# Announcements. L! m 3.5 BRIGHT FAINT. Mass Luminosity Relation: Why? Homework#3 will be handed out at the end of this lecture.

Size: px
Start display at page:

Download "Announcements. L! m 3.5 BRIGHT FAINT. Mass Luminosity Relation: Why? Homework#3 will be handed out at the end of this lecture."

Transcription

1 Announcements BRIGHT Homework#3 will be handed out at the end of this lecture. Due October 14 (next Thursday) Review of Mid-term exam will be handed out Tuesday. Mid-term exam will be variants (if not identical) of some of the problems in the review. Study it to prepare well for mid-term! HOT FAINT COOL We use binary stars to measure directly the masses of stars of every type. This leads to the: Mass-Luminosity Relation L! m 3.5 for main sequence stars only As one moves to the upper-left of the main sequence: stars become more massive stars become even much more luminous stars become fewer in number Mass Luminosity Relation: Why? All main sequence stars fuse H into He in their cores. Luminosity depends directly on mass because: more mass means more weight from the star s outer layers more gravitational force --> contraction! nuclear fusion rates must be higher in order to maintain gravitational equilibrium

2 Lifetime on the Main Sequence How long will it be before MS stars run out of fuel? i.e. Hydrogen? How much fuel is there? M How fast is it consumed? L! M 3.5 How long before it is used up? M/L = M/M 3.5 = M -2.5 Lifetime on the Main Sequence O & B Dwarfs burn fuel like a bus! M Dwarfs burn fuel like a compact car! Our Sun will last 10 billion years on the Main Sequence MS Lifetime " = 10 billion yrs / M 2.5 Lifetime on the Main Sequence Star Clusters I: Open Clusters So for example: B2 dwarf (10 M! ) lasts F0 dwarf (2 M! ) lasts M0 dwarf (.5 M! ) lasts 32 million yr 1.8 billion yr 56 billion yr But the Universe is 13.7 billion yr old! Every M dwarf that was ever created is still on the main sequence!! 100 s of stars million to billion years old irregular shapes gas or nebulosity is sometimes seen Pleaides (80 million yrs)

3 Star Clusters II: Globular Clusters 100,000 stars 8 to 15 billion years old spherical shape NO gas or nebulosity M 80 (12 billion yrs) Clusters are useful for studying stellar evolution! all stars are the same distance use apparent magnitudes all stars formed at about the same time they are the same age Plot an H-R Diagram! Pleiades H-R Diagram Globular Cluster H-R Diagram Palomar 3 Cluster H-R Diagrams Indicate Age All stars arrived on the MS at about the same time. The cluster is as old as the most luminous (massive) star left on the MS. All MS stars to the left have already used up their H fuel and are gone. The position of the hottest, brightest star on a cluster s main sequence is called the main sequence turnoff point.

4 Older Clusters have Shorter Main Sequences Lecture 12 Star Stuff Reading: 17 Stellar Evolution Stars are like people in that they are born, grow up, mature, and die. A star s mass determines what life path it will take. We will divide all stars into three groups: Low Mass (0.08 M sun < M < 2 M sun ) Intermediate Mass (2 M sun < M < 8 M sun ) High Mass (M > 8 M sun ) Remember, our Sun is a low-mass star!! The H-R Diagram makes a useful roadmap for following stellar evolution. Stellar Evolution The life of any star can be described as a battle between two forces: Gravity vs. Pressure Gravity always wants to collapse the star. Pressure holds up the star. the type of star is defined by what provides the pressure Remember Newton s Law of Gravity the amount of gravitational force depends on the mass gravitational potential energy is turned into heat as a star collapses

5 Star Formation As the protostar collapses, angular momentum is conserved the protostar rotates faster matter falling in to the protostar flattens into a (protostellar) disk a planetary system could form from this disk Direct Evidence of Disks & Jets a disk forms Stages of Star Formation on the H-R Diagram Arrival on the Main Sequence The mass of the protostar determines: how long the protostar phase will last where the new-born star will land on the MS i.e., what spectral type the star will have while on the main sequence

6 Missing the Main Sequence The First Brown Dwarf Discovery If the protostar has a mass < 0.08 M sun : It does not contain enough gravitational energy to reach a core temperature of 10 7 K No fusion reactions occur The star is stillborn! We call these objects Brown Dwarfs. They are very faint, emit infrared, and have cores made of Hydrogen degenerate cores Life on the Main Sequence Where a star lands on the MS depends on its mass O stars (O V) are most massive M stars (M V) are least massive MS stars convert H to He in their cores The star is stable, in balance Gravity vs. pressure from H fusion reactions Life on the Main Sequence How long do these stars stay on the MS? Until they burn up their fuel (H)!! Massive stars have more fuel, but they are also brighter, so they use it up faster.

7 Leaving the Main Sequence The core begins to collapse H shell heats up and H fusion begins there there is less gravity from above to balance this pressure so the outer layers of the star expand the star is now in the subgiant phase of its life Red Giants: Burning Helium The He core collapses until it heats to 10 8 K He fusion begins ( He # C) sometimes called the triple-# process The star, called a Red Giant, is once again stable. gravity vs. pressure from He fusion reactions red giants create and release most of the Carbon from which organic molecules (and life) are made Red Giants Planetary Nebulae When the Red Giant exhausts its He fuel the C core collapses Low & intermediate-mass stars don t have enough gravitational energy to heat to 6 x 10 8 K (temperature where Carbon fuses) The He & H burning shells overcome gravity the outer envelope of the star is gently blown away this forms a planetary nebula The Sun as a red giant: luminosity is so high that temperature on Earth will rise up to more than 1,000K!! We should find other place to live Movie. Click to play.

8 Planetary Nebulae Planetary Nebulae Cat s Eye Nebula Ring Nebula Hourglass Nebula Twin Jet Nebula The collapsing Carbon core becomes a White Dwarf Low-Mass Stellar Evolution Summary High Mass Main Sequence Stars The CNO cycle is another nuclear fusion reaction which converts Hydrogen into Helium by using Carbon as a catalyst. Effectively 4 H nuclei go IN and 1 He nucleus comes OUT.

9 High Mass Main Sequence Stars CNO cycle begins at 15 million degrees and becomes more dominant at higher temperatures. The C nucleus has a (+6) charge, so the incoming proton must be moving even faster to overcome the electromagnetic repulsion!! The Sun (G2) -- CNO generates 10% of its energy F0 dwarf -- CNO generates 50% of its energy O & B dwarfs -- CNO generates most of the energy They have enough gravitational energy to heat up to 6 x 10 8 K. C fuses into O C is exhausted, core collapses until O fuses. The cycle repeats itself. O -> Ne -> Mg -> Si -> Fe Supergiants What happens to the high mass stars when they exhaust their He fuel? High-Mass Stellar Evolution Summary The Iron (Fe) Problem The supergiant has an inert Fe core which collapses & heats Fe can not fuse It has the lowest mass per nuclear particle of any element It can not fuse into another element without creating mass So the Fe core continues to collapse until it is stopped by electron degeneracy. (like a White Dwarf)

10 Supernova Supernova BUT the force of gravity increases as the mass of the Fe core increases Gravity overcomes electron degeneracy Electrons are smashed into protons -> neutrons The neutron core collapses until abruptly stopped by neutron degeneracy this takes only seconds The core recoils and sends the rest of the star flying into space Crab Nebula in Taurus supernova exploded in 1054 The amount of energy released is so great, that most of the elements heavier than Fe are instantly created In the last millennium, four supernovae have been observed in our part of the Milky Way Galaxy: in 1006, 1054, 1572, & 1604 Supernovae Summary of the Differences between High and Low Mass Stars Compared to low-mass stars, high-mass stars: live much shorter lives have a significant amount of pressure supplied by radiation fuse Hydrogen via the CNO cycle instead of the p-p chain die as a supernova; low-mass stars die as a planetary nebula can fuse elements heavier than Carbon may leave either a neutron star or black hole behind low-mass stars leave a white dwarf behind are far less numerous Veil Nebula Tycho s Supernova (X-rays) exploded in 1572

11 Next Stop: Einstein s World Lecture 13: Space, Time, and Gravity Reading: S2, S3 Lecture 14: The Bizzarre Stellar Graveyard Reading: Chapter 18 Please pick up homework!! Due October 14 (next Thursday)

### Ch. 16 & 17: Stellar Evolution and Death

Ch. 16 & 17: Stellar Evolution and Death Stars have lives: born, evolve, die Mass determines stellar evolution: Really Low Mass (0.08 to 0.4 M sun ) Low Mass: (0.4 to 4 M sun ) Long lives High Mass (4

### Low mass stars. Sequence Star Giant. Red. Planetary Nebula. White Dwarf. Interstellar Cloud. White Dwarf. Interstellar Cloud. Planetary Nebula.

Low mass stars Interstellar Cloud Main Sequence Star Red Giant Planetary Nebula White Dwarf Interstellar Cloud Main Sequence Star Red Giant Planetary Nebula White Dwarf Low mass stars Interstellar Cloud

### Announcements. Lecture 11 Properties of Stars. App Bright = L / 4!d 2

Announcements Quiz#3 today at the end of 60min lecture. Homework#3 will be handed out on Thursday. Due October 14 (next Thursday) Review of Mid-term exam will be handed out next Tuesday. Mid-term exam

### Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro Lecture 25 1

Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro 110-01 Lecture 25 1 12.3 Life as a High-Mass Star Learning Goals What are the life stages of a

### Chapters 12 and 13 Review: The Life Cycle and Death of Stars. How are stars born, and how do they die? 4/1/2009 Habbal Astro Lecture 27 1

Chapters 12 and 13 Review: The Life Cycle and Death of Stars How are stars born, and how do they die? 4/1/2009 Habbal Astro 110-01 Lecture 27 1 Stars are born in molecular clouds Clouds are very cold:

### Chapter 17 Lecture. The Cosmic Perspective Seventh Edition. Star Stuff Pearson Education, Inc.

Chapter 17 Lecture The Cosmic Perspective Seventh Edition Star Stuff Star Stuff 17.1 Lives in the Balance Our goals for learning: How does a star's mass affect nuclear fusion? How does a star's mass affect

### 10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure

10/26/16 Lecture Outline 13.1 Star Birth Chapter 13: Star Stuff How do stars form? Our goals for learning: How do stars form? How massive are newborn stars? Star-Forming Clouds Stars form in dark clouds

### Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars

Lecture 11 Stellar Evolution Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars A Spiral Galaxy (Milky Way Type) 120,000 ly A few hundred billion stars

### Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

### Review Questions for the new topics that will be on the Final Exam

Review Questions for the new topics that will be on the Final Exam Be sure to review the lecture-tutorials and the material we covered on the first three exams. How does speed differ from velocity? Give

### Stellar Evolution Notes

Name: Block: Stellar Evolution Notes Stars mature, grow old and die. The more massive a star is, the shorter its life will be. Our Sun will live about 10 billion years. It is already 5 billion years old,

### High Mass Stars. Dr Ken Rice. Discovering Astronomy G

High Mass Stars Dr Ken Rice High mass star formation High mass star formation is controversial! May form in the same way as low-mass stars Gravitational collapse in molecular clouds. May form via competitive

### Comparing a Supergiant to the Sun

The Lifetime of Stars Once a star has reached the main sequence stage of it life, it derives its energy from the fusion of hydrogen to helium Stars remain on the main sequence for a long time and most

### Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc.

Chapter 14: The Bizarre Stellar Graveyard Assignments 2 nd Mid-term to be held Friday Nov. 3 same basic format as MT1 40 mult. choice= 80 pts. 4 short answer = 20 pts. Sample problems on web page Origin

### Reading and Announcements. Read Chapter 14.1, 14.2 Homework #6 due Tuesday, March 26 Exam #2, Thursday, March 28

Reading and Announcements Read Chapter 14.1, 14.2 Homework #6 due Tuesday, March 26 Exam #2, Thursday, March 28 The life of the Sun The Sun started as a cloud of gas. Gravity caused the cloud to collapse.

### Stellar Evolution and the HertzsprungRussell Diagram 7/14/09. Astronomy 101

Stellar Evolution and the HertzsprungRussell Diagram 7/14/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Outline for Today Astronomy Picture of the Day News Articles Business Return Lab 5

### Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium

Protostars on the HR Diagram Once a protostar is hot enough to start, it can blow away the surrounding gas Then it is visible: crosses the on the HR diagram The more the cloud, the it will form stars Lifetimes

### The Universe. is space and everything in it.

The Universe is space and everything in it. Galaxies A galaxy is a supercluster of stars, gas, and dust that are held together by gravity. There are three main types of galaxies: Irregular Elliptical Spiral

### Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams:

Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams: 1. The evolution of a number of stars all formed at the same time

### Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Lecture Outline. HW#7 due Friday by 5 pm! (available Tuesday)

Stars, Galaxies & the Universe Announcements HW#7 due Friday by 5 pm! (available Tuesday) Midterm Grades (points) posted today in ICON Exam #2 next week (Wednesday) Review sheet and study guide posted

### TA feedback forms are online!

1 Announcements TA feedback forms are online! find the link at the class website. Please take 5 minutes to tell your TAs your opinion. In case you did not notice, the Final is set for 03/21 from 12:00-3:00

### The Life and Death of Stars

The Life and Death of Stars What is a Star? A star is a sphere of plasma gas that fuses atomic nuclei in its core and so emits light The name star can also be tagged onto a body that is somewhere on the

### Astro 21 first lecture. stars are born but also helps us study how. Density increases in the center of the star. The core does change from hydrogen to

Astro 21 first lecture The H-R H R Diagram helps us study how stars are born but also helps us study how they die. Stars spend most of their lives as main sequence stars. The core does change from hydrogen

### Lecture 16: The life of a low-mass star. Astronomy 111 Monday October 23, 2017

Lecture 16: The life of a low-mass star Astronomy 111 Monday October 23, 2017 Reminders Online homework #8 due Monday at 3pm Exam #2: Monday, 6 November 2017 The Main Sequence ASTR111 Lecture 16 Main sequence

### Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium

Protostars on the HR Diagram Once a protostar is hot enough to start, it can blow away the surrounding gas Then it is visible: crosses the on the HR diagram The more the cloud, the it will form stars Lifetimes

### 17.3 Life as a High-Mass Star

17.3 Life as a High-Mass Star Our goals for learning: What are the life stages of a high-mass star? How do high-mass stars make the elements necessary for life? How does a high-mass star die? What are

### Astronomy 104: Second Exam

Astronomy 104: Second Exam Stephen Lepp October 29, 2014 Each question is worth 2 points. Write your name on this exam and on the scantron. Short Answer A The Sun is powered by converting hydrogen to what?

### LIFE CYCLE OF A STAR

LIFE CYCLE OF A STAR First stage = Protostar PROTOSTAR Cloud of gas and dust many light-years across Gravity tries to pull the materials together Eventually, at the center of the ball of dust and gas,

### Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

### Life and Death of a Star. Chapters 20 and 21

Life and Death of a Star Chapters 20 and 21 90 % of a stars life Most stars spend most of their lives on the main sequence. A star like the Sun, for example, after spending a few tens of millions of years

### Lecture 33: The Lives of Stars

Lecture 33 The Lives of Stars Astronomy 141 Winter 2012 This lecture concerns the life cycle of normal stars. Stars shine because they are hot, and need a source of energy to keep shining. Main Sequence

### ASTR-1020: Astronomy II Course Lecture Notes Section VI

ASTR-1020: Astronomy II Course Lecture Notes Section VI Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and students

### Outline - March 18, H-R Diagram Review. Protostar to Main Sequence Star. Midterm Exam #2 Tuesday, March 23

Midterm Exam #2 Tuesday, March 23 Outline - March 18, 2010 Closed book Will cover Lecture 8 (Special Relativity) through Lecture 14 (Star Formation) only If a topic is in the book, but was not covered

### Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012 Choose the answer that best completes the question. Read each problem carefully and read through all the answers.

### 17.1 Lives in the Balance. Our goals for learning: How does a star's mass affect nuclear fusion?

Stellar Evolution 17.1 Lives in the Balance Our goals for learning: How does a star's mass affect nuclear fusion? How does a star's mass affect nuclear fusion? Stellar Mass and Fusion The mass of a main-sequence

### Agenda for Ast 309N, Sep. 27. Measuring Masses from Binary Stars

Agenda for Ast 309N, Sep. 27 Quiz 3 The role of stellar mass Ages of star clusters Exam 1, Thurs. Oct. 4 Study guide out on 9/28 Next topic: brown dwarfs and extrasolar planets 1 This image of the central

### AST 101 Introduction to Astronomy: Stars & Galaxies

AST 101 Introduction to Astronomy: Stars & Galaxies Summary: When a Low-Mass Star runs out of Hydrogen in its Core 1. With fusion no longer occurring in the core, gravity causes core collapse 2. Hydrogen

### Chapter 12 Star Stuff

Chapter 12 Star Stuff How do stars form? Star-Forming Clouds Stars form in the interstellar medium This contains very cold, dark clouds of dusty molecular gas To form a star, the gas has to collapse, just

### Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2)

Chapter 12 Review TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) As a main-sequence star, the Sun's hydrogen supply should last about 10 billion years from the zero-age

### LIFE CYCLE OF A STAR

LIFE CYCLE OF A STAR First stage = Protostar PROTOSTAR Cloud of gas and dust many light-years across Gravity tries to pull the materials together Eventually, at the center of the ball of dust and gas,

### Life of a Star. Pillars of Creation

Life of a Star Life of a Star Pillars of Creation Life of a Star Pillars of Creation Stars form from massive clouds of gas that primarily consist of hydrogen. Life of a Star Gravity causes gas to contract

### Birth and Death of Stars. Birth of Stars. Gas and Dust Clouds. Astronomy 110 Class 11

Birth and Death of Stars Astronomy 110 Class 11 Birth of Stars Start in cloud of gas and dust Contraction and Fragmentation Gravitational collapse and heating Protostar and disk Main Sequence Star Gas

### Stars IV Stellar Evolution

Stars IV Stellar Evolution Attendance Quiz Are you here today? Here! (a) yes (b) no (c) my views are evolving on the subject Today s Topics Stellar Evolution An alien visits Earth for a day A star s mass

### AST101 Lecture 13. The Lives of the Stars

AST101 Lecture 13 The Lives of the Stars A Tale of Two Forces: Pressure vs Gravity I. The Formation of Stars Stars form in molecular clouds (part of the interstellar medium) Molecular clouds Cold: temperatures

### Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9

Phys 0 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9 MULTIPLE CHOICE 1. We know that giant stars are larger in diameter than the sun because * a. they are more luminous but have about the

### Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name: Period: Date: Astronomy Ch. 20 Stellar Evolution MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A star (no matter what its mass) spends

### Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name: Period: Date: Astronomy Ch. 20 Stellar Evolution MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A star (no matter what its mass) spends

### Evolution of High Mass Stars

Luminosity (L sun ) Evolution of High Mass Stars High Mass Stars O & B Stars (M > 4 M sun ): Burn Hot Live Fast Die Young Main Sequence Phase: Burn H to He in core Build up a He core, like low-mass stars

### The Life Cycles of Stars. Dr. Jim Lochner, NASA/GSFC

STARS I. Stellar Evolution The Life Cycles of Stars Dr. Jim Lochner, NASA/GSFC A. Nebula- cloud of gas and dust B. Protostar- spinning disk C. Main Sequence 1. When the protostar reaches 15 million C,

### Beyond Our Solar System Chapter 24

Beyond Our Solar System Chapter 24 PROPERTIES OF STARS Distance Measuring a star's distance can be very difficult Stellar parallax Used for measuring distance to a star Apparent shift in a star's position

### Ch. 29 The Stars Stellar Evolution

Ch. 29 The Stars 29.3 Stellar Evolution Basic Structure of Stars Mass effects The more massive a star is, the greater the gravity pressing inward, and the hotter and more dense the star must be inside

### The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

The Night Sky The Universe Chapter 14 Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Celestial observation dates to ancient civilizations

### Today. Stars. Properties (Recap) Binaries. Stellar Lifetimes

Today Stars Properties (Recap) Binaries Stellar Lifetimes 1 Exam Review Session This Tuesday, 6-8 PM, PHYS 1410 (the large lecture hall next to ours) Completely driven by your questions! The TAs will not

### Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars

Stars & Galaxies Chapter 27 Modern Earth Science Chapter 27, Section 1 27.1 Characteristics of Stars Composition & Temperature Scientists use the following tools to study stars Telescope Observation Spectral

### Life Cycle of a Star - Activities

Name: Class Period: Life Cycle of a Star - Activities A STAR IS BORN STAGES COMMON TO ALL STARS All stars start as a nebula. A nebula is a large cloud of gas and dust. Gravity can pull some of the gas

### Why Do Stars Leave the Main Sequence? Running out of fuel

Star Deaths Why Do Stars Leave the Main Sequence? Running out of fuel Observing Stellar Evolution by studying Globular Cluster HR diagrams Plot stars in globular clusters in Hertzsprung-Russell diagram

### Age of M13: 14 billion years. Mass of stars leaving the main-sequence ~0.8 solar masses

Age of M13: 14 billion years. Mass of stars leaving the main-sequence ~0.8 solar masses Helium coreburning stars Giants Subgiants Main Sequence Here is a way to think about it. Outside of star Plenty of

### Today. Stars. Evolution of High Mass Stars. Nucleosynthesis. Supernovae - the explosive deaths of massive stars

Today Stars Evolution of High Mass Stars Nucleosynthesis Supernovae - the explosive deaths of massive stars 1 Another good job on exam! Class average was 71% Given the difficulty of the exam, this was

### The Life Cycle of Stars. : Is the current theory of how our Solar System formed.

Life Cycle of a Star Video (5 min) http://www.youtube.com/watch?v=pm9cqdlqi0a The Life Cycle of Stars Solar Nebula Theory : Is the current theory of how our Solar System formed. This theory states that

### Star Stuff. Star Formation. Star Formation. Stars form in the interstellar medium

Star Stuff Star Formation Stars form in the interstellar medium Nebula in Scorpius Star Formation Stars form in the interstellar medium This contains very cold, dark clouds of dusty molecular gas Pillars

### Mid term. Highest score without bonuses: 98 % (Alex) Re- +2 Astro- jeopardy: Final à Mean/Median: 80

Mid term Highest score without bonuses: 98 % (Alex) Re- normaliza@on: +2 Astro- jeopardy: +2-3 Final Distribu@on à Mean/Median: 80 Weighing toward final grade: 0.2*80 = 16 0.2*102 = 20.4 9 8 7 6 5 4 3

### HR Diagram, Star Clusters, and Stellar Evolution

Ay 1 Lecture 9 M7 ESO HR Diagram, Star Clusters, and Stellar Evolution 9.1 The HR Diagram Stellar Spectral Types Temperature L T Y The Hertzsprung-Russel (HR) Diagram It is a plot of stellar luminosity

### Stars & Galaxies. Chapter 27 Modern Earth Science

Stars & Galaxies Chapter 27 Modern Earth Science Chapter 27, Section 1 27.1 Characteristics of Stars How do astronomers determine the composition and surface temperature of a star? Composition & Temperature

### What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth?

Stars What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth? Answer: The SUN It s about 150,000,000 km from earth =

### A Star Becomes a Star

A Star Becomes a Star October 28, 2002 1) Stellar lifetime 2) Red Giant 3) White Dwarf 4) Supernova 5) More massive stars Review Solar winds/sunspots Gases and Dust Molecular clouds Protostars/Birth of

### Planetary Nebulae White dwarfs

Life of a Low-Mass Star AST 101 Introduction to Astronomy: Stars & Galaxies Planetary Nebulae White dwarfs REVIEW END STATE: PLANETARY NEBULA + WHITE DWARF WHAS IS A WHITE DWARF? Exposed core of a low-mass

### Life Cycle of a Star Worksheet

Life Cycle of a Star Worksheet A STAR IS BORN STAGES COMMON TO ALL STARS All stars start as a nebula. A nebula is a large cloud of gas and dust. Gravity can pull some of the gas and dust in a nebula together.

### Review: HR Diagram. Label A, B, C respectively

Stellar Evolution Review: HR Diagram Label A, B, C respectively A C B a) A: White dwarfs, B: Giants, C: Main sequence b) A: Main sequence, B: Giants, C: White dwarfs c) A: Main sequence, B: White Dwarfs,

### Low-mass Stellar Evolution

Low-mass Stellar Evolution The lives of low-mass stars And the lives of massive stars The Structure of the Sun Let s review: The Sun is held together by? The inward force is balanced by? Thinking about

### Chapter 12 Stellar Evolution

Chapter 12 Stellar Evolution Guidepost This chapter is the heart of any discussion of astronomy. Previous chapters showed how astronomers make observations with telescopes and how they analyze their observations

### Lecture 16: Evolution of Low-Mass Stars Readings: 21-1, 21-2, 22-1, 22-3 and 22-4

Lecture 16: Evolution of Low-Mass Stars Readings: 21-1, 21-2, 22-1, 22-3 and 22-4 For the protostar and pre-main-sequence phases, the process was the same for the high and low mass stars, and the main

### chapter 31 Stars and Galaxies

chapter 31 Stars and Galaxies Day 1:Technology and the Big Bang Studying the Stars A. Telescopes - Electromagnetic radiation emitted by stars and other objects include light, radio, and X-ray Space telescopes

### L = 4 d 2 B p. 4. Which of the letters at right corresponds roughly to where one would find a red giant star on the Hertzsprung-Russell diagram?

Fall 2016 Astronomy - Test 3 Test form B Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form B on the answer sheet. Write your name above as well.

### L = 4 d 2 B p. 1. Which outer layer of the Sun has the highest temperature? A) Photosphere B) Corona C) Chromosphere D) Exosphere E) Thermosphere

Fall 2016 Astronomy - Test 3 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as well.

### Beyond the Solar System 2006 Oct 17 Page 1 of 5

I. Stars have color, brightness, mass, temperature and size. II. Distances to stars are measured using stellar parallax a. The further away, the less offset b. Parallax angles are extremely small c. Measured

### Earth Science, 13e Tarbuck & Lutgens

Earth Science, 13e Tarbuck & Lutgens Beyond Our Solar System Earth Science, 13e Chapter 24 Stanley C. Hatfield Southwestern Illinois College Properties of stars Distance Distances to the stars are very

### Introduction to Astronomy. Lecture 8: The Death of Stars White Dwarfs, Neutron Stars, and Black Holes

Introduction to Astronomy Lecture 8: The Death of Stars White Dwarfs, Neutron Stars, and Black Holes Continued from Last Week Lecture 7 Observing Stars Clusters of stars Some clouds start breaking into

### the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes

the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes The spectral lines of stars tell us their approximate composition Remember last year in Physics?

### The Life Cycles of Stars. Modified from Information provided by: Dr. Jim Lochner, NASA/GSFC

The Life Cycles of Stars Modified from Information provided by: Dr. Jim Lochner, NASA/GSFC Twinkle, Twinkle, Little Star... What do you see? How I Wonder What You Are... Stars have: Different Colors -

### Chapter 12 Stellar Evolution

Chapter 12 Stellar Evolution Guidepost Stars form from the interstellar medium and reach stability fusing hydrogen in their cores. This chapter is about the long, stable middle age of stars on the main

### The life of a low-mass star. Astronomy 111

Lecture 16: The life of a low-mass star Astronomy 111 Main sequence membership For a star to be located on the Main Sequence in the H-R diagram: must fuse Hydrogen into Helium in its core. must be in a

### Lec 9: Stellar Evolution and DeathBirth and. Why do stars leave main sequence? What conditions are required for elements. Text

1 Astr 102 Lec 9: Stellar Evolution and DeathBirth and Evolution Why do stars leave main sequence? What conditions are required for elements Text besides Hydrogen to fuse, and why? How do stars die: white

### PHYS 1401: Descriptive Astronomy Notes: Chapter 12

CHAPTER 12: STELLAR EVOLUTION 12.1: LEAVING THE MAIN SEQUENCE Stars and the Scientific Method You cannot observe a single star from birth to death You can observe a lot of stars in a very short period

### Astronomy 1144 Exam 3 Review

Stars and Stellar Classification Astronomy 1144 Exam 3 Review Prof. Pradhan 1. What is a star s energy source, or how do stars shine? Stars shine by fusing light elements into heavier ones. During fusion,

### Stellar Evolution: Outline

Stellar Evolution: Outline Interstellar Medium (dust) Hydrogen and Helium Small amounts of Carbon Dioxide (makes it easier to detect) Massive amounts of material between 100,000 and 10,000,000 solar masses

### Heading for death. q q

Hubble Photos Credit: NASA, The Hubble Heritage Team (STScI/AURA) Heading for death. q q q q q q Leaving the main sequence End of the Sunlike star The helium core The Red-Giant Branch Helium Fusion Helium

### Announcement: Quiz Friday, Oct 31

Announcement: Quiz Friday, Oct 31 What is the difference between the giant, horizontal, and asymptotic-giant branches? What is the Helium flash? Why can t high-mass stars support themselves in hydrostatic

### Chapter 20 Stellar Evolution Part 2. Secs. 20.4, 20.5

Chapter 20 Stellar Evolution Part 2. Secs. 20.4, 20.5 20.4 Evolution of Stars More Massive than the Sun It can be seen from this H-R diagram that stars more massive than the Sun follow very different paths

### Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008

Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008 Wed, July 16 MW galaxy, then review. Start with ECP3Ch14 2 through 8 Then Ch23 # 8 & Ch 19 # 27 & 28 Allowed Harlow Shapely to locate

### Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name

Astronomy 132 - Stars, Galaxies and Cosmology Exam 3 Please PRINT full name Also, please sign the honor code: I have neither given nor have I received help on this exam The following exam is intended to

### Gravitational collapse of gas

Gravitational collapse of gas Assume a gas cloud of mass M and diameter D Sound speed for ideal gas is c s = γ P ρ = γ nkt ρ = γ kt m Time for sound wave to cross the cloud t sound = D == D m c s γ kt

### Stars and Galaxies 1

Stars and Galaxies 1 Characteristics of Stars 2 Star - body of gases that gives off great amounts of radiant energy as light and heat 3 Most stars look white but are actually different colors Antares -

### Today. When does a star leave the main sequence?

ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Nick Featherstone Lecture 13 Tues 27 Feb 07 zeus.colorado.edu/astr1040-toomre toomre Crab Nebula -- Supernova Remnant Today Recall that C-N-O

### Last time: looked at proton-proton chain to convert Hydrogen into Helium, releases energy.

Last time: looked at proton-proton chain to convert Hydrogen into Helium, releases energy. Last time: looked at proton-proton chain to convert Hydrogen into Helium, releases energy. Fusion rate ~ Temperature

### The Universe. But first, let s talk about light! 2012 Pearson Education, Inc.

The Universe But first, let s talk about light! Light is fast! The study of light All forms of radiation travel at 300,000,000 meters (186,000 miles) per second Since objects in space are so far away,

### The Life Cycles of Stars. Dr. Jim Lochner, NASA/GSFC

The Life Cycles of Stars Dr. Jim Lochner, NASA/GSFC Twinkle, Twinkle, Little Star... A constellation is an apparent group of stars originally named for mythical characters. The sky contains 88 constellations.

### Things to do 3/6/14. Topics for Today & Tues. Clicker review red giants. 2: Subgiant to Red Giant (first visit)

ASTR 1040: Stars & Galaxies Prof. Juri Toomre TA: Ryan Orvedahl Lecture 16 Thur 6 Mar 2014 zeus.colorado.edu/astr1040-toomre Blinking Eye Nebula Topics for Today & Tues Briefly revisit: planetary nebulae

### PHYS103 Sec 901 Hour Exam No. 3 Page: 1

PHYS103 Sec 901 Hour Exam No. 3 Page: 1 PHYS103 Sec 901 Hour Exam No. 3 Page: 2 1 The star alpha-centauri C has moved across the sky by 3853 seconds of arc during the last thousand years - slightly more