Lecture 16: The life of a low-mass star. Astronomy 111 Monday October 23, 2017

Size: px
Start display at page:

Download "Lecture 16: The life of a low-mass star. Astronomy 111 Monday October 23, 2017"

Transcription

1 Lecture 16: The life of a low-mass star Astronomy 111 Monday October 23, 2017

2 Reminders Online homework #8 due Monday at 3pm Exam #2: Monday, 6 November 2017

3 The Main Sequence ASTR111 Lecture 16

4 Main sequence membership For a star to be located on the Main Sequence in the H-R diagram: must fuse Hydrogen into Helium in its core. must be in a state of Hydrostatic Equilibrium. Relax either of these and the star can no longer remain on the Main Sequence.

5 The main sequence is a mass sequence The location of a star along the M-S is determined by its Mass. Low-Mass Stars: Cooler & Fainter High-Mass Stars: Hotter & Brighter Follows from the Mass-Luminosity Relation: Luminosity ~ Mass 3.5

6 Luminosity (L sun ) ASTR111 Lecture 16 Main sequence 10 6 High Mass ,000 20,000 10,000 5,000 2,500 Temperature (K) Low Mass

7 Internal structure Nuclear reaction rates are very sensitive to core temperature: P-P Chain: fusion rate ~ T 4 CNO Cycle: fusion rate ~ T 18! Leads to: Differences in internal structure. Division into Upper & Lower M-S by mass.

8 Proton-proton chain 2 p H p p 2 3 H e He e (twice) (twice) 3 He 3 He 4 He p p

9 CNO cycle 12 C + p 13 N N C e C p N e N p O O N e N p C He e

10 High-mass Main Sequence stars ASTR111 Lecture 16

11 Upper main sequence Upper Main-Sequence stars: M > 1.2 M sun T Core > 18 Million K Generate Energy by the CNO Cycle Structure: Convective Cores Radiative Envelopes

12 Upper Main Sequence Star Radiative Envelope Convective Core

13 Low-mass Main Sequence stars ASTR111 Lecture 16

14 Lower main sequence Lower Main-Sequence stars: M < 1.2 M sun T Core < 18 Million K Generate Energy by the Proton-Proton Chain Structure: Radiative Cores Convective Envelopes

15 Lower Main Sequence Star Convective Envelope Radiative Core

16 Red Main Sequence stars ASTR111 Lecture 16

17 The lowest mass stars For 0.25 < M * < 0.08 M sun : Generate energy by the P-P Chain Fully Convective Interiors: Convective Core and Convective Envelope Reddest main sequence Stars

18 Red Main Sequence Star Convective Envelope Convective Core

19 Brown dwarfs Failed Stars (no fusion) MBD<0.08 Msun Many many more BDs than massive stars.

20 Structure along the Main Sequence

21 Main sequence lifetime How long a star can burn H to He depends on: Amount of H available = MASS How fast it burns H to He = LUMINOSITY Lifetime = Mass Luminosity Remember: The Mass-Luminosity Relationship says Luminosity ~ Mass 3.5

22 Main sequence lifetime Therefore: Lifetime ~ 1 / M 2.5 The higher the mass, the shorter its life. Examples: Sun: ~ 10 Billion Years 30 M sun O-star: ~ 2 Million years 0.1 M sun M-star: ~ 3 Trillion years

23 Higher Mass = Shorter Life ASTR111 Lecture 16

24 Consequences If you see an O or B dwarf star, it must be young since they only live for a few Million years. You can t tell how old an M dwarf is because their lives can be so long. The Sun is ~ 5 Billion years old, so it will last only for ~ 5 Billion years longer.

25 Structure & mixing Upper & Lower M-S Stars: Core & Envelope are separate. No mixing of nuclear fusion products between the deep core and the envelope. Surface composition is constant over lifetime. Red Main Sequence Stars: Fully mixed: core & envelope are convective. Enhances surface helium composition?

26 The life of the Sun: Main sequence phase Energy Source: H fusion in the core What happens to the He created by H fusion? Too cool to ignite He fusion Slowly build up an inert He core Lifetime: ~10 Gyr for a 1 M sun star (e.g., Sun) ~10 Tyr for a 0.1 M sun star (red dwarf)

27 Hydrogen exhaustion Inside: He core collapses & starts to heat up. H burning zone shoved into a shell. Collapsing core heats the H shell above it, driving the fusion faster. More fusion, more heating, so Pressure > Gravity Outside: Envelope expands and cools Star gets brighter and redder. Becomes a Red Giant Star

28 The Giant Branch ASTR111 Lecture 16

29 Red Giant Star Inert He Core H Burning Shell Cool, Extended Envelope

30 Luminosity (L sun ) ASTR111 Lecture 16 Climbing the Red Giant Branch H-core exhaustion Red Giant Branch ,000 20,000 10,000 5,000 2,500 Temperature (K)

31 Climbing the Red Giant Branch Takes ~1 Gyr to climb the Red Giant Branch He core contracting & heating, but no fusion H burning to He in a shell around the core Huge, puffy envelope ~ size of orbit of Venus Top of the Red Giant Branch: T core reaches 100 Million K Ignite He burning in the core in a flash.

32 The Sun as a red giant star Weak gravitational hold on outer layers

33 Helium flash Triple-a Process: Fusion of 3 4 He nuclei into 1 12 C (Carbon): 4 4 He 4 He 8 He Be 8 12 Be C Secondary reaction with 12 C makes 16 O (Oxygen): He C O

34 Leaving the giant branch Inside: Primary energy from He burning core. Additional energy from an H burning shell. Outside: Gets hotter and bluer. Star shrinks in radius, getting fainter. Moves onto the Horizontal Branch

35 Horizontal Branch Star He Burning Core H Burning Shell Envelope

36 Luminosity (L sun ) ASTR111 Lecture 16 Horizontal branch Horizontal Branch H-core exhaustion Helium Flash Red Giant Branch ,000 20,000 10,000 5,000 2,500 Temperature (K)

37 Horizontal branch phase Structure: He-burning core H-burning shell Triple-a Process is inefficient, can only last for ~100 Myr. Build up a C-O core, but too cool to ignite Carbon fusion

38 Horizontal branch star ASTR111 Lecture 16

39 Asymptotic giant branch After 100 Myr, core runs out of He C-O core collapses and heats up He burning shell H burning shell Star swells and cools Climbs the Giant Branch again, but at higher T Asymptotic Giant Branch Star

40 Asymptotic Giant Branch Star H Burning Shell He Burning Shell Inert C-O Core Cool, Extended Envelope

41 Luminosity (L sun ) ASTR111 Lecture 16 The asymptotic giant branch Asymptotic Giant Branch Horizontal Branch Red Giant Branch H-core exhaustion ,000 20,000 10,000 5,000 2,500 Temperature (K)

42 Asymptotic giant branch star ASTR111 Lecture 16

43 The instabilities of old age He burning is very temperature sensitive: Triple-a fusion rate ~ T 40! Consequences: Small changes in T lead to Large changes in fusion energy output Star experiences huge Thermal Pulses that destabilize the outer envelope.

44 Core-envelope separation Rapid process: takes ~10 5 years Outer envelope gets slowly ejected (fast wind) C-O core continues to contract: with weight of envelope taken off, heats up less never reaches Carbon ignition temperature of 600 Million K Core and envelope go their separate ways

45 Planetary nebula phase Expanding envelope forms a ring nebula around the contracting C-O core. Ionized and heated by the hot central core. Expands away to nothing in ~10 4 years. Planetary Nebula Hot C-O core is exposed, moves to the left on the H-R Diagram

46

47

48 Luminosity (L sun ) ASTR111 Lecture 16 Planetary Nebula Phase C-O Core Envelope Ejection White Dwarf 40,000 20,000 10,000 5,000 2,500 Temperature (K)

49

50 Core collapse to White Dwarf Contracting C-O core becomes so dense that a new gas law takes over. Degenerate Electron Gas: Pressure becomes independent of Temperature P grows rapidly & soon counteracts Gravity Collapse halts when R ~ 0.01 R sun (~ R earth ) White Dwarf Star

51 White Dwarfs Gravitational collapse is balanced by electron degeneracy

52 White Dwarfs Pauli Exclusion Principle says: No two electrons can be at the same place at the same time with the same energy. At high density, all the low energy states are occupied, leaving only high energy (high pressure) states. Results in Degenerate Electron Gas: Pressure is independent of temperature Compression does NOT lead to heating Works for stellar cores up to 1.4 solar masses.

53 White Dwarfs Remnant cores of stars with M * < 8 M sun. Held up by Electron Degeneracy Pressure. Properties: Mass < 1.4 M sun Radius ~ R earth (<0.02 R sun ) Density ~ g/cc No nuclear fusion or gravitational contraction ASTR111 Lecture 16

54 Sirius B: White Dwarf Sirius B

55 Chandrasekhar Mass Mass-Radius Relation for White Dwarfs: Larger Mass = Smaller Radius Maximum Mass for White Dwarf: M ch = 1.4 M sun Calculated by Subrahmanyan Chandrasekhar in the 1930s. Above this mass, electron degeneracy pressure fails & the star collapses.

56 The Stellar Graveyard Q: What happens to the cores of dead stars? A: They continue to collapse until either: A new pressure law takes hold to halt further collapse & they settle into equilibrium. If too massive they collapse to zero radius and become a Black Hole.

57 Evolution of White Dwarfs White Dwarfs only shine by leftover heat. No sources of new energy (no fusion, nothing) Cools off and fades away slowly. Ultimate State: A Black Dwarf : Old, cold white dwarf Takes ~ 10 Tyr to cool off Galaxy is not old enough to see Black Dwarfs. ASTR111 Lecture 16

58 Summary Main Sequence stars burn H into He in their cores. The Main Sequence is a Mass Sequence. Lower M-S: p-p chain, radiative cores & convective envelopes Upper M-S: CNO cycle, convective cores & radiative envelopes Larger Mass = Shorter Lifetime

59

60 Summary Stage: Main Sequence Red Giant Horizontal Branch Asymptotic Giant White Dwarf Energy Source: H Burning Core H Burning Shell He Core + H Shell He Shell + H Shell None!

The life of a low-mass star. Astronomy 111

The life of a low-mass star. Astronomy 111 Lecture 16: The life of a low-mass star Astronomy 111 Main sequence membership For a star to be located on the Main Sequence in the H-R diagram: must fuse Hydrogen into Helium in its core. must be in a

More information

The Evolution of Low Mass Stars

The Evolution of Low Mass Stars The Evolution of Low Mass Stars Key Ideas: Low Mass = M < 4 M sun Stages of Evolution of a Low Mass star: Main Sequence star star star Asymptotic Giant Branch star Planetary Nebula phase White Dwarf star

More information

Main Sequence Membership

Main Sequence Membership Astronomy 101 Main Sequence Membership For a star to be located on the Main Sequence in the H R diagram: must fuse Hydrogen into Helium in its core. must be in a state of Hydrosta)c Equilibrium. Relax

More information

Lecture 16: Evolution of Low-Mass Stars Readings: 21-1, 21-2, 22-1, 22-3 and 22-4

Lecture 16: Evolution of Low-Mass Stars Readings: 21-1, 21-2, 22-1, 22-3 and 22-4 Lecture 16: Evolution of Low-Mass Stars Readings: 21-1, 21-2, 22-1, 22-3 and 22-4 For the protostar and pre-main-sequence phases, the process was the same for the high and low mass stars, and the main

More information

Life and Death of a Star. Chapters 20 and 21

Life and Death of a Star. Chapters 20 and 21 Life and Death of a Star Chapters 20 and 21 90 % of a stars life Most stars spend most of their lives on the main sequence. A star like the Sun, for example, after spending a few tens of millions of years

More information

17.1 Lives in the Balance. Our goals for learning: How does a star's mass affect nuclear fusion?

17.1 Lives in the Balance. Our goals for learning: How does a star's mass affect nuclear fusion? Stellar Evolution 17.1 Lives in the Balance Our goals for learning: How does a star's mass affect nuclear fusion? How does a star's mass affect nuclear fusion? Stellar Mass and Fusion The mass of a main-sequence

More information

Lifespan on the main sequence. Lecture 9: Post-main sequence evolution of stars. Evolution on the main sequence. Evolution after the main sequence

Lifespan on the main sequence. Lecture 9: Post-main sequence evolution of stars. Evolution on the main sequence. Evolution after the main sequence Lecture 9: Post-main sequence evolution of stars Lifetime on the main sequence Shell burning and the red giant phase Helium burning - the horizontal branch and the asymptotic giant branch The death of

More information

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars.

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars. Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars. Stellar evolution during the main-sequence life-time, and during the post-main-sequence

More information

Lecture 44: The Future of Life in the Solar System

Lecture 44: The Future of Life in the Solar System Lecture 44 The Future of Life in the Solar System Astronomy 141 Autumn 2009 This lecture is about the future of life in the Solar System. The Sun today is a steadily shining, middle-aged Main Sequence

More information

TA feedback forms are online!

TA feedback forms are online! 1 Announcements TA feedback forms are online! find the link at the class website. Please take 5 minutes to tell your TAs your opinion. In case you did not notice, the Final is set for 03/21 from 12:00-3:00

More information

Heading for death. q q

Heading for death. q q Hubble Photos Credit: NASA, The Hubble Heritage Team (STScI/AURA) Heading for death. q q q q q q Leaving the main sequence End of the Sunlike star The helium core The Red-Giant Branch Helium Fusion Helium

More information

Reading and Announcements. Read Chapter 14.1, 14.2 Homework #6 due Tuesday, March 26 Exam #2, Thursday, March 28

Reading and Announcements. Read Chapter 14.1, 14.2 Homework #6 due Tuesday, March 26 Exam #2, Thursday, March 28 Reading and Announcements Read Chapter 14.1, 14.2 Homework #6 due Tuesday, March 26 Exam #2, Thursday, March 28 The life of the Sun The Sun started as a cloud of gas. Gravity caused the cloud to collapse.

More information

Chapter 17 Lecture. The Cosmic Perspective Seventh Edition. Star Stuff Pearson Education, Inc.

Chapter 17 Lecture. The Cosmic Perspective Seventh Edition. Star Stuff Pearson Education, Inc. Chapter 17 Lecture The Cosmic Perspective Seventh Edition Star Stuff Star Stuff 17.1 Lives in the Balance Our goals for learning: How does a star's mass affect nuclear fusion? How does a star's mass affect

More information

Stellar Evolution and the HertzsprungRussell Diagram 7/14/09. Astronomy 101

Stellar Evolution and the HertzsprungRussell Diagram 7/14/09. Astronomy 101 Stellar Evolution and the HertzsprungRussell Diagram 7/14/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Outline for Today Astronomy Picture of the Day News Articles Business Return Lab 5

More information

AST101 Lecture 13. The Lives of the Stars

AST101 Lecture 13. The Lives of the Stars AST101 Lecture 13 The Lives of the Stars A Tale of Two Forces: Pressure vs Gravity I. The Formation of Stars Stars form in molecular clouds (part of the interstellar medium) Molecular clouds Cold: temperatures

More information

Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams:

Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams: Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams: 1. The evolution of a number of stars all formed at the same time

More information

HR Diagram, Star Clusters, and Stellar Evolution

HR Diagram, Star Clusters, and Stellar Evolution Ay 1 Lecture 9 M7 ESO HR Diagram, Star Clusters, and Stellar Evolution 9.1 The HR Diagram Stellar Spectral Types Temperature L T Y The Hertzsprung-Russel (HR) Diagram It is a plot of stellar luminosity

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

AST 101 Introduction to Astronomy: Stars & Galaxies

AST 101 Introduction to Astronomy: Stars & Galaxies The H-R Diagram review So far: AST 101 Introduction to Astronomy: Stars & Galaxies - Stars on Main Sequence (MS) - Pre MS (Star Birth) Next: - Post MS: Giants, Super Giants, White dwarfs Evolution of Low

More information

Low mass stars. Sequence Star Giant. Red. Planetary Nebula. White Dwarf. Interstellar Cloud. White Dwarf. Interstellar Cloud. Planetary Nebula.

Low mass stars. Sequence Star Giant. Red. Planetary Nebula. White Dwarf. Interstellar Cloud. White Dwarf. Interstellar Cloud. Planetary Nebula. Low mass stars Interstellar Cloud Main Sequence Star Red Giant Planetary Nebula White Dwarf Interstellar Cloud Main Sequence Star Red Giant Planetary Nebula White Dwarf Low mass stars Interstellar Cloud

More information

Evolution of High Mass Stars

Evolution of High Mass Stars Luminosity (L sun ) Evolution of High Mass Stars High Mass Stars O & B Stars (M > 4 M sun ): Burn Hot Live Fast Die Young Main Sequence Phase: Burn H to He in core Build up a He core, like low-mass stars

More information

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

More information

Low-mass Stellar Evolution

Low-mass Stellar Evolution Low-mass Stellar Evolution The lives of low-mass stars And the lives of massive stars The Structure of the Sun Let s review: The Sun is held together by? The inward force is balanced by? Thinking about

More information

Ch. 29 The Stars Stellar Evolution

Ch. 29 The Stars Stellar Evolution Ch. 29 The Stars 29.3 Stellar Evolution Basic Structure of Stars Mass effects The more massive a star is, the greater the gravity pressing inward, and the hotter and more dense the star must be inside

More information

Chapters 12 and 13 Review: The Life Cycle and Death of Stars. How are stars born, and how do they die? 4/1/2009 Habbal Astro Lecture 27 1

Chapters 12 and 13 Review: The Life Cycle and Death of Stars. How are stars born, and how do they die? 4/1/2009 Habbal Astro Lecture 27 1 Chapters 12 and 13 Review: The Life Cycle and Death of Stars How are stars born, and how do they die? 4/1/2009 Habbal Astro 110-01 Lecture 27 1 Stars are born in molecular clouds Clouds are very cold:

More information

Ch. 16 & 17: Stellar Evolution and Death

Ch. 16 & 17: Stellar Evolution and Death Ch. 16 & 17: Stellar Evolution and Death Stars have lives: born, evolve, die Mass determines stellar evolution: Really Low Mass (0.08 to 0.4 M sun ) Low Mass: (0.4 to 4 M sun ) Long lives High Mass (4

More information

Today. Stars. Evolution of High Mass Stars. Nucleosynthesis. Supernovae - the explosive deaths of massive stars

Today. Stars. Evolution of High Mass Stars. Nucleosynthesis. Supernovae - the explosive deaths of massive stars Today Stars Evolution of High Mass Stars Nucleosynthesis Supernovae - the explosive deaths of massive stars 1 Another good job on exam! Class average was 71% Given the difficulty of the exam, this was

More information

ASTR-1020: Astronomy II Course Lecture Notes Section VI

ASTR-1020: Astronomy II Course Lecture Notes Section VI ASTR-1020: Astronomy II Course Lecture Notes Section VI Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and students

More information

The dying sun/ creation of elements

The dying sun/ creation of elements The dying sun/ creation of elements Homework 6 is due Thurs, 2 April at 6:00am OBAFGKM extra credit Angel: Lessons>Extra Credit Due 11:55pm, 31 March Final exam (new, later time) 6 May, 3:00-5:00, BPS

More information

AST 101 Introduction to Astronomy: Stars & Galaxies

AST 101 Introduction to Astronomy: Stars & Galaxies AST 101 Introduction to Astronomy: Stars & Galaxies Summary: When a Low-Mass Star runs out of Hydrogen in its Core 1. With fusion no longer occurring in the core, gravity causes core collapse 2. Hydrogen

More information

Guiding Questions. Stellar Evolution. Stars Evolve. Interstellar Medium and Nebulae

Guiding Questions. Stellar Evolution. Stars Evolve. Interstellar Medium and Nebulae Guiding Questions Stellar Evolution 1. Why do astronomers think that stars evolve? 2. What kind of matter exists in the spaces between the stars? 3. What steps are involved in forming a star like the Sun?

More information

High Mass Stars and then Stellar Graveyard 7/16/09. Astronomy 101

High Mass Stars and then Stellar Graveyard 7/16/09. Astronomy 101 High Mass Stars and then Stellar Graveyard 7/16/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Something Cool Betelgeuse Astronomy 101 Outline for Today Astronomy Picture of the Day Something

More information

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9 Phys 0 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9 MULTIPLE CHOICE 1. We know that giant stars are larger in diameter than the sun because * a. they are more luminous but have about the

More information

3/1/18. Things to do. Topics for Today

3/1/18. Things to do. Topics for Today ASTR 1040: Stars & Galaxies Spirograph Planetary Nebula Prof. Juri Toomre TAs: Peri Johnson, Ryan Horton Lecture 14 Thur 1 Mar 2018 zeus.colorado.edu/astr1040-toomre Topics for Today Revisit birth of stars

More information

Today The Sun. Events

Today The Sun. Events Today The Sun Events Last class! Homework due now - will count best 5 of 6 Final exam Dec. 20 @ 12:00 noon here Review this Course! www.case.edu/utech/course-evaluations/ The Sun the main show in the solar

More information

AST 101 Introduction to Astronomy: Stars & Galaxies

AST 101 Introduction to Astronomy: Stars & Galaxies AST 101 Introduction to Astronomy: Stars & Galaxies The H-R Diagram review So far: Stars on Main Sequence (MS) Next: - Pre MS (Star Birth) - Post MS: Giants, Super Giants, White dwarfs Star Birth We start

More information

Announcements. L! m 3.5 BRIGHT FAINT. Mass Luminosity Relation: Why? Homework#3 will be handed out at the end of this lecture.

Announcements. L! m 3.5 BRIGHT FAINT. Mass Luminosity Relation: Why? Homework#3 will be handed out at the end of this lecture. Announcements BRIGHT Homework#3 will be handed out at the end of this lecture. Due October 14 (next Thursday) Review of Mid-term exam will be handed out Tuesday. Mid-term exam will be variants (if not

More information

Age of M13: 14 billion years. Mass of stars leaving the main-sequence ~0.8 solar masses

Age of M13: 14 billion years. Mass of stars leaving the main-sequence ~0.8 solar masses Age of M13: 14 billion years. Mass of stars leaving the main-sequence ~0.8 solar masses Helium coreburning stars Giants Subgiants Main Sequence Here is a way to think about it. Outside of star Plenty of

More information

10/17/2012. Stellar Evolution. Lecture 14. NGC 7635: The Bubble Nebula (APOD) Prelim Results. Mean = 75.7 Stdev = 14.7

10/17/2012. Stellar Evolution. Lecture 14. NGC 7635: The Bubble Nebula (APOD) Prelim Results. Mean = 75.7 Stdev = 14.7 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10/17/2012 Stellar Evolution Lecture 14 NGC 7635: The Bubble Nebula (APOD) Prelim Results 9 8 7 6 5 4 3 2 1 0 Mean = 75.7 Stdev = 14.7 1 Energy

More information

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Lecture Outline. HW#7 due Friday by 5 pm! (available Tuesday)

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Lecture Outline. HW#7 due Friday by 5 pm! (available Tuesday) Stars, Galaxies & the Universe Announcements HW#7 due Friday by 5 pm! (available Tuesday) Midterm Grades (points) posted today in ICON Exam #2 next week (Wednesday) Review sheet and study guide posted

More information

Why Do Stars Leave the Main Sequence? Running out of fuel

Why Do Stars Leave the Main Sequence? Running out of fuel Star Deaths Why Do Stars Leave the Main Sequence? Running out of fuel Observing Stellar Evolution by studying Globular Cluster HR diagrams Plot stars in globular clusters in Hertzsprung-Russell diagram

More information

High Mass Stars. Dr Ken Rice. Discovering Astronomy G

High Mass Stars. Dr Ken Rice. Discovering Astronomy G High Mass Stars Dr Ken Rice High mass star formation High mass star formation is controversial! May form in the same way as low-mass stars Gravitational collapse in molecular clouds. May form via competitive

More information

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012 Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012 Choose the answer that best completes the question. Read each problem carefully and read through all the answers.

More information

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 20 Stellar Evolution MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A star (no matter what its mass) spends

More information

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 20 Stellar Evolution MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A star (no matter what its mass) spends

More information

Astro 1050 Fri. Apr. 10, 2015

Astro 1050 Fri. Apr. 10, 2015 Astro 1050 Fri. Apr. 10, 2015 Today: Continue Ch. 13: Star Stuff Reading in Bennett: For Monday: Finish Chapter 13 Star Stuff Reminders: Ch. 12 HW now on Mastering Astronomy, due Monday. Ch. 13 will be

More information

Pre Main-Sequence Evolution

Pre Main-Sequence Evolution Stellar Astrophysics: Stellar Evolution Pre Main-Sequence Evolution The free-fall time scale is describing the collapse of the (spherical) cloud to a protostar 1/2 3 π t ff = 32 G ρ With the formation

More information

Nuclear Physics and Astrophysics of Exploding Stars

Nuclear Physics and Astrophysics of Exploding Stars Nuclear Physics and Astrophysics of Exploding Stars Lars Bildsten Kavli Institute for Theoretical Physics Department of Physics University of California, Santa Barbara Dan Kasen (UCSC), Kevin Moore (UCSB),

More information

Astronomy. Stellar Evolution

Astronomy. Stellar Evolution Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Stellar Evolution Main Sequence star changes during nuclear fusion What happens when the fuel runs out Old stars and second

More information

10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure

10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure 10/26/16 Lecture Outline 13.1 Star Birth Chapter 13: Star Stuff How do stars form? Our goals for learning: How do stars form? How massive are newborn stars? Star-Forming Clouds Stars form in dark clouds

More information

Announcement: Quiz Friday, Oct 31

Announcement: Quiz Friday, Oct 31 Announcement: Quiz Friday, Oct 31 What is the difference between the giant, horizontal, and asymptotic-giant branches? What is the Helium flash? Why can t high-mass stars support themselves in hydrostatic

More information

Stellar Evolution. The lives of low-mass stars. And the lives of massive stars

Stellar Evolution. The lives of low-mass stars. And the lives of massive stars Stellar Evolution The lives of low-mass stars And the lives of massive stars The Structure of the Sun Let s review: The Sun is held together by what force? The inward force is balanced by what other force?

More information

NSCI 314 LIFE IN THE COSMOS

NSCI 314 LIFE IN THE COSMOS NSCI 314 LIFE IN THE COSMOS 2 BASIC ASTRONOMY, AND STARS AND THEIR EVOLUTION Dr. Karen Kolehmainen Department of Physics CSUSB COURSE WEBPAGE: http://physics.csusb.edu/~karen MOTIONS IN THE SOLAR SYSTEM

More information

Stellar Astronomy Sample Questions for Exam 4

Stellar Astronomy Sample Questions for Exam 4 Stellar Astronomy Sample Questions for Exam 4 Chapter 15 1. Emission nebulas emit light because a) they absorb high energy radiation (mostly UV) from nearby bright hot stars and re-emit it in visible wavelengths.

More information

Evolution from the Main-Sequence

Evolution from the Main-Sequence 9 Evolution from the Main-Sequence Lecture 9 Evolution from the Main-Sequence P. Hily-Blant (Master PFN) Stellar structure and evolution 2016-17 111 / 159 9 Evolution from the Main-Sequence 1. Overview

More information

As the central pressure decreases due to the increase of μ, the stellar core contracts and the central temperature increases. This increases the

As the central pressure decreases due to the increase of μ, the stellar core contracts and the central temperature increases. This increases the Stellar Evolu,on Stars spend most of their lives on the main sequence. Evidence for this is provided by the fact that 90% of stars observable from Earth are main- sequence stars. Stellar evolu,on during

More information

Chapter 17: Stellar Evolution

Chapter 17: Stellar Evolution Astr 2310 Thurs. Mar. 30, 2017 Today s Topics Chapter 17: Stellar Evolution Birth of Stars and Pre Main Sequence Evolution Evolution on and off the Main Sequence Solar Mass Stars Massive Stars Low Mass

More information

A Star Becomes a Star

A Star Becomes a Star A Star Becomes a Star October 28, 2002 1) Stellar lifetime 2) Red Giant 3) White Dwarf 4) Supernova 5) More massive stars Review Solar winds/sunspots Gases and Dust Molecular clouds Protostars/Birth of

More information

7/9. What happens to a star depends almost completely on the mass of the star. Mass Categories: Low-Mass Stars 0.2 solar masses and less

7/9. What happens to a star depends almost completely on the mass of the star. Mass Categories: Low-Mass Stars 0.2 solar masses and less 7/9 What happens to a star depends almost completely on the mass of the star. Mass Categories: Low-Mass Stars 0.2 solar masses and less Medium-Mass Stars 0.2 solar masses up to between 2 and 3 solar masses.

More information

Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2)

Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2) Chapter 12 Review TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) As a main-sequence star, the Sun's hydrogen supply should last about 10 billion years from the zero-age

More information

Chapter 19: The Evolution of Stars

Chapter 19: The Evolution of Stars Chapter 19: The Evolution of Stars Why do stars evolve? (change from one state to another) Energy Generation fusion requires fuel, fuel is depleted [fig 19.2] at higher temperatures, other nuclear process

More information

Astronomy II (ASTR1020) Exam 3 Test No. 3D

Astronomy II (ASTR1020) Exam 3 Test No. 3D Astronomy II (ASTR1020) Exam 3 Test No. 3D 23 October 2001 The answers of this multiple choice exam are to be indicated on the Scantron with a No. 2 pencil. Don t forget to write your name and the Test

More information

Stars: Their Life and Afterlife

Stars: Their Life and Afterlife The 68 th Compton Lecture Series Stars: Their Life and Afterlife Lecture 3: The Life and Times of Low Mass Stars Brian Humensky, lecturer http://kicp.uchicago.edu/~humensky/comptonlectures.htm October

More information

the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes

the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes The spectral lines of stars tell us their approximate composition Remember last year in Physics?

More information

Chapter 14. Stellar Evolution I. The exact sequence of evolutionary stages also depends on the mass of a star.

Chapter 14. Stellar Evolution I. The exact sequence of evolutionary stages also depends on the mass of a star. Chapter 14 Stellar Evolution I I. Introduction Stars evolve in the sense that they pass through different stages of a stellar life cycle that is measured in billions of years. The longer the amount of

More information

Stages of the Sun's life:

Stages of the Sun's life: Stellar Evolution Stages of the Sun's life: 1) initial collapse from interstellar gas (5 million yrs) 2) onset of nuclear reactions to start of main sequence phase (30 million yrs) 3) main sequence (10

More information

Evolution of Stars Population III: Population II: Population I:

Evolution of Stars Population III: Population II: Population I: Evolution of Stars 1. Formed from gas/dust cloud collapse from gravity 2. Fuse H to He on the Main Sequence. Then evolve off Main-sequence as they burn He and successive elements. 3. When nuclear fusion

More information

ASTRONOMY 1 EXAM 3 a Name

ASTRONOMY 1 EXAM 3 a Name ASTRONOMY 1 EXAM 3 a Name Identify Terms - Matching (20 @ 1 point each = 20 pts.) Multiple Choice (25 @ 2 points each = 50 pts.) Essays (choose 3 of 4 @ 10 points each = 30 pt 1.Luminosity D 8.White dwarf

More information

Stellar Models ASTR 2110 Sarazin

Stellar Models ASTR 2110 Sarazin Stellar Models ASTR 2110 Sarazin Jansky Lecture Tuesday, October 24 7 pm Room 101, Nau Hall Bernie Fanaroff Observing the Universe From Africa Trip to Conference Away on conference in the Netherlands

More information

Lecture 24. Reprise: Evolution Timescale

Lecture 24. Reprise: Evolution Timescale Lecture 24 Life as a Low Mass Giant Dating the Stars Shell vs Core Fusion Helium Fusion Planetary Nebulae Mar 22, 2006 Astro 100 Lecture 24 1 Reprise: Evolution Timescale To estimate the duration of any

More information

Gravitational collapse of gas

Gravitational collapse of gas Gravitational collapse of gas Assume a gas cloud of mass M and diameter D Sound speed for ideal gas is c s = γ P ρ = γ nkt ρ = γ kt m Time for sound wave to cross the cloud t sound = D == D m c s γ kt

More information

Stellar Evolution. Eta Carinae

Stellar Evolution. Eta Carinae Stellar Evolution Eta Carinae Evolution of Main Sequence Stars solar mass star: from: Markus Bottcher lecture notes, Ohio University Evolution off the Main Sequence: Expansion into a Red Giant Inner core

More information

Outline - March 18, H-R Diagram Review. Protostar to Main Sequence Star. Midterm Exam #2 Tuesday, March 23

Outline - March 18, H-R Diagram Review. Protostar to Main Sequence Star. Midterm Exam #2 Tuesday, March 23 Midterm Exam #2 Tuesday, March 23 Outline - March 18, 2010 Closed book Will cover Lecture 8 (Special Relativity) through Lecture 14 (Star Formation) only If a topic is in the book, but was not covered

More information

Lecture 13: The Sun, and how stars work. Astronomy 111 Wednesday October 11, 2017

Lecture 13: The Sun, and how stars work. Astronomy 111 Wednesday October 11, 2017 Lecture 13: The Sun, and how stars work Astronomy 111 Wednesday October 11, 2017 Reminders Star party tomorrow night! Homework #6 due Monday How do stars work? What is a star? What is a star composed of?

More information

Stellar Evolution ASTR 2110 Sarazin. HR Diagram vs. Mass

Stellar Evolution ASTR 2110 Sarazin. HR Diagram vs. Mass Stellar Evolution ASTR 2110 Sarazin HR Diagram vs. Mass Trip to Conference Away on conference in the Netherlands next week. Molly Finn, TA, will be our guest lecturer Stellar Evolution ASTR 2110 Sarazin

More information

(2) low-mass stars: ideal-gas law, Kramer s opacity law, i.e. T THE STRUCTURE OF MAIN-SEQUENCE STARS (ZG: 16.2; CO 10.6, 13.

(2) low-mass stars: ideal-gas law, Kramer s opacity law, i.e. T THE STRUCTURE OF MAIN-SEQUENCE STARS (ZG: 16.2; CO 10.6, 13. 6.1 THE STUCTUE OF MAIN-SEQUENCE STAS (ZG: 16.2; CO 10.6, 13.1) main-sequence phase: hydrogen core burning phase zero-age main sequence (ZAMS): homogeneous composition Scaling relations for main-sequence

More information

Lecture 33: The Lives of Stars

Lecture 33: The Lives of Stars Lecture 33 The Lives of Stars Astronomy 141 Winter 2012 This lecture concerns the life cycle of normal stars. Stars shine because they are hot, and need a source of energy to keep shining. Main Sequence

More information

Chapter 12 Stellar Evolution

Chapter 12 Stellar Evolution Chapter 12 Stellar Evolution Guidepost This chapter is the heart of any discussion of astronomy. Previous chapters showed how astronomers make observations with telescopes and how they analyze their observations

More information

Astronomy 210. Outline. Stellar Properties. The Mosquito Dilemma. Solar Observing & HW9 due April 15 th Stardial 2 is available.

Astronomy 210. Outline. Stellar Properties. The Mosquito Dilemma. Solar Observing & HW9 due April 15 th Stardial 2 is available. Astronomy 210 Outline This Class (Lecture 31): Stars: Spectra and the H-R Diagram Next Class: Life and Death of the Sun Solar Observing & HW9 due April 15 th Stardial 2 is available. The Mosquito dilemma

More information

The Life and Death of Stars

The Life and Death of Stars The Life and Death of Stars What is a Star? A star is a sphere of plasma gas that fuses atomic nuclei in its core and so emits light The name star can also be tagged onto a body that is somewhere on the

More information

Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro Lecture 25 1

Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro Lecture 25 1 Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro 110-01 Lecture 25 1 12.3 Life as a High-Mass Star Learning Goals What are the life stages of a

More information

PHYS 1401: Descriptive Astronomy Notes: Chapter 12

PHYS 1401: Descriptive Astronomy Notes: Chapter 12 CHAPTER 12: STELLAR EVOLUTION 12.1: LEAVING THE MAIN SEQUENCE Stars and the Scientific Method You cannot observe a single star from birth to death You can observe a lot of stars in a very short period

More information

Astronomy 1144 Exam 3 Review

Astronomy 1144 Exam 3 Review Stars and Stellar Classification Astronomy 1144 Exam 3 Review Prof. Pradhan 1. What is a star s energy source, or how do stars shine? Stars shine by fusing light elements into heavier ones. During fusion,

More information

Stars IV Stellar Evolution

Stars IV Stellar Evolution Stars IV Stellar Evolution Attendance Quiz Are you here today? Here! (a) yes (b) no (c) my views are evolving on the subject Today s Topics Stellar Evolution An alien visits Earth for a day A star s mass

More information

Principles of Astrophysics and Cosmology

Principles of Astrophysics and Cosmology Principles of Astrophysics and Cosmology Welcome Back to PHYS 3368 Friedrich Wilhelm Bessel July 22, 1784 March 17, 1846 Announcements - Reading Assignments: Chapter 4.1-4.3. - Problem Set 6 is due Wednesday,

More information

Lecture 21 Formation of Stars November 15, 2017

Lecture 21 Formation of Stars November 15, 2017 Lecture 21 Formation of Stars November 15, 2017 1 2 Birth of Stars Stars originally condense out of a COLD, interstellar cloud composed of H and He + trace elements. cloud breaks into clumps (gravity)

More information

Chapter 12 Stellar Evolution

Chapter 12 Stellar Evolution Chapter 12 Stellar Evolution Guidepost Stars form from the interstellar medium and reach stability fusing hydrogen in their cores. This chapter is about the long, stable middle age of stars on the main

More information

The Later Evolution of Low Mass Stars (< 8 solar masses)

The Later Evolution of Low Mass Stars (< 8 solar masses) The sun - past and future The Later Evolution of Low Mass Stars (< 8 solar masses) During 10 billion years the suns luminosity changes only by about a factor of two. After that though, changes become rapid

More information

Lec 9: Stellar Evolution and DeathBirth and. Why do stars leave main sequence? What conditions are required for elements. Text

Lec 9: Stellar Evolution and DeathBirth and. Why do stars leave main sequence? What conditions are required for elements. Text 1 Astr 102 Lec 9: Stellar Evolution and DeathBirth and Evolution Why do stars leave main sequence? What conditions are required for elements Text besides Hydrogen to fuse, and why? How do stars die: white

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

The Deaths of Stars 1

The Deaths of Stars 1 The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium Protostars on the HR Diagram Once a protostar is hot enough to start, it can blow away the surrounding gas Then it is visible: crosses the on the HR diagram The more the cloud, the it will form stars Lifetimes

More information

Lecture Outlines. Chapter 20. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 20. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 20 Astronomy Today 8th Edition Chaisson/McMillan Chapter 20 Stellar Evolution Units of Chapter 20 20.1 Leaving the Main Sequence 20.2 Evolution of a Sun-Like Star 20.3 The Death

More information

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium Protostars on the HR Diagram Once a protostar is hot enough to start, it can blow away the surrounding gas Then it is visible: crosses the on the HR diagram The more the cloud, the it will form stars Lifetimes

More information

What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth?

What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth? Stars What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth? Answer: The SUN It s about 150,000,000 km from earth =

More information

What You Should Know About Stars With Less Than 8 Solar Masses!

What You Should Know About Stars With Less Than 8 Solar Masses! What You Should Know About Stars With Less Than 8 Solar Masses! 1.) That is, what basic characteristic makes a star a star? (fusion is happening in its core) 2.) How long will it take a small star to run

More information

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two Stellar Evolution: The Deaths of Stars Chapter Twenty-Two Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

class 21 Astro 16: Astrophysics: Stars, ISM, Galaxies November 20, 2018

class 21 Astro 16: Astrophysics: Stars, ISM, Galaxies November 20, 2018 Topics: Post-main-sequence stellar evolution, degeneracy pressure, and white dwarfs Summary of reading: Review section 2 of Ch. 17. Read the beginning and first section of Ch. 18 (up through the middle

More information

Lecture 19: Clusters of stars; Review. Astronomy 111 Wednesday November 1, 2017

Lecture 19: Clusters of stars; Review. Astronomy 111 Wednesday November 1, 2017 Lecture 19: Clusters of stars; Review Astronomy 111 Wednesday November 1, 2017 Reminders Exam #2: Monday, 6 November 2017 No homework this week Star party tonight! Also next Tuesday: Testing stellar evolution

More information