Linear Motion with Constant Acceleration

Size: px
Start display at page:

Download "Linear Motion with Constant Acceleration"

Transcription

1 Linear Motion 1 Linear Motion with Constant Acceleration Overview: First you will attempt to walk backward with a constant acceleration, monitoring your motion with the ultrasonic motion detector. Then you will use photogates to study the motion of a hotwheels car rolling down a straight inclined track, to determine whether its acceleration is constant. Physics principles: One-dimensional motion Acceleration Motion with constant acceleration New lab skills: Manipulating data to obtain a linear graph Measuring the slope of a graph and its uncertainty Equipment needed: Straight inclined track and toy car Computer and ScienceWorkshop interface Meter stick Two photogates and stands Motion detector and stand Instructions Part 1: Moving at Constant Acceleration In this part of the experiment you will attempt to walk backward with a constant acceleration, monitoring your motion with the ultrasonic motion detector. Open the Constant Acceleration document in the Lab Files folder on your computer s desktop. Connect the motion detector in the same manner you done in the previous lab (yellow plug in port 1, black plug in port 2). If you need assistance, you might review your previous lab s instructions or consult your instructor. Stand about half a meter in front of the motion detector. Click the start button and start moving away from the detector. The idea is to move such that your acceleration remains constant, that is, the velocity, which is displayed on the computer screen, is a straight line sloping upward. You ll have to start very slowly and then uniformly increase the speed of your motion.

2 Linear Motion 2 Figure 1: Toy car moving between photogates. This is a challenging exercise and you may need to practice a few times before you get a feel for motion with constant acceleration. You may have to adjust the scale of the time and velocity axes so the graph fills most of the screen. Each member of your group should do this exercise separately, and make a separate printout of the motion graph. When you get your printout, mark the section of the graph that represents approximately constant acceleration. Use a ruler to draw a straight line that approximates this section of the graph. Measure the rise and run of this line, and use them to calculate the slope of the line, which is your approximate acceleration. Show your arithmetic and your result directly on the printout. After everyone is finished with the motion detector, unplug it from the interface box. Part 2: Motion of a Car on an Incline For the rest of this lab session you will study the motion of a toy car rolling down a straight inclined track. Collecting data. Connect the photogates to the interface box with the first photogate that the car encounters plugged into port 1, and the photogate the car passes through second plugged into port 2. Open the Linear Motion document in the Lab Files folder on the computer s desktop. This program will measure three time intervals: a short time interval t 1 (the time it takes for the car s flag to cross photogate 1); a longer time t (the time interval from when the flag enters photogate 1 to when it enters photogate 2); and another short time interval t 2 (the time it takes for the flag to cross photogate 2). Recall how to calculate instantaneous velocities using the short time intervals t 1 and t 2, along with a specifically measured distance. (If you cannot remember how to do this, refer to last week s lab or ask your friendly lab instructor for hints). These velocities will be referred to as v 1 and v 2 and will be used in equations later in this lab. Position photogate 1 about 7 cm down from the top of the track, at a height such that the middle of the car s flag will block the beam. Place photogate 2 exactly 10 cm farther down the track, also at an appropriate height. We ll use the symbol x for the separation distance between the photogates. Press the Start button on the screen, then release the car from the top of the track. You should see numbers appear in the first row of the Table. Leave the program running and move photogate 2 down to a distance of x = 20 cm from photogate 1, then release the car from the top again. Repeat for x = 30, 40, 50, and 60 cm.

3 Linear Motion 3 To analyze the data you ll use the Excel spreadsheet program. Click the Excel icon in the dock to start the program, then copy the data from Table t (Timer 2) of the timing program into the Excel spreadsheet, starting at cell A3 (you should have six rows, two columns of copied data). In column C enter the corresponding distances, 10 through 60 (in centimeters). You may also want to copy data from Tables t 1 and t 2 (Timers 1 and 3) somewhere onto the spreadsheet in order to calculate averages for v 1 and v 2 ( =average() ) as well as standard deviations ( =stdevp() ). Enter appropriate headings (including units) for each column of the spreadsheet, and enter your names in cell A1. Position versus time: Make a plot of the position (separation distance x, on the vertical axis) versus time (elapsed time t, on the horizontal axis). Use the ChartWizard tool as in the previous lab, choosing an XY (Scatter) plot with gridlines. Enter Figure 1 Distance vs. Time for the chart title, and enter appropriate labels, including units, for both axes. Move and/or resize the graph as necessary so that it fills a page, and print copies of this page for each group member; do not print the data table yet. (Before printing use Print Preview under the File menu to check what the printout will look like.) Carefully draw a best-fit smooth curve through the data points on your graph. Then go to the Report page and answer all parts of Question 1. Linearizing the data. Your next task will be to use this data to test whether the acceleration of the car is constant, and to extract a best value for its acceleration. If the acceleration is constant, then the position of the car as a function of time should be given by the equation x = x 0 + v 0 t at2, (1) where x 0 and v 0 are the car s position and velocity when t = 0. Since we re using t for the time to go from one photogate to the other, time t = 0 is when the car is at the first photogate (not when you released it); therefore x 0 is zero and v 0 is the same as what we ve called v 1 : x = v 1 t at2. (2) This equation predicts a specific shape for the graph of x vs. t. But because this shape is not a straight line, it s hard to tell from a graph of x vs. t whether the equation is valid. In such circumstances, it is standard practice to manipulate the equation so that the left-hand side is a linear function of the independent variable (t). One way to do this is to divide through by t: x t = v at. (3) 2 This equation is a linear one, of the form y = mx + b. That is, if we plot x/t vertically vs. t horizontally, we expect to get a straight line whose slope (analogous to m) is a/2, and whose intercept with the vertical axis (analogous to b) is v 1. If we don t get a straight line, we can conclude that the equation does not apply, in other words, the acceleration isn t really constant. In column E of your data table, enter appropriate formulas to calculate x/t for each of the six rows. (You can save time with the Fill Down command under the Edit menu.) Make a plot of x/t versus t, and call it Figure 2 x/t vs. t. Enlarge the graph to fill an

4 Linear Motion 4 Figure 2: Geometry for determining the track angle. entire page and print a copy of this page for each person as before. Answer Question 2 in the Report. To extract a value for the car s acceleration you can draw a straight line through the data points on your Figure 2 and measure the slope of this line. However, it s not enough to just get a single value. What we want is a range of values, indicating a range of uncertainty for the true acceleration. Therefore, use a ruler to carefully draw two straight lines through the data: one that is the steepest plausible line that still closely represents the data, and one that is the shallowest plausible line. Each line should come fairly close to all six data points. Carefully determine the slopes of both lines, showing how you did so right on the graph. Use these slopes to compute two values for the car s acceleration (remember that the slope is not equal to the acceleration; refer back to equation 3). The average of these two numbers would be your best value for a, while the difference between the average and either of them would be the uncertainty. Enter these results in the Report. Velocity versus time. The velocity of an object moving with constant acceleration obeys the equation v = v 0 + at, (4) or in our notation, v 2 = v 1 + at. (5) Because you ve measured v 1 and v 2 directly, you can use this equation to again test whether a is constant and to extract a value for a. This time the equation is already linear, so no further manipulation is necessary. Make a plot of v 2 vs. t, call it Figure 3 Velocity vs. Time, and print copies for each person as before. Draw the steepest and shallowest plausible lines through the data, measure their slopes, and use these to obtain another value for the acceleration and its uncertainty. Enter these values in the Report, and answer Questions 3, 4, and 5. Theoretical acceleration. Now that you have compared your two measured values with each other, let us compare them to a theoretical prediction. Using Newton s laws of motion one can easily show that for an object sliding down an inclined plane without friction the acceleration should be a theory = g sin θ, where θ is the angle of the incline (measured from horizontal) and g is the freefall acceleration, 9.80 m/s 2. To determine θ, measure the dimensions of the track apparatus, draw a picture, and use an appropriate trigonometric function. Enter this information in the Report, and calculate the theoretical acceleration. Answer Question 6.

5 Linear Motion 5 Average velocity. The average velocity of an object is defined as the total distance traveled divided by the time elapsed. For the time interval t in our experiment, v average x t = x 0 t 0 = x t. (6) If (and only if) the acceleration is constant, then this is the same as the average of the initial and final velocities: v average = v 1 + v 2 2 (constant acceleration). (7) You ve already computed the average velocity in column E of your spreadsheet. Now, in column F, enter the appropriate formulas to compute the average of the initial and final velocities, (v 1 + v 2 )/2. In column G, compute the percent difference between columns E and F, that is, (one value) (other value) percent difference =. (8) (either value) (When the percent difference is small, as it should be here, it doesn t matter which value you put in the denominator. When the percent difference is large there is sometimes a good reason to use one value, or the other, or the average.) Print a copy of the entire data table for each member of your group, and answer Questions 7 and 8.

6 Linear Motion 6 Report: Linear Motion Name Partners Lab Station Date 1. On a graph of position vs. time, the instantaneous velocity at any time is represented by the slope of the tangent line. With this in mind, answer the following questions about your Figure 1: (a) Take a ruler and (without drawing a line) examine the slope of the line tangent to the curve at several different points. As time increases, does the slope increase, decrease, or remain constant? What does this say about the velocity of the car? What does it say about the acceleration of the car? (b) Just by inspecting the slope of your Figure 1, can you determine whether or not the car has a constant acceleration? (Explain very briefly.) (c) Draw a tangent line (at least 2 or 3 inches long) and its corresponding triangle on your Figure 1 at the point x = 50 cm. Measure the rise and the run of the triangle in the units of the graph, and write these numbers along the legs of the triangle. Then compute the slope, which should be the car s velocity at x = 50 cm. slope at x = 50 cm =

7 Linear Motion 7 (d) Compare this value with the velocity from your table of data; are the values reasonably close? v 2 at x = 50 cm = (e) Estimate the slope of your Figure 1 at the point x = 0 cm: slope at x = 0 = 2. From your Figure 2, does it appear that the acceleration of the car was constant? Be sure to discuss both the random fluctuations in the data, and whether there are any overall trends. Value of a and uncertainty from Fig. 2 = Value of a and uncertainty from Fig. 3 = 3. Are your two values of a in agreement with each other? Explain briefly. 4. Make a rough sketch of what Fig. 3 would look like if the acceleration were increasing with time, and comment on what makes it different.

8 Linear Motion 8 5. The intercept of a graph is the point where the line crosses the vertical axis. For both Figure 2 and Figure 3, estimate the average intercept of your two lines. What physical quantity does this number represent? Discuss whether your intercept values are what you would expect, based on your data and the equations above. Average intercept from Fig. 2 = Average intercept from Fig. 3 = Discussion: Track angle θ = Diagram and calculations: Theoretical acceleration = 6. Are your experimental measurements of a in agreement with the theoretical value? Explain how you can tell, and discuss whether you might expect any discrepancy.

9 Linear Motion 9 7. Discuss the results in the last three columns of your table. What pattern do you see? What can you conclude about the motion of the car? 8. Describe an example of a type of motion for which the formula v average = (v 1 + v 2 )/2 would not apply. (Be as specific as you can.) At the end of this report, please attach your motion detector graph, then a printout of your data table, and finally your Figures 1, 2, and 3.

LAB 2 - ONE DIMENSIONAL MOTION

LAB 2 - ONE DIMENSIONAL MOTION Name Date Partners L02-1 LAB 2 - ONE DIMENSIONAL MOTION OBJECTIVES Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise To learn how to use a motion detector and gain more familiarity

More information

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION Name: Partner s Name: EXPERIMENT 500-2 MOTION PLOTS & FREE FALL ACCELERATION APPARATUS Track and cart, pole and crossbar, large ball, motion detector, LabPro interface. Software: Logger Pro 3.4 INTRODUCTION

More information

Newton's 2 nd Law. . Your end results should only be interms of m

Newton's 2 nd Law. . Your end results should only be interms of m Newton's nd Law Introduction: In today's lab you will demonstrate the validity of Newton's Laws in predicting the motion of a simple mechanical system. The system that you will investigate consists of

More information

Newton s Second Law. Computer with Capstone software, motion detector, PVC pipe, low friction cart, track, meter stick.

Newton s Second Law. Computer with Capstone software, motion detector, PVC pipe, low friction cart, track, meter stick. F = m a F = m a Newton s Second Law 1 Object To investigate, understand and verify the relationship between an object s acceleration and the net force acting on that object as well as further understand

More information

Motion with Constant Acceleration

Motion with Constant Acceleration Motion with Constant Acceleration INTRODUCTION Newton s second law describes the acceleration of an object due to an applied net force. In this experiment you will use the ultrasonic motion detector to

More information

Lab 1 Uniform Motion - Graphing and Analyzing Motion

Lab 1 Uniform Motion - Graphing and Analyzing Motion Lab 1 Uniform Motion - Graphing and Analyzing Motion Objectives: < To observe the distance-time relation for motion at constant velocity. < To make a straight line fit to the distance-time data. < To interpret

More information

Physics 1021 Experiment 1. Introduction to Simple Harmonic Motion

Physics 1021 Experiment 1. Introduction to Simple Harmonic Motion 1 Physics 1021 Introduction to Simple Harmonic Motion 2 Introduction to SHM Objectives In this experiment you will determine the force constant of a spring. You will measure the period of simple harmonic

More information

Motion II. Goals and Introduction

Motion II. Goals and Introduction Motion II Goals and Introduction As you have probably already seen in lecture or homework, and if you ve performed the experiment Motion I, it is important to develop a strong understanding of how to model

More information

Introduction to Computer Tools and Uncertainties

Introduction to Computer Tools and Uncertainties Experiment 1 Introduction to Computer Tools and Uncertainties 1.1 Objectives To become familiar with the computer programs and utilities that will be used throughout the semester. To become familiar with

More information

PHY221 Lab 2 - Experiencing Acceleration: Motion with constant acceleration; Logger Pro fits to displacement-time graphs

PHY221 Lab 2 - Experiencing Acceleration: Motion with constant acceleration; Logger Pro fits to displacement-time graphs Page 1 PHY221 Lab 2 - Experiencing Acceleration: Motion with constant acceleration; Logger Pro fits to displacement-time graphs Print Your Name Print Your Partners' Names You will return this handout to

More information

PHYSICS 211 LAB #3: Frictional Forces

PHYSICS 211 LAB #3: Frictional Forces PHYSICS 211 LAB #3: Frictional Forces A Lab Consisting of 4 Activities Name: Section: TA: Date: Lab Partners: Circle the name of the person to whose report your group printouts will be attached. Individual

More information

Conservation of Energy and Momentum

Conservation of Energy and Momentum Objectives Conservation of Energy and Momentum You will test the extent to which conservation of momentum and conservation of energy apply to real-world elastic and inelastic collisions. Equipment air

More information

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) 121 Textbook Reference: Knight, Chapter 13.1-3, 6. SYNOPSIS In

More information

LAB: MOTION ON HILLS

LAB: MOTION ON HILLS LAB: MOTION ON HILLS Introduction In this three-part activity, you will first study an object whose speed is changing while it moves downhill In this lab, the two variables you are focusing on are time

More information

2. How will we adjust our fitting procedure to compensate for fact that the acceleration differs depending on the direction of motion?

2. How will we adjust our fitting procedure to compensate for fact that the acceleration differs depending on the direction of motion? The Coefficient of Kinetic Friction 1 Name: Lab Section Number: Pre-Lab Questions: 1. What type of data will we be using to determine the acceleration of the cart up and down the ramp this week? What type

More information

18-Dec-12 PHYS Simple Pendulum. To investigate the fundamental physical properties of a simple pendulum.

18-Dec-12 PHYS Simple Pendulum. To investigate the fundamental physical properties of a simple pendulum. Objective Simple Pendulum To investigate the fundamental physical properties of a simple pendulum. Equipment Needed Simple Pendulum Apparatus with Meter Scale and Protractor Bobs 4 (Aluminum, Brass, Lead,

More information

Physics 1050 Experiment 6. Moment of Inertia

Physics 1050 Experiment 6. Moment of Inertia Physics 1050 Moment of Inertia Prelab uestions These questions need to be completed before entering the lab. Please show all workings. Prelab 1 Sketch a graph of torque vs angular acceleration. Normal

More information

Physics 103 Newton s 2 nd Law On Atwood s Machine with Computer Based Data Collection

Physics 103 Newton s 2 nd Law On Atwood s Machine with Computer Based Data Collection Physics 103 Newton s 2 nd Law On Atwood s Machine with Computer Based Data Collection Materials Photogate with pulley, mass set, ~1.2 meter long string, LabPro analog to digital converter and a computer.

More information

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are

More information

PHY 221 Lab 3 Vectors and Motion in 1 and 2 Dimensions

PHY 221 Lab 3 Vectors and Motion in 1 and 2 Dimensions PHY 221 Lab 3 Vectors and Motion in 1 and 2 Dimensions Print Your Name Print Your Partners' Names Instructions Before lab, read the Introduction, and answer the Pre-Lab Questions on the last page of this

More information

EXPERIMENT 1: ONE-DIMENSIONAL KINEMATICS

EXPERIMENT 1: ONE-DIMENSIONAL KINEMATICS TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 1: ONE-DIMENSIONAL KINEMATICS MOTIONS WITH CONSTANT ACCELERATION 117 Textbook Reference: Walker, Chapter

More information

PHY 111L Activity 2 Introduction to Kinematics

PHY 111L Activity 2 Introduction to Kinematics PHY 111L Activity 2 Introduction to Kinematics Name: Section: ID #: Date: Lab Partners: TA initials: Objectives 1. Introduce the relationship between position, velocity, and acceleration 2. Investigate

More information

Lab 3 Acceleration. What You Need To Know: Physics 211 Lab

Lab 3 Acceleration. What You Need To Know: Physics 211 Lab b Lab 3 Acceleration Physics 211 Lab What You Need To Know: The Physics In the previous lab you learned that the velocity of an object can be determined by finding the slope of the object s position vs.

More information

Physics 1050 Experiment 3. Force and Acceleration

Physics 1050 Experiment 3. Force and Acceleration Force and Acceleration Prelab uestions! These questions need to be completed before entering the lab. Please show all workings. Prelab 1: Draw the free body diagram for the cart on an inclined plane. Break

More information

PHY 221 Lab 2. Acceleration and Uniform Motion

PHY 221 Lab 2. Acceleration and Uniform Motion PHY 221 Lab 2 Name: Partner: Partner: Acceleration and Uniform Motion Introduction: Recall the previous lab During Lab 1, you were introduced to computer aided data acquisition. You used a device called

More information

Figure 2.1 The Inclined Plane

Figure 2.1 The Inclined Plane PHYS-101 LAB-02 One and Two Dimensional Motion 1. Objectives The objectives of this experiment are: to measure the acceleration due to gravity using one-dimensional motion, i.e. the motion of an object

More information

How to Write a Laboratory Report

How to Write a Laboratory Report How to Write a Laboratory Report For each experiment you will submit a laboratory report. Laboratory reports are to be turned in at the beginning of the lab period, one week following the completion of

More information

The purpose of this laboratory exercise is to verify Newton s second law.

The purpose of this laboratory exercise is to verify Newton s second law. Newton s Second Law 3-1 Newton s Second Law INTRODUCTION Sir Isaac Newton 1 put forth many important ideas in his famous book The Principia. His three laws of motion are the best known of these. The first

More information

LAB 3: WORK AND ENERGY

LAB 3: WORK AND ENERGY 1 Name Date Lab Day/Time Partner(s) Lab TA (CORRECTED /4/05) OBJECTIVES LAB 3: WORK AND ENERGY To understand the concept of work in physics as an extension of the intuitive understanding of effort. To

More information

LAB 3 - VELOCITY AND ACCELERATION

LAB 3 - VELOCITY AND ACCELERATION Name Date Partners L03-1 LAB 3 - VELOCITY AND ACCELERATION OBJECTIVES A cheetah can accelerate from 0 to 50 miles per hour in 6.4 seconds. Encyclopedia of the Animal World A Jaguar can accelerate from

More information

LAB 2: INTRODUCTION TO MOTION

LAB 2: INTRODUCTION TO MOTION Lab 2 - Introduction to Motion 3 Name Date Partners LAB 2: INTRODUCTION TO MOTION Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise Objectives To explore how various motions are represented

More information

Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring

Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring Print Your Name Print Your Partners' Names Instructions April 20, 2016 Before lab,

More information

Static and Kinetic Friction

Static and Kinetic Friction Ryerson University - PCS 120 Introduction Static and Kinetic Friction In this lab we study the effect of friction on objects. We often refer to it as a frictional force yet it doesn t exactly behave as

More information

Purpose: Materials: WARNING! Section: Partner 2: Partner 1:

Purpose: Materials: WARNING! Section: Partner 2: Partner 1: Partner 1: Partner 2: Section: PLEASE NOTE: You will need this particular lab report later in the semester again for the homework of the Rolling Motion Experiment. When you get back this graded report,

More information

Determination of Density 1

Determination of Density 1 Introduction Determination of Density 1 Authors: B. D. Lamp, D. L. McCurdy, V. M. Pultz and J. M. McCormick* Last Update: February 1, 2013 Not so long ago a statistical data analysis of any data set larger

More information

LAB: MOTION ON HILLS

LAB: MOTION ON HILLS LAB: MOTION ON HILLS Introduction In this three-part activity, you will first study an object whose speed is changing while it moves downhill. In this lab, the two variables you are focusing on are time

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Experiment 03: Work and Energy

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Experiment 03: Work and Energy MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.01 Fall Term 2010 Experiment 03: Work and Energy Purpose of the Experiment: In this experiment you allow a cart to roll down an inclined

More information

1. Write the symbolic representation and one possible unit for angular velocity, angular acceleration, torque and rotational inertia.

1. Write the symbolic representation and one possible unit for angular velocity, angular acceleration, torque and rotational inertia. ROTATIONAL DYNAMICS Pre-Lab Questions Page Name: Class: Roster Number: Instructor: 1. Write the symbolic representation and one possible unit for angular velocity, angular acceleration, torque and rotational

More information

Possible Prelab Questions.

Possible Prelab Questions. Possible Prelab Questions. Read Lab 2. Study the Analysis section to make sure you have a firm grasp of what is required for this lab. 1) A car is travelling with constant acceleration along a straight

More information

Preparation for Physics. Mathematical Graphs Equations of a Line

Preparation for Physics. Mathematical Graphs Equations of a Line III-1 Mathematical Graphs and Scientific Graphs Mathematical Graphs Equations of a Line In mathematics, graphs are made while studying functions to give a feel for the shape of the graph of a function.

More information

Experiment 4 Free Fall

Experiment 4 Free Fall PHY9 Experiment 4: Free Fall 8/0/007 Page Experiment 4 Free Fall Suggested Reading for this Lab Bauer&Westfall Ch (as needed) Taylor, Section.6, and standard deviation rule ( t < ) rule in the uncertainty

More information

Testing Newton s 2nd Law

Testing Newton s 2nd Law Testing Newton s 2nd Law Goal: To test Newton s 2nd law (ΣF = ma) and investigate the relationship between force, mass, and acceleration for objects. Lab Preparation To prepare for this lab you will want

More information

PHYSICS 220 LAB #5: WORK AND ENERGY

PHYSICS 220 LAB #5: WORK AND ENERGY Lab Section / 33 pts Name: Partners: PHYSICS 0 LAB #5: WORK AND ENERGY OBJECTIVES 1. To get practice calculating work.. To understand the concept of kinetic energy and its relationship to the net work

More information

Lab #2: Newton s Second Law

Lab #2: Newton s Second Law Physics 144 Chowdary How Things Work Spring 2006 Name: Partners Name(s): Lab #2: Newton s Second Law Introduction In today s exploration, we will investigate the consequences of what is one of the single

More information

LABORATORY 1: KINEMATICS written by Melissa J. Wafer '95 June 1993

LABORATORY 1: KINEMATICS written by Melissa J. Wafer '95 June 1993 LABORATORY 1: KINEMATICS written by Melissa J. Wafer '95 June 1993 The purpose of this exercise is to re-enforce what you have learned about kinematics in class and to familiarize you with computer resources

More information

Cart on a Ramp. Evaluation Copy. Figure 1. Vernier Dynamics Track. Motion Detector Bracket

Cart on a Ramp. Evaluation Copy. Figure 1. Vernier Dynamics Track. Motion Detector Bracket Cart on a Ramp Computer 3 This experiment uses an incline and a low-friction cart. If you give the cart a gentle push up the incline, the cart will roll upward, slow and stop, and then roll back down,

More information

Physics 1020 Experiment 5. Momentum

Physics 1020 Experiment 5. Momentum 1 2 What is? is a vector quantity which is a product of a mass of the object and its velocity. Therefore p = mv If your system consists of more then one object (for example if it consists of two carts)

More information

Experiment 4. Newton s Second Law. Measure the frictional force on a body on a low-friction air track.

Experiment 4. Newton s Second Law. Measure the frictional force on a body on a low-friction air track. Experiment 4 Newton s Second Law 4.1 Objectives Test the validity of Newton s Second Law. Measure the frictional force on a body on a low-friction air track. 4.2 Introduction Sir Isaac Newton s three laws

More information

EXPERIMENT 4 ONE DIMENSIONAL MOTION

EXPERIMENT 4 ONE DIMENSIONAL MOTION EXPERIMENT 4 ONE DIMENSIONAL MOTION INTRODUCTION This experiment explores the meaning of displacement; velocity, acceleration and the relationship that exist between them. An understanding of these concepts

More information

Lab: Vectors. You are required to finish this section before coming to the lab. It will be checked by one of the lab instructors when the lab begins.

Lab: Vectors. You are required to finish this section before coming to the lab. It will be checked by one of the lab instructors when the lab begins. Lab: Vectors Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Name Partners Pre-Lab You are required to finish this section before coming to the lab. It will be checked by one of the

More information

Introduction to Simple Harmonic Motion

Introduction to Simple Harmonic Motion Introduction to Prelab Prelab 1: Write the objective of your experiment. Prelab 2: Write the relevant theory of this experiment. Prelab 3: List your apparatus and sketch your setup.! Have these ready to

More information

Speed of waves. Apparatus: Long spring, meter stick, spring scale, stopwatch (or cell phone stopwatch)

Speed of waves. Apparatus: Long spring, meter stick, spring scale, stopwatch (or cell phone stopwatch) Name: Speed of waves Group Members: Date: TA s Name: Apparatus: Long spring, meter stick, spring scale, stopwatch (or cell phone stopwatch) Objectives 1. To directly calculate the speed of waves in a stretched

More information

Graphing Your Motion. Name Period Group

Graphing Your Motion. Name Period Group Graphing Your Motion Name Period Group Graphs made using a computer-interfaced motion detector can be used to study motion. A motion detector measures the distance to the nearest object in front of it

More information

Summative Practical: Motion down an Incline Plane

Summative Practical: Motion down an Incline Plane Summative Practical: Motion down an Incline Plane In the next lesson, your task will be to perform an experiment to investigate the motion of a ball rolling down an incline plane. For an incline of 30,

More information

Lab Partner(s) TA Initials (on completion) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE

Lab Partner(s) TA Initials (on completion) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE 117 Textbook Reference: Walker, Chapter 10-1,2, Chapter 11-1,3 SYNOPSIS

More information

Experiment: Oscillations of a Mass on a Spring

Experiment: Oscillations of a Mass on a Spring Physics NYC F17 Objective: Theory: Experiment: Oscillations of a Mass on a Spring A: to verify Hooke s law for a spring and measure its elasticity constant. B: to check the relationship between the period

More information

General Physics I Lab. M1 The Atwood Machine

General Physics I Lab. M1 The Atwood Machine Purpose General Physics I Lab In this experiment, you will learn the basic operation of computer interfacing and use it in an experimental study of Newton s second law. Equipment and components Science

More information

Straight Line Motion (Motion Sensor)

Straight Line Motion (Motion Sensor) Straight Line Motion (Motion Sensor) Name Section Theory An object which moves along a straight path is said to be executing linear motion. Such motion can be described with the use of the physical quantities:

More information

LAB 6: WORK AND ENERGY

LAB 6: WORK AND ENERGY 93 Name Date Partners LAB 6: WORK AND ENERGY OBJECTIVES OVERVIEW Energy is the only life and is from the Body; and Reason is the bound or outward circumference of energy. Energy is eternal delight. William

More information

AP Physics 1 Summer Assignment Packet

AP Physics 1 Summer Assignment Packet AP Physics 1 Summer Assignment Packet 2017-18 Welcome to AP Physics 1 at David Posnack Jewish Day School. The concepts of physics are the most fundamental found in the sciences. By the end of the year,

More information

ACCELERATION. 2. Tilt the Track. Place one block under the leg of the track where the motion sensor is located.

ACCELERATION. 2. Tilt the Track. Place one block under the leg of the track where the motion sensor is located. Team: ACCELERATION Part I. Galileo s Experiment Galileo s Numbers Consider an object that starts from rest and moves in a straight line with constant acceleration. If the object moves a distance x during

More information

PHYSICS LAB FREE FALL. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY

PHYSICS LAB FREE FALL. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY PHYSICS LAB FREE FALL Printed Names: Signatures: Date: Lab Section: Instructor: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY Revision August 2003 Free Fall FREE FALL Part A Error Analysis of Reaction

More information

Free-Fall Acceleration

Free-Fall Acceleration Objective To determine the acceleration due to gravity. Introduction Free-Fall Acceleration The position y of a particle moving along a straight line with a constant acceleration a is given by the following

More information

Acceleration. Part I. Uniformly Accelerated Motion. t 2. t 1

Acceleration. Part I. Uniformly Accelerated Motion. t 2. t 1 Acceleration Team: Part I. Uniformly Accelerated Motion Acceleration is the rate of change of velocity with respect to time. In this experiment, you will study a very important class of motion called uniformly-accelerated

More information

Understanding 1D Motion

Understanding 1D Motion Understanding 1D Motion OBJECTIVE Analyze the motion of a student walking across the room. Predict, sketch, and test position vs. time kinematics graphs. Predict, sketch, and test velocity vs. time kinematics

More information

Conservation of Mechanical Energy Activity Purpose

Conservation of Mechanical Energy Activity Purpose Conservation of Mechanical Energy Activity Purpose During the lab, students will become familiar with solving a problem involving the conservation of potential and kinetic energy. A cart is attached to

More information

Name: Date: Partners: LAB 2: ACCELERATED MOTION

Name: Date: Partners: LAB 2: ACCELERATED MOTION Name: Date: Partners: LAB 2: ACCELERATED MOTION OBJECTIVES After completing this lab you should be able to: Describe motion of an object from a velocitytime graph Draw the velocitytime graph of an object

More information

Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable:

Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable: Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable: Dependent Variable: Controlled Variable: Sample Data Table: Sample Graph: Graph shapes and Variable Relationships (written

More information

EXPERIMENT 6 CONSERVATION OF LINEAR MOMENTUM

EXPERIMENT 6 CONSERVATION OF LINEAR MOMENTUM 210 6-1 I. INTRODUCTION THEORY EXPERIMENT 6 CONSERVATION OF LINEAR MOMENTUM The of two carts on a track can be described in terms of momentum conservation and, in some cases, energy conservation. If there

More information

Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity?

Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity? Lab Exercise: Gravity (Report) Your Name & Your Lab Partner s Name Due Date Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity? 2. What are several advantage of

More information

Gravity: How fast do objects fall? Student Advanced Version

Gravity: How fast do objects fall? Student Advanced Version Gravity: How fast do objects fall? Student Advanced Version Kinematics is the study of how things move their position, velocity, and acceleration. Acceleration is always due to some force acting on an

More information

Work and Energy. We re going to use the same apparatus that we used in last week s Newton s Laws lab. A string is attached to a car of mass m

Work and Energy. We re going to use the same apparatus that we used in last week s Newton s Laws lab. A string is attached to a car of mass m Work and Energy We re going to use the same apparatus that we used in last week s Newton s Laws lab. A string is attached to a car of mass m 1 which is on a horizontal frictionless surface. The string

More information

Acceleration. Part I. Uniformly Accelerated Motion: Kinematics and Geometry

Acceleration. Part I. Uniformly Accelerated Motion: Kinematics and Geometry Acceleration Team: Part I. Uniformly Accelerated Motion: Kinematics and Geometry Acceleration is the rate of change of velocity with respect to time: a dv/dt. In this experiment, you will study a very

More information

Physics 103 Laboratory Fall Lab #2: Position, Velocity and Acceleration

Physics 103 Laboratory Fall Lab #2: Position, Velocity and Acceleration Physics 103 Laboratory Fall 011 Lab #: Position, Velocity and Acceleration Introduction In this lab, we will study one-dimensional motion looking at position (x), velocity (v) and acceleration (a) which

More information

Computer simulation of radioactive decay

Computer simulation of radioactive decay Computer simulation of radioactive decay y now you should have worked your way through the introduction to Maple, as well as the introduction to data analysis using Excel Now we will explore radioactive

More information

<This Sheet Intentionally Left Blank For Double-Sided Printing>

<This Sheet Intentionally Left Blank For Double-Sided Printing> 21 22 Transformation Of Mechanical Energy Introduction and Theory One of the most powerful laws in physics is the Law of Conservation of

More information

PHYSICS LAB. Newton's Law. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY

PHYSICS LAB. Newton's Law. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY PHYSICS LAB Newton's Law Printed Names: Signatures: Date: Lab Section: Instructor: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY Revision August 2003 NEWTON S SECOND LAW Purpose: 1. To become familiar

More information

Static and Kinetic Friction

Static and Kinetic Friction Experiment Static and Kinetic Friction Prelab Questions 1. Examine the Force vs. time graph and the Position vs. time graph below. The horizontal time scales are the same. In Region I, explain how an object

More information

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below:

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below: PRE-LAB PREPARATION SHEET FOR LAB 1: INTRODUCTION TO MOTION (Due at the beginning of Lab 1) Directions: Read over Lab 1 and then answer the following questions about the procedures. 1. In Activity 1-1,

More information

Physics 1050 Experiment 1. Introduction to Measurement and Uncertainty

Physics 1050 Experiment 1. Introduction to Measurement and Uncertainty Introduction to Measurement and Uncertainty Prelab Questions! Q These questions need to be completed before entering the lab. Show all workings. Prelab 1: A car takes time t = 2.5 +/- 0.2 s to travel a

More information

Velocity. x Worldline. Spacetime. y z. Motion Function x(t) The motion of an object in one dimension is described by the motion function x(t):

Velocity. x Worldline. Spacetime. y z. Motion Function x(t) The motion of an object in one dimension is described by the motion function x(t): Team Velocity Motion Function (t) The motion of an object in one dimension is described by the motion function (t): (t) position of the object as a function of time t. The velocity of the object is defined

More information

Data and Error Analysis

Data and Error Analysis Data and Error Analysis Introduction In this lab you will learn a bit about taking data and error analysis. The physics of the experiment itself is not the essential point. (Indeed, we have not completed

More information

Safety: BE SURE TO KEEP YOUR SMART CART UPSIDE-DOWN WHEN YOU RE NOT ACTIVELY USING IT TO RECORD DATA.

Safety: BE SURE TO KEEP YOUR SMART CART UPSIDE-DOWN WHEN YOU RE NOT ACTIVELY USING IT TO RECORD DATA. Why do people always ignore Objective: 1. Determine how an object s mass affects the friction it experiences. 2. Compare the coefficient of static friction to the coefficient of kinetic friction for each

More information

Motion on a linear air track

Motion on a linear air track Motion on a linear air track Introduction During the early part of the 17 th century, Galileo experimentally examined the concept of acceleration. One of his goals was to learn more about freely falling

More information

Newton s Third Law and Conservation of Momentum 1 Fall 2017

Newton s Third Law and Conservation of Momentum 1 Fall 2017 Introduction Newton s Third Law and Conservation of omentum 1 Fall 217 The purpose of this experiment is to study the forces between objects that interact with each other, especially in collisions, and

More information

Potential and Kinetic Energy

Potential and Kinetic Energy Lab VII Potential and Kinetic Energy 1 Introduction This is a lab about the interplay between kinetic and potential energy. While we can calculate forces and accelerations of an object as it moves along

More information

Semester I lab quiz Study Guide (Mechanics) Physics 135/163

Semester I lab quiz Study Guide (Mechanics) Physics 135/163 Semester I lab quiz Study Guide (Mechanics) Physics 135/163 In this guide, lab titles/topics are listed alphabetically, with a page break in between each one. You are allowed to refer to your own handwritten

More information

Experiment 1: The Same or Not The Same?

Experiment 1: The Same or Not The Same? Experiment 1: The Same or Not The Same? Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to collect data and calculate statistics (mean and standard deviation). 2. Explain

More information

Lab 5: Calculating an equilibrium constant

Lab 5: Calculating an equilibrium constant Chemistry 162 The following write-up is inaccurate for the particular chemicals we are using. Please have all sections up through and including the data tables ready before class on Wednesday, February

More information

July 19 - Work and Energy 1. Name Date Partners

July 19 - Work and Energy 1. Name Date Partners July 19 - Work and Energy 1 Name Date Partners WORK AND ENERGY Energy is the only life and is from the Body; and Reason is the bound or outward circumference of energy. Energy is eternal delight. William

More information

Conservation of Mechanical Energy Activity Purpose

Conservation of Mechanical Energy Activity Purpose Conservation of Mechanical Energy Activity Purpose During the lab, students will become familiar with solving a problem involving the conservation of potential and kinetic energy. A cart is attached to

More information

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates.

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates. Learning Goals Experiment 3: Force After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Find your center of mass by

More information

Kinematics Lab. 1 Introduction. 2 Equipment. 3 Procedures

Kinematics Lab. 1 Introduction. 2 Equipment. 3 Procedures Kinematics Lab 1 Introduction An object moving in one dimension and undergoing constant or uniform acceleration has a position given by: x(t) =x 0 +v o t +1/2at 2 where x o is its initial position (its

More information

α m ! m or v T v T v T α m mass

α m ! m or v T v T v T α m mass FALLING OBJECTS (WHAT TO TURN IN AND HOW TO DO SO) In the real world, because of air resistance, objects do not fall indefinitely with constant acceleration. One way to see this is by comparing the fall

More information

Energy Storage and Transfer: Gravitational Energy. Evaluation copy. Vernier Photogate (Extension only)

Energy Storage and Transfer: Gravitational Energy. Evaluation copy. Vernier Photogate (Extension only) Energy Storage and Transfer: Gravitational Energy PART 3 GRAVITATIONAL ENERGY Experiment 9 In the first of this series of labs exploring the role of energy in change, you found that the energy stored in

More information

Work and Energy. W F s)

Work and Energy. W F s) Work and Energy Experiment 18 Work is a measure of energy transfer. In the absence of friction, when positive work is done on an object, there will be an increase in its kinetic or potential energy. In

More information

Physics 1020 Experiment 6. Equilibrium of a Rigid Body

Physics 1020 Experiment 6. Equilibrium of a Rigid Body 1 2 Introduction Static equilibrium is defined as a state where an object is not moving in any way. The two conditions for the equilibrium of a rigid body (such as a meter stick) are 1. the vector sum

More information

Uniformly Accelerated Motion

Uniformly Accelerated Motion Uniformly Accelerated Motion 2-1 Uniformly Accelerated Motion INTRODUCTION All objects on the earth s surface are being accelerated toward the center of the earth at a rate of 9.81 m/s 2. 1 This means

More information

Name Class Date. Activity P21: Kinetic Friction (Photogate/Pulley System)

Name Class Date. Activity P21: Kinetic Friction (Photogate/Pulley System) Name Class Date Activity P21: Kinetic Friction (Photogate/Pulley System) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P21 Kinetic Friction.DS P25 Kinetic Friction P25_KINE.SWS

More information

One Dimensional Collisions 1 Fall 2018

One Dimensional Collisions 1 Fall 2018 One Dimensional Collisions 1 Fall 2018 Name: Partners: Introduction The purpose of this experiment is to perform experiments to learn about momentum, impulse and collisions in one dimension. Write all

More information