 or 3 people) on the following activity. Choose ONE group member to be the subject (the person who walks to/from motion detector).

More information

Falling Objects. Experiment OBJECTIVES MATERIALS

Falling Objects. Experiment OBJECTIVES MATERIALS Falling Objects Experiment 40 Galileo tried to prove that all falling objects accelerate downward at the same rate. Falling objects do accelerate downward at the same rate in a vacuum. Air resistance,

More information

Understanding 1D Motion

Understanding 1D Motion Understanding 1D Motion OBJECTIVE Analyze the motion of a student walking across the room. Predict, sketch, and test position vs. time kinematics graphs. Predict, sketch, and test velocity vs. time kinematics

More information

Falling Objects. LabQuest OBJECTIVES MATERIALS PROCEDURE

Falling Objects. LabQuest OBJECTIVES MATERIALS PROCEDURE Falling Objects LabQuest 40 Galileo tried to prove that all falling objects accelerate downward at the same rate. Falling objects do accelerate downward at the same rate in a vacuum. Air resistance, however,

More information

Evaluation copy. Momentum: A Crash Lesson. computer OBJECTIVES MATERIALS

Evaluation copy. Momentum: A Crash Lesson. computer OBJECTIVES MATERIALS Momentum: A Crash Lesson Computer 38 An object s momentum depends on both its mass and its velocity. Momentum can be expressed by the formula p = mv where p = momentum (in g m/s), m = mass (in g), and

More information

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below:

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below: PRE-LAB PREPARATION SHEET FOR LAB 1: INTRODUCTION TO MOTION (Due at the beginning of Lab 1) Directions: Read over Lab 1 and then answer the following questions about the procedures. 1. In Activity 1-1,

More information

Static and Kinetic Friction

Static and Kinetic Friction Experiment Static and Kinetic Friction Prelab Questions 1. Examine the Force vs. time graph and the Position vs. time graph below. The horizontal time scales are the same. In Region I, explain how an object

More information

Prelab for Friction Lab

Prelab for Friction Lab Prelab for Friction Lab 1. Predict what the graph of force vs. time will look like for Part 1 of the lab. Ignore the numbers and just sketch a qualitative graph 12-1 Dual-Range Force Sensor Friction and

More information

THE CONSERVATION OF ENERGY - PENDULUM -

THE CONSERVATION OF ENERGY - PENDULUM - THE CONSERVATION OF ENERGY - PENDULUM - Introduction The purpose of this experiment is to measure the potential energy and the kinetic energy of a mechanical system and to quantitatively compare the two

More information

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION Name: Partner s Name: EXPERIMENT 500-2 MOTION PLOTS & FREE FALL ACCELERATION APPARATUS Track and cart, pole and crossbar, large ball, motion detector, LabPro interface. Software: Logger Pro 3.4 INTRODUCTION

More information

LAB 2: INTRODUCTION TO MOTION

LAB 2: INTRODUCTION TO MOTION Lab 2 - Introduction to Motion 3 Name Date Partners LAB 2: INTRODUCTION TO MOTION Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise Objectives To explore how various motions are represented

More information

Lab 4 Motion in One-Dimension Part 2: Position, Velocity and Acceleration Graphically and Statistically (pre-requisite Lab3)

Lab 4 Motion in One-Dimension Part 2: Position, Velocity and Acceleration Graphically and Statistically (pre-requisite Lab3) Lab 4 Motion in One-Dimension Part 2: Position, Velocity and Acceleration Graphically and Statistically (pre-requisite Lab3) Objectives: To obtain an understanding of position, velocity, and acceleration

More information

Seasons and Angle of Insolation

Seasons and Angle of Insolation Computer Seasons and Angle of Insolation 29 (Adapted from Exp 29 Seasons and Angle of Insolation from the Earth Science with Vernier lab manual.) Have you ever wondered why temperatures are cooler in the

More information

LAB 2 - ONE DIMENSIONAL MOTION

LAB 2 - ONE DIMENSIONAL MOTION Name Date Partners L02-1 LAB 2 - ONE DIMENSIONAL MOTION OBJECTIVES Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise To learn how to use a motion detector and gain more familiarity

More information

Experiment 1: The Same or Not The Same?

Experiment 1: The Same or Not The Same? Experiment 1: The Same or Not The Same? Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to collect data and calculate statistics (mean and standard deviation). 2. Explain

More information

Static and Kinetic Friction

Static and Kinetic Friction Dual-Range Force Sensor Computer 12 If you try to slide a heavy box resting on the floor, you may find it difficult to get the box moving. Static friction is the force that counters your force on the box.

More information

EXPERIMENT 4 ONE DIMENSIONAL MOTION

EXPERIMENT 4 ONE DIMENSIONAL MOTION EXPERIMENT 4 ONE DIMENSIONAL MOTION INTRODUCTION This experiment explores the meaning of displacement; velocity, acceleration and the relationship that exist between them. An understanding of these concepts

More information

Linear Motion with Constant Acceleration

Linear Motion with Constant Acceleration Linear Motion 1 Linear Motion with Constant Acceleration Overview: First you will attempt to walk backward with a constant acceleration, monitoring your motion with the ultrasonic motion detector. Then

More information

Work and Energy. This sum can be determined graphically as the area under the plot of force vs. distance. 1

Work and Energy. This sum can be determined graphically as the area under the plot of force vs. distance. 1 Work and Energy Experiment 18 Work is a measure of energy transfer. In the absence of friction, when positive work is done on an object, there will be an increase in its kinetic or potential energy. In

More information

Chapter 4. Forces and the Laws of Motion. CH 4 Forces and the Laws of Motion.notebook. April 09, Changes in Motion. A. Force

Chapter 4. Forces and the Laws of Motion. CH 4 Forces and the Laws of Motion.notebook. April 09, Changes in Motion. A. Force CH 4 Forces and the Laws of Motion.notebook Chapter 4 A. Force April 09, 2015 Changes in Motion Forces and the Laws of Motion 1. Defined as the cause of an acceleration, or the change in an object s motion,

More information

Air Resistance. Experiment OBJECTIVES MATERIALS

Air Resistance. Experiment OBJECTIVES MATERIALS Air Resistance Experiment 13 When you solve physics problems involving free fall, often you are told to ignore air resistance and to assume the acceleration is constant and unending. In the real world,

More information

PHY221 Lab 2 - Experiencing Acceleration: Motion with constant acceleration; Logger Pro fits to displacement-time graphs

PHY221 Lab 2 - Experiencing Acceleration: Motion with constant acceleration; Logger Pro fits to displacement-time graphs Page 1 PHY221 Lab 2 - Experiencing Acceleration: Motion with constant acceleration; Logger Pro fits to displacement-time graphs Print Your Name Print Your Partners' Names You will return this handout to

More information

Work and Energy. computer masses (200 g and 500 g) If the force is constant and parallel to the object s path, work can be calculated using

Work and Energy. computer masses (200 g and 500 g) If the force is constant and parallel to the object s path, work can be calculated using Work and Energy OBJECTIVES Use a Motion Detector and a Force Sensor to measure the position and force on a hanging mass, a spring, and a dynamics cart. Determine the work done on an object using a force

More information

The Magnetic Field of a Permanent Magnet. Evaluation copy

The Magnetic Field of a Permanent Magnet. Evaluation copy The Magnetic Field of a Permanent Magnet Computer 31 A bar magnet is called a dipole since it has two poles, commonly labeled North and South. Breaking a magnet in two does not produce two isolated poles;

More information

Air Resistance. Experiment OBJECTIVES MATERIALS

Air Resistance. Experiment OBJECTIVES MATERIALS Air Resistance Experiment 13 When you solve physics problems involving free fall, often you are told to ignore air resistance and to assume the acceleration is constant and unending. In the real world,

More information

PRELAB IMPULSE AND MOMENTUM

PRELAB IMPULSE AND MOMENTUM Impulse Momentum and Jump PRELAB IMPULSE AND MOMENTUM. In a car collision, the driver s body must change speed from a high value to zero. This is true whether or not an airbag is used, so why use an airbag?

More information

Ch.8: Forces as Interactions

Ch.8: Forces as Interactions Name: Lab Partners: Date: Ch.8: Forces as Interactions Investigation 1: Newton s Third Law Objective: To learn how two systems interact. To identify action/reaction pairs of forces. To understand and use

More information

Conservation of Energy and Momentum

Conservation of Energy and Momentum Objectives Conservation of Energy and Momentum You will test the extent to which conservation of momentum and conservation of energy apply to real-world elastic and inelastic collisions. Equipment air

More information

The Phase Change Lab: Freezing and Melting of Water

The Phase Change Lab: Freezing and Melting of Water The Phase Change Lab: Freezing and Melting of Water Experiment 3 Freezing temperature is the temperature at which a substance turns from a liquid to a solid. Melting temperature is the temperature at which

More information

LabQuest 14. Pendulum Periods

LabQuest 14. Pendulum Periods Pendulum Periods LabQuest 14 A swinging pendulum keeps a very regular beat. It is so regular, in fact, that for many years the pendulum was the heart of clocks used in astronomical measurements at the

More information

Picket Fence Free Fall

Picket Fence Free Fall Picket Fence Free Fall Experiment 5 We say an object is in free fall when the only force acting on it is the Earth s gravitational force. No other forces can be acting; in particular, air resistance must

More information

THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY

THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY Background Remember graphs are not just an evil thing your teacher makes you create, they are a means of communication. Graphs are a way of communicating

More information

Static and Kinetic Friction

Static and Kinetic Friction Static and Kinetic Friction If you try to slide a heavy box resting on the floor, you may find it difficult to get the box moving. Static friction is the force that is counters your force on the box. If

More information

Purpose of the experiment

Purpose of the experiment Seasons and Angle of Insolation ENSC 162 Solar Energy Lab Purpose of the experiment Use a Temperature Probe to monitor simulated warming of your city by the sun in the winter. Use a Temperature Probe monitor

More information

LAB 4: FORCE AND MOTION

LAB 4: FORCE AND MOTION Lab 4 - Force & Motion 37 Name Date Partners LAB 4: FORCE AND MOTION A vulgar Mechanik can practice what he has been taught or seen done, but if he is in an error he knows not how to find it out and correct

More information

2: SIMPLE HARMONIC MOTION

2: SIMPLE HARMONIC MOTION 2: SIMPLE HARMONIC MOTION Motion of a Mass Hanging from a Spring If you hang a mass from a spring, stretch it slightly, and let go, the mass will go up and down over and over again. That is, you will get

More information

Energy of a Tossed Ball. Evaluation Copy. Motion Detector. Figure 1. volleyball, basketball, or other similar

Energy of a Tossed Ball. Evaluation Copy. Motion Detector. Figure 1. volleyball, basketball, or other similar Energy of a Tossed Ball Computer 16 When a juggler tosses a bean ball straight upward, the ball slows down until it reaches the top of its path and then speeds up on its way back down. In terms of energy,

More information

Cart on a Ramp. Evaluation Copy. Figure 1. Vernier Dynamics Track. Motion Detector Bracket

Cart on a Ramp. Evaluation Copy. Figure 1. Vernier Dynamics Track. Motion Detector Bracket Cart on a Ramp Computer 3 This experiment uses an incline and a low-friction cart. If you give the cart a gentle push up the incline, the cart will roll upward, slow and stop, and then roll back down,

More information

Motion II. Goals and Introduction

Motion II. Goals and Introduction Motion II Goals and Introduction As you have probably already seen in lecture or homework, and if you ve performed the experiment Motion I, it is important to develop a strong understanding of how to model

More information

Conservation of Momentum Using PASCO TM Carts and Track to Study Collisions in One Dimension

Conservation of Momentum Using PASCO TM Carts and Track to Study Collisions in One Dimension 14 Conservation of Conservation of Using PASCO TM Carts and Track to Study s in One Dimension When two objects collide momentum is transferred between them. p is defined as the product of mass and velocity

More information

PHYSICS LAB FREE FALL. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY

PHYSICS LAB FREE FALL. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY PHYSICS LAB FREE FALL Printed Names: Signatures: Date: Lab Section: Instructor: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY Revision August 2003 Free Fall FREE FALL Part A Error Analysis of Reaction

More information

Elastic and Inelastic Collisions

Elastic and Inelastic Collisions Physics Topics Elastic and Inelastic Collisions If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Kinetic Energy

More information

Work and Energy. Objectives. Equipment. Theory. In this lab you will

Work and Energy. Objectives. Equipment. Theory. In this lab you will Objectives Work and Energy In this lab you will Equipment explore the relationship between the work done by an applied force and the area under the Force-Position graph. confirm that work is equivalent

More information

PHY 111L Activity 2 Introduction to Kinematics

PHY 111L Activity 2 Introduction to Kinematics PHY 111L Activity 2 Introduction to Kinematics Name: Section: ID #: Date: Lab Partners: TA initials: Objectives 1. Introduce the relationship between position, velocity, and acceleration 2. Investigate

More information

Experiment 7 : Newton's Third Law

Experiment 7 : Newton's Third Law Experiment 7 : Newton's Third Law To every action there is always opposed an equal reaction, or the mutual actions of two bodies upon each other are always equal, and directed to contrary parts. If you

More information

2: SIMPLE HARMONIC MOTION

2: SIMPLE HARMONIC MOTION 2: SIMPLE HARMONIC MOTION Motion of a mass hanging from a spring If you hang a mass from a spring, stretch it slightly, and let go, the mass will go up and down over and over again. That is, you will get

More information

Motion with Constant Acceleration

Motion with Constant Acceleration Motion with Constant Acceleration INTRODUCTION Newton s second law describes the acceleration of an object due to an applied net force. In this experiment you will use the ultrasonic motion detector to

More information

PHY 221 Lab 2. Acceleration and Uniform Motion

PHY 221 Lab 2. Acceleration and Uniform Motion PHY 221 Lab 2 Name: Partner: Partner: Acceleration and Uniform Motion Introduction: Recall the previous lab During Lab 1, you were introduced to computer aided data acquisition. You used a device called

More information

Work and Energy. W F s)

Work and Energy. W F s) Work and Energy Experiment 18 Work is a measure of energy transfer. In the absence of friction, when positive work is done on an object, there will be an increase in its kinetic or potential energy. In

More information

Constant velocity and constant acceleration

Constant velocity and constant acceleration Constant velocity and constant acceleration Physics 110 Laboratory Introduction In this experiment we will investigate two rather simple forms of motion (kinematics): motion with uniform (non-changing)

More information

Experiment 3. d s = 3-2 t ANALYSIS OF ONE DIMENSIONAL MOTION

Experiment 3. d s = 3-2 t ANALYSIS OF ONE DIMENSIONAL MOTION Experiment 3 ANALYSIS OF ONE DIMENSIONAL MOTION Objectives 1. To establish a mathematical relationship between the position and the velocity of an object in motion. 2. To define the velocity as the change

More information

One Dimensional Collisions 1 Fall 2018

One Dimensional Collisions 1 Fall 2018 One Dimensional Collisions 1 Fall 2018 Name: Partners: Introduction The purpose of this experiment is to perform experiments to learn about momentum, impulse and collisions in one dimension. Write all

More information

ONE-DIMENSIONAL COLLISIONS

ONE-DIMENSIONAL COLLISIONS ONE-DIMENSIONAL COLLISIONS Purpose In this lab we will study conservation of energy and linear momentum in both elastic and perfectly inelastic one-dimensional collisions. To do this, we will consider

More information

Work and Energy Experiments

Work and Energy Experiments Work and Energy Experiments Experiment 16 When a juggler tosses a bean ball straight upward, the ball slows down until it reaches the top of its path and then speeds up on its way back down. In terms of

More information

CREATE A MOTION. Purpose Demonstrate your understanding of motion graphs by creating real-world motion(s) that match a graph(s) you ve been given.

CREATE A MOTION. Purpose Demonstrate your understanding of motion graphs by creating real-world motion(s) that match a graph(s) you ve been given. CREATE A MOTION Purpose Demonstrate your understanding of motion graphs by creating real-world motion(s) that match a graph(s) you ve been given. Materials Motion Detector, Interface, Dynamics Cart, Dynamics

More information

Newton's Laws and Atwood's Machine

Newton's Laws and Atwood's Machine Newton's Laws and Atwood's Machine Purpose: In this lab we will verify Newton's Second Law of Motion within estimated uncertainty and propose an explanation if verification is not within estimated uncertainty.

More information

Laboratory Exercise. Newton s Second Law

Laboratory Exercise. Newton s Second Law Laboratory Exercise Newton s Second Law INTRODUCTION Newton s first law was concerned with the property of objects that resists changes in motion, inertia. Balanced forces were the focus of Newton s first

More information

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring 17 Investigating a Mass Oscillating on a Spring A spring that is hanging vertically from a support with no mass at the end of the spring has a length L (called its rest length). When a mass is added to

More information

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move).

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move). Chapter 3 Kinematics (A) Distance Vs Displacement 1. Compare distance and displacement in terms of: (a) definition Distance is the total length of travel, irrespective of direction. Displacement is the

More information

Possible Prelab Questions.

Possible Prelab Questions. Possible Prelab Questions. Read Lab 2. Study the Analysis section to make sure you have a firm grasp of what is required for this lab. 1) A car is travelling with constant acceleration along a straight

More information

PHYSICS 100 LAB 2: CHANGING MOTION

PHYSICS 100 LAB 2: CHANGING MOTION Name: Sec: Last 2 digits of St#: Partners: Date: PHYSICS 1 LAB 2: CHANGING MOTION A cheetah can accelerate from to 5 miles per hour in 6.4 seconds. Encyclopedia of the Animal World A Jaguar automobile

More information

Elastic and Inelastic Collisions

Elastic and Inelastic Collisions Elastic and Inelastic Collisions - TA Version Physics Topics If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed.

More information

Capacitors. The charge Q on a capacitor s plate is proportional to the potential difference V across the Q = C V (1)

Capacitors. The charge Q on a capacitor s plate is proportional to the potential difference V across the Q = C V (1) apacitors THEORY The charge Q on a capacitor s plate is proportional to the potential difference V across the capacitor. We express this with Q = V (1) where is a proportionality constant known as the

More information

α m ! m or v T v T v T α m mass

α m ! m or v T v T v T α m mass FALLING OBJECTS (WHAT TO TURN IN AND HOW TO DO SO) In the real world, because of air resistance, objects do not fall indefinitely with constant acceleration. One way to see this is by comparing the fall

More information

EXPERIMENT 6 CONSERVATION OF LINEAR MOMENTUM

EXPERIMENT 6 CONSERVATION OF LINEAR MOMENTUM 210 6-1 I. INTRODUCTION THEORY EXPERIMENT 6 CONSERVATION OF LINEAR MOMENTUM The of two carts on a track can be described in terms of momentum conservation and, in some cases, energy conservation. If there

More information

What Causes the Seasons?

What Causes the Seasons? Name Date What Causes the Seasons? Experiment 10 Because the axis of the earth is tilted, the earth receives different amounts of solar radiation at different times of the year. The amount of solar radiation

More information

Back and Forth Motion

Back and Forth Motion Back and Forth Motion LabQuest 2 Lots of objects go back and forth; that is, they move along a line first in one direction, then move back the other way. An oscillating pendulum or a ball tossed vertically

More information

LivePhoto Physics Activity 3. Velocity Change. Motion Detector. Sample

LivePhoto Physics Activity 3. Velocity Change. Motion Detector. Sample LivePhoto Physics Activity 3 Name: Date: Analyzing Position vs. Time Graphs: The most fundamental measurements of motion involve the determination of an object s location at a series of times. A very effective

More information

Titration of Acids and Bases

Titration of Acids and Bases Exercise 3 Page 1 Illinois Central College CHEMISTRY 132 Titration of Acids and Bases Name: Equipment 1-25 ml burette 1-pH electrode 1-50 and 1-150 ml beaker 1-stir plate and stir bar 1-Vernier Interface

More information

Physics 1050 Experiment 6. Moment of Inertia

Physics 1050 Experiment 6. Moment of Inertia Physics 1050 Moment of Inertia Prelab uestions These questions need to be completed before entering the lab. Please show all workings. Prelab 1 Sketch a graph of torque vs angular acceleration. Normal

More information

Static and Kinetic Friction

Static and Kinetic Friction Ryerson University - PCS 120 Introduction Static and Kinetic Friction In this lab we study the effect of friction on objects. We often refer to it as a frictional force yet it doesn t exactly behave as

More information

Exploring the Poles (Without Leaving Your Classroom!)

Exploring the Poles (Without Leaving Your Classroom!) Exploring the Poles (Without Leaving Your Classroom!) Computer 37 Magnets have north and south poles. Do you think that the poles of differently shaped magnets are in different places? In this activity,

More information

Pre-Lab Exercise Full Name:

Pre-Lab Exercise Full Name: L07 Rotational Motion and the Moment of Inertia 1 Pre-Lab Exercise Full Name: Lab Section: Hand this in at the beginning of the lab period. The grade for these exercises will be included in your lab grade

More information

University of TN Chattanooga Physics 1040L 8/18/2012 PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB

University of TN Chattanooga Physics 1040L 8/18/2012 PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB OBJECT: To study the discharging of a capacitor and determine the time constant for a simple circuit. APPARATUS: Capacitor (about 24 μf), two resistors (about

More information

Motion in Two Dimensions: Centripetal Acceleration

Motion in Two Dimensions: Centripetal Acceleration Motion in Two Dimensions: Centripetal Acceleration Name: Group Members: Date: TA s Name: Apparatus: Rotating platform, long string, liquid accelerometer, meter stick, masking tape, stopwatch Objectives:

More information

SIMPLE PENDULUM AND PROPERTIES OF SIMPLE HARMONIC MOTION

SIMPLE PENDULUM AND PROPERTIES OF SIMPLE HARMONIC MOTION SIMPE PENDUUM AND PROPERTIES OF SIMPE HARMONIC MOTION Purpose a. To investigate the dependence of time period of a simple pendulum on the length of the pendulum and the acceleration of gravity. b. To study

More information

Conservation of Momentum

Conservation of Momentum Learning Goals Conservation of Momentum After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Use the equations for 2-dimensional

More information

PHYSICS 211 LAB #3: Frictional Forces

PHYSICS 211 LAB #3: Frictional Forces PHYSICS 211 LAB #3: Frictional Forces A Lab Consisting of 4 Activities Name: Section: TA: Date: Lab Partners: Circle the name of the person to whose report your group printouts will be attached. Individual

More information

Static and Kinetic Friction

Static and Kinetic Friction Experiment 12 If you try to slide a heavy box resting on the floor, you may find it difficult to get the box moving. Static friction is the force that is acting against the box. If you apply a light horizontal

More information

Measuring Momentum: Using distance moved after impact to estimate velocity

Measuring Momentum: Using distance moved after impact to estimate velocity Case File 6 Measuring Momentum: Using istance move after impact to estimate velocity Explore how the spee of an impacting vehicle causes a stationary object to move. Police Report Last Tuesay night, police

More information

Introduction to Simple Harmonic Motion

Introduction to Simple Harmonic Motion Introduction to Prelab Prelab 1: Write the objective of your experiment. Prelab 2: Write the relevant theory of this experiment. Prelab 3: List your apparatus and sketch your setup.! Have these ready to

More information

LAB 3: VELOCITY AND ACCELERATION

LAB 3: VELOCITY AND ACCELERATION Lab 3 - Velocity & Acceleration 25 Name Date Partners LAB 3: VELOCITY AND ACCELERATION A cheetah can accelerate from to 5 miles per hour in 6.4 seconds. A Jaguar can accelerate from to 5 miles per hour

More information

TIphysics.com. Physics. Pendulum Explorations ID: By Irina Lyublinskaya

TIphysics.com. Physics. Pendulum Explorations ID: By Irina Lyublinskaya Pendulum Explorations ID: 17 By Irina Lyublinskaya Time required 90 minutes Topic: Circular and Simple Harmonic Motion Explore what factors affect the period of pendulum oscillations. Measure the period

More information

PICKET FENCE FREE FALL

PICKET FENCE FREE FALL PICKET FENCE FREE FALL LAB MECH.5 CALC From Physics with Calculators, Vernier Software and Technology, 2003 INTRODUCTION We say an object is in free fall when the only force acting on it is the earth s

More information

Wednesday 9/27. Please open quizizz

Wednesday 9/27. Please open quizizz Wednesday 9/27 Please open quizizz Graphing Acceleration VT Graphs VELOCITY m/s VELOCITY TIME GRAPHS Moving in a positive direction, SPEEDING UP Constant speed NO ACCELERATION Moving in a positive direction,

More information

Merrily we roll along

Merrily we roll along Merrily we roll along Name Period Date Lab partners Overview Measuring motion of freely falling objects is difficult because they acclerate so fast. The speed increases by 9.8 m/s every second, so Galileo

More information

PHYSICS LAB. Air Resistance. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY

PHYSICS LAB. Air Resistance. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY PHYSICS LAB Air Resistance Printed Names: Signatures: Date: Lab Section: Instructor: GRADE: PHYSICS DEPARMEN JAMES MADISON UNIVERSIY Revision August 2003 air res-68 Air Resistance Air Resistance When you

More information

A Determination of Planck s Constant with LED s written by Mark Langella

A Determination of Planck s Constant with LED s written by Mark Langella A Determination of Planck s Constant with LED s written by Mark Langella The purpose of this experiment is to measure Planck s constant, a fundamental physical constant in nature, by studying the energy

More information

Learning Goals The particle model for a complex object: use the center of mass! located at the center of mass

Learning Goals The particle model for a complex object: use the center of mass! located at the center of mass PS 12A Lab 3: Forces Names: Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Measure the normal force

More information

Physics 326 Lab 6 10/18/04 DAMPED SIMPLE HARMONIC MOTION

Physics 326 Lab 6 10/18/04 DAMPED SIMPLE HARMONIC MOTION DAMPED SIMPLE HARMONIC MOTION PURPOSE To understand the relationships between force, acceleration, velocity, position, and period of a mass undergoing simple harmonic motion and to determine the effect

More information

RECAP!! Paul is a safe driver who always drives the speed limit. Here is a record of his driving on a straight road. Time (s)

RECAP!! Paul is a safe driver who always drives the speed limit. Here is a record of his driving on a straight road. Time (s) RECAP!! What is uniform motion? > Motion in a straight line > Moving at a constant speed Yes or No? Yes or No? Paul is a safe driver who always drives the speed limit. Here is a record of his driving on

More information

Coulomb s Law Mini-Lab

Coulomb s Law Mini-Lab Setup Name Per Date Coulomb s Law Mini-Lab On a fresh piece of notebook paper, write the above title, name, date, and period. Be sure to put all headings, Roman numerals and regular numbers on your paper.

More information

Static and Kinetic Friction (Pasco)

Static and Kinetic Friction (Pasco) Static and Kinetic Friction (Pasco) Introduction: If you try to slide a heavy box resting on the floor, you may find it difficult to move. Static friction is keeping the box in place. There is a limit

More information

for a Weak Acid 1-ring stand stir plate and stir bar ph Probe ml burette 1-50 ml and ml beaker Drop counter ph 7.00 buffer 0.

for a Weak Acid 1-ring stand stir plate and stir bar ph Probe ml burette 1-50 ml and ml beaker Drop counter ph 7.00 buffer 0. Exercise 4 Page 1 Illinois Central College CHEMISTRY 132 Name: Determination of for a Weak Acid Equipment Objectives 1-ring stand stir plate and stir bar ph Probe 1-25.00 ml burette 1-50 ml and 1-250 ml

More information

III. The position-time graph shows the motion of a delivery truck on a long, straight street.

III. The position-time graph shows the motion of a delivery truck on a long, straight street. Physics I preap Name per MOTION GRAPHS For this assignment, you will need to use the Moving Man simulation from the phet website. As you work through these problems focus on making sense of the motion

More information

Distance From the Sun

Distance From the Sun Distance From the Sun Computer 32 Have you ever thought about what it would be like if you were on another planet looking back at the sun? In this activity, you will use the Light Probe to get an idea

More information

PHYSICS: the study of matter and its motion through space and time, along with related concepts such as energy and force.

PHYSICS: the study of matter and its motion through space and time, along with related concepts such as energy and force. Car materials: 2 toilet paper rolls 8 water bottle caps 2 straws masking tape 2 4-inch bamboo skewers 5 paper clips 10 toothpicks PHYSICS: the study of matter and its motion through space and time, along

More information

Applications of Newton's Laws

Applications of Newton's Laws Applications of Newton's Laws Purpose: To apply Newton's Laws by applying forces to objects and observing their motion; directly measuring these forces that are applied. Apparatus: Pasco track, Pasco cart,

More information

LAB 3: WORK AND ENERGY

LAB 3: WORK AND ENERGY 1 Name Date Lab Day/Time Partner(s) Lab TA (CORRECTED /4/05) OBJECTIVES LAB 3: WORK AND ENERGY To understand the concept of work in physics as an extension of the intuitive understanding of effort. To

More information

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) 121 Textbook Reference: Knight, Chapter 13.1-3, 6. SYNOPSIS In

More information