PMS OBJECTS IN THE STAR FORMATION REGION Cep OB3. II. YOUNG STELLAR OBJECTS IN THE Ha NEBULA Cep B

Size: px
Start display at page:

Download "PMS OBJECTS IN THE STAR FORMATION REGION Cep OB3. II. YOUNG STELLAR OBJECTS IN THE Ha NEBULA Cep B"

Transcription

1 Astrophysics, Vol. 56, No. 2, June, 2013 PMS OBJECTS IN THE STAR FORMATION REGION Cep OB3. II. YOUNG STELLAR OBJECTS IN THE Ha NEBULA Cep B E. H. Nikoghosyan Models for the spectral energy distributions of four stellar objects in the bright compact Hα nebula Cep B are constructed. With a high probability, three of them are found to be very young stellar objects of evolutionary class 0/I with ages of years, comparable to the kinematic age of the ionization front of the nebula itself. The IRAS source associated with Cep B is initiated by heated dust. An intermediate-mass (B2-B3) star of evolutionary class III lies at the center of the ionization front. The local density of PMS stars in the immediate neighborhood of the Cep B nebula exceeds that for the cluster as a whole. It is highly probable that this zone is a local source of a new star-formation stage. Keywords: compact star formation region individual: Cep B 1. Introduction Submillimeter wavelength observations ( 12 CO) have revealed an extended molecular cloud containing several hot clumps in the region of Cep OB3 [1,2]. One of these, located a distance of 725 pc from Cep B, is associated with a bright compact Ha nebula [3]. The nebula lies at the edge of the S 155 HII region and has a so-called bubble shape. Cep B is also a source of nonthermal radio emission produced by the collision of ionized gas with dense molecular matter [4]. Given that the expansion velocity of this HII region is on the order of ~2 km/s [5], the relative observed sizes at a distance of 700 pc indicate an estimated age of years [4], while according to observations V. A. Ambartsumyan Byurakan Astrophysical Observatory, Armenia; elena@bao.sci.am Original article submitted November, 2012; accepted for publication March 1, Translated from Astrofizika, Vol. 56, No. 2, pp (May 2013) /13/ Springer Science+Business Media New York 165

2 in the submillimeter range, its mass should be on the order of 0.3 M [6]. The source IRAS lies to the southeast of the ionized gas front. A comparison of its emission intensity in the submillimeter (450 and 850 µm) and infrared (MSX) ranges suggests that IRAS is caused by heated dusty material, rather than by a young stellar source [7]. We may assume that there is a subgroup of young stellar sources in this region that is younger than the age of the stellar population of the Cep OB3b association as a whole [4,5,8]. A compact group of young infrared stars also shows up in the neighborhood of IRAS in data from the 2MASS survey [9]. Studies of compact star-formation groups of this kind, which are deeply embedded in a molecular cloud, are very important because their formation is generally initiated in secondary star-formation stages and depends, to a great extent, on the properties of the parent cluster itself [10,11]. Thus, studies of these groups are of great value for gaining a complete picture of the star-formation process in the cluster as a whole. This paper is a study of young stars in the neighborhood of the bright Hα nebula Cep B. 2. The group of young stars in the neighborhood of the Cep B nebula 2.1. Method. Several sources have been discovered in submillimeter wavelength (450 and 850 µm) images of the neighborhood of IRAS [7,12]. Three have been identified as objects contained in infrared data bases, specifically MSX, WISE, and 2MASS. In addition, data from the Spitzer IRAC telescope have also been used [13]. The photometric parameters of these objects are listed in Table 1. The submillimeter (SM) fluxes and designations in this table correspond to the data shown in Table 2 (the Fundamental Map Data Set) of Ref. 12. The position of the objects is indicated in Fig. 1, which shows images of this region in several wavelength ranges. The position of the source IRAS is denoted by an ellipse. The discrepancy between the coordinates in the submillimeter and infrared ranges is less than 3". The submillimeter sources 4 and 5 of Table 2 of Ref. 12, which are also indicated in Fig. 1, were not identified in the infrared. Table 1 also lists the photometric parameters of one of the radio sources, A-NIR, in this region [4] (see Fig. 1) that is not resolvable in the submillimeter range. The coordinates of this object were derived from images in the 2MASS survey. The V and I stellar magnitudes of this object were also determined. The observational technique is described in part I of this article [14]. The other objects in Table 1 were unresolvable in the optical range. Based on the photometric parameters for each of the stellar objects in Table 1, we have constructed a model of the spectral energy distribution for PMS stars which has been described in detail in Refs. 15 and 16. We have also determined their major parameters, in particular, their age, mass, bolometric luminosity, etc. In constructing the spectral energy distributions, we have assumed (as in Ref. 14) a distance to the cluster of pc [3], but the absorption (A V ) interval has been increased to 20 m. The most probable of the proposed models has been chosen. 166

3 TABLE 1. Photometric Parameters of the SM and IR Sources Object SM1 SM2 SM3 A-NIR RA (2000) Dec (2000) (Jy) 0.31 (R = 25".3) 0.98 (R = ".3) 7.31 (R = 49".3) (Jy) 6.64 (R = 25".3) (R = ".3) (R = 49".3) - MSX A (Jy) MSX C (Jy) MSX D (Jy) MSX E (Jy) WISE WISE WISE WISE IRAC IRAC IRAC IRAC MASS J MASS H MASS K I V Results. Spectral energy distributions were constructed for all the objects listed in Table 1. The results are shown in Fig. 2 (left). The major parameters for the most probable models are listed to the right of the graphs. We consider each object separately. The evolutionary classes were determined based on the models for the spectral energy distribution discussed in Refs. 15 and 17. SM1. A young stellar object with a mass essentially equal to that of the sun. The spectral energy distribution corresponds to an object in evolutionary class I with a massive shell and disk. SM2. A young stellar object of intermediate mass in evolutionary class I with a massive shell and disk. This is consistent with the conclusions (B-NIR [4]) of a study based on data regarding nonthermal emission from this object in the millimeter range. This object is also an x-ray source [18]. SM3. The spectral energy distribution has been constructed at only five points. However, the rather wide range of the photometric parameters and the fairly high level of agreement ( χ 2 = 126 ) nevertheless suggest that this, the brightest of the objects in the submillimeter range, is also a young stellar object of intermediate mass, with a ratio 167

4 Dec (2000) 38:00 62:37:00 36:00 35:00 39:00 38:00 37:00 36: :57: :57:00 56:50 Dec (2000) 39:00 62:38:00 37:00 39:00 62:38:00 37:00 36:00 36: :57:00 56:50 RA (2000) :57:00 56:50 RA (2000) Fig. 1. Images of the region surrounding the IRAS source in different wavelength bands. of the photospheric, disk, and shell emission corresponding to evolutionary class 0/I. A-NIR. This is a star with an intermediate mass that is considerably older than the others. It has a negligible infrared excess and is most likely in evolutionary class III. Its considerable reddening is explained by high interstellar absorption in this region. This is consistent with a photometric study in the near infrared [4]. This star is also an x- ray source [18]. It should be noted that this star lies essentially at the center of the bubble-shaped Ha nebula mentioned above and an ionization front region shows up clearly around it in infrared images of this region. Its intensity increases toward longer wavelengths (see Fig. 1). According to our data, this object is in spectral class B2-B3 with a bolometric luminosity on the order of 100 M. These characteristics are in quite good agreement with the estimates of Ref. 4 and this again confirms our assumption that the emission from this B-star causes heating of the material in a molecular cloud and the formation of an ionization front. The interstellar absorption for three of the above stars exceeds the average for the cluster as a whole [14]. 168

5 IRAS An attempt was made to construct the spectral energy distribution for this source as well. To do this we have used photometric data from the submillimeter range [7] and the IRAS and MSX data bases. However, even for the most probable model, χ 2 > This confirms the assumption that this IRAS source is not driven by a stellar source, but by heated dust. Note that its coordinates coincide with the brightest part of the ionization front (see Fig. 1). λf λ (erg/cm 2 /s) SM1 2 χ = 114 Inclination= 18 o A v = 4 m.8 Distance = 0.71 kpc 4 Age = years Mass of star in M = Temperature of star (K) = 3974 Bolometric luminosity in L = Mass of disk in M = Mass of shell in M = Accretion rate in = M λf λ (erg/cm 2 /s) SM λ( µm) χ 2 = 691 Inclination = 18 o A v = 16 m.81 Distance = 0.74 kpc 3 Age = years Mass of star in M = 5. 2 Temperature of star (K) = 4219 Bolometric luminosity in L = Mass of disk in M = Mass of shell in M = Accretion rate in = M λ( µm) λf λ (erg/cm 2 /s) SM λ( µm) χ 2 = 126 Inclination = 41 o A v = 15 m.65 Distance = 0.78kpc 4 Age = years Mass of star in M = Temperature of star (K) = 4566 Bolometric luminosity in L = Mass of disk in M = Mass of shell in M = Accretion rate in = M 2 Fig. 2. Spectral energy distributions and major parameters of the young stellar objects. 169

6 λf λ (erg/cm 2 /s) A-NIR λ( µm) χ 2 = 189 Inclination = 76 o A v = 14 m.06 Distance = 0.71 kpc Age = years Mass of star in M = Temperature of star (K) = Bolometric luminosity in L = Mass of disk in M = Mass of shell in M = Accretion rate in = M 3 Fig. 2. (Conclusion) 3. Local density distribution Figure 3 shows the distribution of the local density of all the Ha emission stars [14]. The local density was determined for each object within an area with a radius equal to the distance to the n-th nearest emission star. Overall, the local density was determined for 149 stars with n = 10. To a first approximation the density distribution of the emission stars is relatively uniform. No groups were observed for which the density exceeds the average over all the objects by more than 3 σ. However, in the region immediately adjacent to the source IRAS , the emission Y (arcsec) X (arcsec) Fig. 3. Distribution of the local density of Ha emission stars. The position (0,0) corresponds to the coordinates of the source IRAS (22 h 57 m 04 s.93; +62 o 37'49".57). 170

7 stars are positioned more compactly and form a small group with comet-shaped density contours. The density of this group exceeds the average over all the emission objects by a factor of two. On the charts of the 2MASS survey this same object also contains a compact group of young stellar sources [9]. The density contours for the infrared group have a similar shape. To some extent this shape of the density contours, i.e., a significant reduction in the density of Hα emission stars to the east of IRAS , may be explained by increased interstellar absorption in this direction [3,14]. 4. Discussion and conclusion Photometric data in the submillimeter, infrared, and optical ranges have been used to construct models for the spectral energy distribution of four stellar sources located in the neighborhood of the bright compact Hα nebula Cep B. These results show that three of the four objects are highly likely to be very young stellar objects of evolutionary class 0/I with a ages of years. Their age is comparable to the kinematic age of the ionization front of the nebula itself, which is estimated to be on the order of 10 4 years. The ionization region along the edges of the Hα nebula shows up clearly in the infrared images. The relative brightness of the ionization region increases at longer wavelengths. The IRAS source associated with Cep B has the same coordinates as the brightest part of the ionization front. An attempt has also been made to construct the spectral energy distribution of this source using data from the data bases of the IRAS and MSX surveys, as well as observations in the submillimeter range. However, even for the most probable model χ 2 > All of this confirms the earlier assumption that the IRAS source itself is not initiated by a young star, but by heated dust. The other submillimeter sources (4 and 5 in Ref. 12), which were not identified in the infrared, may simply be bunches of dust or very young cold protostars. A star of intermediate mass and spectral class B2-B3 lies at the center of the ionization front. The most probable model derived from the photometric data for this star corresponds to evolutionary class III and an age of years. It is probably the source of the radiation that has led to heating of the interstellar matter in a molecular cloud and to the formation of the ionization front. In the immediate neighborhood of the Cep B nebula the local density of PMS stars is almost twice the density of young stellar objects in the cluster as a whole. These results again confirm the earlier assertions that a group of young stellar sources is deeply embedded in a molecular cloud in the region of Cep B. This zone is most likely the local source of a new, third stage of star formation in the Cep OB3b association. REFERENCES 1. A. L. Sargent, Astrophys. J. 218, 736 (1977). 2. A. L. Sargent, Astrophys. J. 233, 163 (1979). 3. M. A. Moreno-Corral, C. Chavarria-K, E. de Lara, and S. Wagner, Astron. Astrophys. 273, 619 (1993). 171

8 4. L. Testi, L. Olmi, L. Hunt, et al., Astron. Astrophys. 3, 881 (1995). 5. N. Panagia and C. Thum, Astron. Astrophys. 98, 295 (1981). 6. M. A. Thompson, J. Hatchell, A. J. Walsh, G. H. Macdonald, and T. J. Millar, Astron. Astrophys. 453, 1003 (2006). 7. S. J. Williams, G. A. Fuller, and T. K. Sridharan, Astron. Astrophys. 417, 115 (2004). 8. M. Felli, G. Tofani, R. H. Harten, and N. Panagia, Astron. Astrophys. 69, 199 (1978). 9. M. S. N. Kumar, E. Keto, and E. Clerkin, Astron. Astrophys. 449, 1033 (2006). 10. B. G. Elmegreen, Y. Efremov, R. Pudritz, and H. Zinnecker, in: eds. F. A. P. Mannings, S. S. Boss, and S. S. Russell, Protostars & Planets IV (2000), p C. J. Lada and E. A. Lada, Ann. Rev. Astron. Astrophys. 41, 57 (2003). 12. J. Di Francesco, D. Johnstone, H. Kirk, T. MacKenzie, and E. Ledwosinska, Astrophys J. Suppl. Ser. 175, 277 (2008). 13. K. V. Getman, E. D. Feigelson, K. L. Luhman, et al., Astron. J. 699, 1454 (2009). 14. E. H. Nikoghosyan, Astrofizika 56, 33 (2013). 15. T. P. Robitaille, B. A. Whitney, R. Indebetouw, K. Wood, and P. Denzmore, Astrophys. J. Suppl. 167, 256 (2006). 16. T. P. Robitaille, B. A. Whitney, R. Indebetouw, and K. Wood, Astrophys. J. Suppl. 169, 328 (2007). 17. B. A. Whitney, K. Wood, J. E. Bjorkman, and M. Cohen, Astrophys. J. 598, 1079 (2003). 18. K. V. Getman, E. D. Feigelson, L. Townsley, et al., Astron. J. Suppl. 163, 6 (2006). 172

PMS-OBJECTS IN THE STAR FORMATION REGION Cep OB3. I. STARS WITH Hα EMISSION

PMS-OBJECTS IN THE STAR FORMATION REGION Cep OB3. I. STARS WITH Hα EMISSION Astrophysics, Vol. 56, No. 1, March, 2013 PMS-OBJECTS IN THE STAR FORMATION REGION Cep OB3. I. STARS WITH Hα EMISSION E. H. Nikoghosyan Results are presented from a detailed analysis of PMS stars located

More information

Near-Infrared Imaging Observations of the Orion A-W Star Forming Region

Near-Infrared Imaging Observations of the Orion A-W Star Forming Region Chin. J. Astron. Astrophys. Vol. 2 (2002), No. 3, 260 265 ( http: /www.chjaa.org or http: /chjaa.bao.ac.cn ) Chinese Journal of Astronomy and Astrophysics Near-Infrared Imaging Observations of the Orion

More information

AST 6336, Interstellar Medium, Spring 2015

AST 6336, Interstellar Medium, Spring 2015 AST 6336, Interstellar Medium, Spring 2015 Young stellar clusters (lectures by Nicola Da Rio ndario@ufl.edu) January 2, 4, 2015 Star formation A molecular cloud may become unsupported gas pressure + magnetic

More information

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010 Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010 Aim Review the characteristics of regions of ionized gas within young massive star forming regions. Will focus the discussion

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 1. Identification of classical Cepheids: We identified three classical Cepheids amongst the 45 short-period variables discovered. Our sample includes classical Cepheids, type II Cepheids, eclipsing binaries

More information

The Protostellar Luminosity Function

The Protostellar Luminosity Function Design Reference Mission Case Study Stratospheric Observatory for Infrared Astronomy Science Steering Committee Program contacts: Lynne Hillenbrand, Tom Greene, Paul Harvey Scientific category: STAR FORMATION

More information

Star formation : circumstellar environment around Young Stellar Objects

Star formation : circumstellar environment around Young Stellar Objects Bull. Astr. Soc. India (2005) 33, 327 331 Star formation : circumstellar environment around Young Stellar Objects Manoj Puravankara Inter-University Centre for Astronomy and Astrophysics, Pune - 411007,

More information

Mid-infrared images of compact and ultracompact HII regions: W51 and W75N.

Mid-infrared images of compact and ultracompact HII regions: W51 and W75N. Mem. S.A.It. Vol. 74, 146 c SAIt 2003 Memorie della Mid-infrared images of compact and ultracompact HII regions: W51 and W75N. Paolo Persi 1, Anna Rosa Marenzi 1, Maurcio Tapia 2 and Joaquín Bohigas 2,

More information

Radio Nebulae around Luminous Blue Variable Stars

Radio Nebulae around Luminous Blue Variable Stars Radio Nebulae around Luminous Blue Variable Stars Claudia Agliozzo 1 G. Umana 2 C. Trigilio 2 C. Buemi 2 P. Leto 2 A. Ingallinera 1 A. Noriega-Crespo 3 J. Hora 4 1 University of Catania, Italy 2 INAF-Astrophysical

More information

The Statistical Analysis of stars with H emission in IC 348 Cluster.

The Statistical Analysis of stars with H emission in IC 348 Cluster. Submitted to Astrophysics (2015) The Statistical Analysis of stars with H emission in IC 348 Cluster. E. H. Nikoghosyan, A. V. Vardanyan, К. G. Khachatryan Byurakan Astrophysical observatory, Armenia,

More information

The Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) I. Why a Galactic Plane Survey? The inner workings of our own Galaxy are more

The Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) I. Why a Galactic Plane Survey? The inner workings of our own Galaxy are more The Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) I. Why a Galactic Plane Survey? The inner workings of our own Galaxy are more mysterious than those of galaxies located millions of

More information

Young stellar objects and their environment

Young stellar objects and their environment Recent Advances in Star Formation: Observations and Theory ASI Conference Series, 2012, Vol. 4, pp 107 111 Edited by Annapurni Subramaniam & Sumedh Anathpindika Young stellar objects and their environment

More information

Energy Sources of the Far IR Emission of M33

Energy Sources of the Far IR Emission of M33 Energy Sources of the Far IR Emission of M33 Hinz, Reike et al., ApJ 154: S259 265 (2004). Presented by James Ledoux 24 µm 70 µm 160 µm Slide 1 M33 Properties Distance 840kpc = 2.7 Mlyr (1'' ~ 4 pc) Also

More information

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Goals: The Birth Of Stars How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Interstellar Medium Gas and dust between stars is the interstellar

More information

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and 6-1 6. Interstellar Medium 6.1 Nebulae Emission nebulae are diffuse patches of emission surrounding hot O and early B-type stars. Gas is ionized and heated by radiation from the parent stars. In size,

More information

The distance modulus in the presence of absorption is given by

The distance modulus in the presence of absorption is given by Problem 4: An A0 main sequence star is observed at a distance of 100 pc through an interstellar dust cloud. Furthermore, it is observed with a color index B-V = 1.5. What is the apparent visual magnitude

More information

Interferometric Observations of S140-IRS1

Interferometric Observations of S140-IRS1 Interferometric Observations of S140-IRS1 e-merlin early science workshop April 2014 Luke T. Maud University of Leeds, UK Melvin G. Hoare University of Leeds Star formation scenario Collapse of a core

More information

High Redshift Universe

High Redshift Universe High Redshift Universe Finding high z galaxies Lyman break galaxies (LBGs) Photometric redshifts Deep fields Starburst galaxies Extremely red objects (EROs) Sub-mm galaxies Lyman α systems Finding high

More information

The skin of Orion. Molecular Astrophysics: The Herschel and ALMA era PRESS RELEASE

The skin of Orion. Molecular Astrophysics: The Herschel and ALMA era PRESS RELEASE Molecular Astrophysics: The Herschel and ALMA era PRESS RELEASE The skin of Orion 9- October- 2015 Imaging Orion in ionized carbon emission. Among the brightest emissions from the interstellar medium and

More information

ASTRONOMY II Spring 1995 FINAL EXAM. Monday May 8th 2:00pm

ASTRONOMY II Spring 1995 FINAL EXAM. Monday May 8th 2:00pm ASTRONOMY II - 79202 Spring 1995 FINAL EXAM Monday May 8th 2:00pm Name: You have three hours to complete this exam. I suggest you read through the entire exam before you spend too much time on any one

More information

Revealing the Large Scale Distribution of Star Formation in the Milky Way with WISE

Revealing the Large Scale Distribution of Star Formation in the Milky Way with WISE Revealing the Large Scale Distribution of Star Formation in the Milky Way with WISE Xavier Koenig Yale University WISE @ 5 Conference Feb 11 2015 Collaborators: David Leisawitz Debbie Padgett Luisa Rebull

More information

Gas 1: Molecular clouds

Gas 1: Molecular clouds Gas 1: Molecular clouds > 4000 known with masses ~ 10 3 to 10 5 M T ~ 10 to 25 K (cold!); number density n > 10 9 gas particles m 3 Emission bands in IR, mm, radio regions from molecules comprising H,

More information

The Superbubble Power Problem: Overview and Recent Developments. S. Oey

The Superbubble Power Problem: Overview and Recent Developments. S. Oey The Superbubble Power Problem: Overview and Recent Developments S. Oey It has been known for decades that superbubbles generated by massive star winds and supernovae are smaller than expected based on

More information

High mass star formation in the Herschel era: highlights of the HOBYS key program

High mass star formation in the Herschel era: highlights of the HOBYS key program Recent Advances in Star Formation ASI Conference Series, 2012, Vol. 4, pp 55 62 Edited by Annapurni Subramaniam & Sumedh Anathpindika High mass star formation in the Herschel era: highlights of the HOBYS

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

Lecture 26 Low-Mass Young Stellar Objects

Lecture 26 Low-Mass Young Stellar Objects Lecture 26 Low-Mass Young Stellar Objects 1. Nearby Star Formation 2. General Properties of Young Stars 3. T Tauri Stars 4. Herbig Ae/Be Stars References Adams, Lizano & Shu ARAA 25 231987 Lada OSPS 1999

More information

Chapter 11 The Formation of Stars

Chapter 11 The Formation of Stars Chapter 11 The Formation of Stars A World of Dust The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful objects in the sky.

More information

Anatomy of the S255-S257 complex - Triggered high-mass star formation

Anatomy of the S255-S257 complex - Triggered high-mass star formation Proceedings Title IAU Symposium Proceedings IAU Symposium No. IAUS237, 2006 A.C. Editor, B.D. Editor & C.E. Editor, eds. c 2006 International Astronomical Union DOI: 00.0000/X000000000000000X Anatomy of

More information

Astro 1050 Wed. Apr. 5, 2017

Astro 1050 Wed. Apr. 5, 2017 Astro 1050 Wed. Apr. 5, 2017 Today: Ch. 17, Star Stuff Reading in Horizons: For Mon.: Finish Ch. 17 Star Stuff Reminders: Rooftop Nighttime Observing Mon, Tues, Wed. 1 Ch.9: Interstellar Medium Since stars

More information

A World of Dust. Bare-Eye Nebula: Orion. Interstellar Medium

A World of Dust. Bare-Eye Nebula: Orion. Interstellar Medium Interstellar Medium Physics 113 Goderya Chapter(s): 10 Learning Outcomes: A World of Dust The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of

More information

The innermost circumstellar environment of massive young stellar objects revealed by infrared interferometry

The innermost circumstellar environment of massive young stellar objects revealed by infrared interferometry The innermost circumstellar environment of massive young stellar objects revealed by infrared interferometry Thomas Preibisch, Stefan Kraus, Keiichi Ohnaka Max Planck Institute for Radio Astronomy, Bonn

More information

AST 101 INTRODUCTION TO ASTRONOMY SPRING MIDTERM EXAM 2 TEST VERSION 1 ANSWERS

AST 101 INTRODUCTION TO ASTRONOMY SPRING MIDTERM EXAM 2 TEST VERSION 1 ANSWERS AST 101 INTRODUCTION TO ASTRONOMY SPRING 2008 - MIDTERM EXAM 2 TEST VERSION 1 ANSWERS Multiple Choice. In the blanks provided before each question write the letter for the phrase that best answers the

More information

Star Formation. Spitzer Key Contributions to Date

Star Formation. Spitzer Key Contributions to Date Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

Understanding the tracers of star formation

Understanding the tracers of star formation Understanding the tracers of star formation Kazi Rygl (ESA-ESTEC) Cygnus X region, HOBYS (F. Motte, M. Hennemann)/Herschel/ESA 22 Jan 2015, Bologna Overview Evolutionary phases of star formation Age determinations:

More information

The Interstellar Medium (ch. 18)

The Interstellar Medium (ch. 18) The Interstellar Medium (ch. 18) The interstellar medium (ISM) is all the gas (and about 1% dust) that fills our Galaxy and others. It is the raw material from which stars form, and into which stars eject

More information

A100 Exploring the Universe: The Milky Way as a Galaxy. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: The Milky Way as a Galaxy. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: The Milky Way as a Galaxy Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu November 12, 2014 Read: Chap 19 11/12/14 slide 1 Exam #2 Returned and posted tomorrow

More information

Formation and Evolution of Planetary Systems

Formation and Evolution of Planetary Systems Formation and Evolution of Planetary Systems Meyer, Hillenbrand et al., Formation and Evolution of Planetary Systems (FEPS): First Results from a Spitzer Legacy Science Program ApJ S 154: 422 427 (2004).

More information

Chapter 11 The Formation and Structure of Stars

Chapter 11 The Formation and Structure of Stars Chapter 11 The Formation and Structure of Stars Guidepost The last chapter introduced you to the gas and dust between the stars that are raw material for new stars. Here you will begin putting together

More information

arxiv: v1 [astro-ph.ga] 3 Feb 2010

arxiv: v1 [astro-ph.ga] 3 Feb 2010 Astronomy & Astrophysics manuscript no. APetriella arxiv c ESO 2018 October 25, 2018 The environment of the infrared dust bubble arxiv:1002.0815v1 [astro-ph.ga] 3 Feb 2010 N65: a multiwavelength study

More information

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech A Tale of Star and Planet Formation Lynne Hillenbrand Caltech Vermeer s The Astronomer (1688) Mauna Kea (last week) photos by: Sarah Anderson and Bill Bates Context: Our Sun The Sun is a completely average

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Lecture11; November 1, 2016 Previously on Astro-1 Introduction to stars Measuring distances Inverse square law: luminosity vs brightness Colors and spectral types, the H-R diagram

More information

Galaxies: The Nature of Galaxies

Galaxies: The Nature of Galaxies Galaxies: The Nature of Galaxies The Milky Way The Milky Way is visible to the unaided eye at most place on Earth Galileo in 1610 used his telescope to resolve the faint band into numerous stars In the

More information

ASTR2050 Spring Please turn in your homework now! In this class we will discuss the Interstellar Medium:

ASTR2050 Spring Please turn in your homework now! In this class we will discuss the Interstellar Medium: ASTR2050 Spring 2005 Lecture 10am 29 March 2005 Please turn in your homework now! In this class we will discuss the Interstellar Medium: Introduction: Dust and Gas Extinction and Reddening Physics of Dust

More information

Stellar Populations: Resolved vs. unresolved

Stellar Populations: Resolved vs. unresolved Outline Stellar Populations: Resolved vs. unresolved Individual stars can be analyzed Applicable for Milky Way star clusters and the most nearby galaxies Integrated spectroscopy / photometry only The most

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Distances & the Milky Way. The Curtis View. Our Galaxy. The Shapley View 3/27/18

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Distances & the Milky Way. The Curtis View. Our Galaxy. The Shapley View 3/27/18 Astronomy 113 Dr. Joseph E. Pesce, Ph.D. Distances & the Milky Way 14-2 Historical Overview: the Curtis-Shapley Debate ³What is the size of our galaxy? ³What is the nature of spiral nebula? The Curtis

More information

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D. Astronomy 113 Dr. Joseph E. Pesce, Ph.D. Distances & the Milky Way Historical Overview: the Curtis-Shapley Debate ³What is the size of our galaxy? ³What is the nature of spiral nebula? 14-2 ³Occurred in

More information

Components of Galaxies Gas The Importance of Gas

Components of Galaxies Gas The Importance of Gas Components of Galaxies Gas The Importance of Gas Fuel for star formation (H 2 ) Tracer of galaxy kinematics/mass (HI) Tracer of dynamical history of interaction between galaxies (HI) The Two-Level Atom

More information

The Milky Way Galaxy and Interstellar Medium

The Milky Way Galaxy and Interstellar Medium The Milky Way Galaxy and Interstellar Medium Shape of the Milky Way Uniform distribution of stars in a band across the sky lead Thomas Wright, Immanuel Kant, and William Herschel in the 18th century to

More information

Chapter 10 The Interstellar Medium

Chapter 10 The Interstellar Medium Chapter 10 The Interstellar Medium Guidepost You have begun your study of the sun and other stars, but now it is time to study the thin gas and dust that drifts through space between the stars. This chapter

More information

Part III: Circumstellar Properties of Intermediate-Age PMS Stars

Part III: Circumstellar Properties of Intermediate-Age PMS Stars 160 Part III: Circumstellar Properties of Intermediate-Age PMS Stars 161 Chapter 7 Spitzer Observations of 5 Myr-old Brown Dwarfs in Upper Scorpius 7.1 Introduction Ground-based infrared studies have found

More information

Astr 2310 Thurs. March 23, 2017 Today s Topics

Astr 2310 Thurs. March 23, 2017 Today s Topics Astr 2310 Thurs. March 23, 2017 Today s Topics Chapter 16: The Interstellar Medium and Star Formation Interstellar Dust and Dark Nebulae Interstellar Dust Dark Nebulae Interstellar Reddening Interstellar

More information

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy 18. Stellar Birth Star observations & theories aid understanding Interstellar gas & dust in our galaxy Protostars form in cold, dark nebulae Protostars evolve into main-sequence stars Protostars both gain

More information

Large-scale mapping of molecular clouds: what can we learn?

Large-scale mapping of molecular clouds: what can we learn? Mem. S.A.It. Suppl. Vol. 10, 165 c SAIt 2006 Memorie della Supplementi Large-scale mapping of molecular clouds: what can we learn? F. Massi 1, M. De Luca 2,3, D. Elia 4, T. Giannini 2, D. Lorenzetti 2,

More information

NEW M-TYPE VARIABLES IN GALACTIC DARK CLOUDS

NEW M-TYPE VARIABLES IN GALACTIC DARK CLOUDS Astrophysics, Vol. 46, No. 1, 2003 NEW M-TYPE VARIABLES IN GALACTIC DARK CLOUDS N. D. Melikian 1, C. Magnan 2, J. M. Sarkissian 3, and A. A. Karapetian 1 UDC: 524.338 The results of the spectral classification

More information

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

within entire molecular cloud complexes

within entire molecular cloud complexes The earliest phases of high-mass stars within entire molecular cloud complexes Frédérique Motte (CEA-Saclay, AIM) Collaborators: S. Bontemps (Obs Bordeaux), N. Schneider, J. Grac (CEA-Saclay), P. Schilke,

More information

Stellar Birth. Stellar Formation. A. Interstellar Clouds. 1b. What is the stuff. Astrophysics: Stellar Evolution. A. Interstellar Clouds (Nebulae)

Stellar Birth. Stellar Formation. A. Interstellar Clouds. 1b. What is the stuff. Astrophysics: Stellar Evolution. A. Interstellar Clouds (Nebulae) Astrophysics: Stellar Evolution 1 Stellar Birth Stellar Formation A. Interstellar Clouds (Nebulae) B. Protostellar Clouds 2 C. Protostars Dr. Bill Pezzaglia Updated: 10/02/2006 A. Interstellar Clouds 1.

More information

- Strong extinction due to dust

- Strong extinction due to dust The Galactic Centre - Strong extinction due to dust At optical wavelemgth the absorption is almost total Information from the 21 line, IR and radio 10 Region between and cm 14 10 22 1 arcsec at the distance

More information

Chapter 23 The Milky Way Galaxy Pearson Education, Inc.

Chapter 23 The Milky Way Galaxy Pearson Education, Inc. Chapter 23 The Milky Way Galaxy The Milky Way is our own galaxy viewed from the inside. It is a vast collection of more than 200 billion stars, planets, nebulae, clusters, dust and gas. Our own sun and

More information

Effects of Massive Stars

Effects of Massive Stars Effects of Massive Stars Classical HII Regions Ultracompact HII Regions Stahler Palla: Sections 15.1, 15. HII Regions The salient characteristic of any massive star is its extreme energy output, much of

More information

Astronomy 104: Second Exam

Astronomy 104: Second Exam Astronomy 104: Second Exam Stephen Lepp October 29, 2014 Each question is worth 2 points. Write your name on this exam and on the scantron. Short Answer A The Sun is powered by converting hydrogen to what?

More information

SED modeling of young massive stars

SED modeling of young massive stars SED modeling of young massive stars Thomas Robitaille University of St Andrews, UK GLIMPSE/SAGE teams, including Barb Whitney (SSI), Remy Indebetouw (Virginia), Matt Povich (UW), Marta Sewilo (STScI),

More information

Physics Homework Set 2 Sp 2015

Physics Homework Set 2 Sp 2015 1) A large gas cloud in the interstellar medium that contains several type O and B stars would appear to us as 1) A) a reflection nebula. B) a dark patch against a bright background. C) a dark nebula.

More information

Chapter 10 Measuring the Stars

Chapter 10 Measuring the Stars Chapter 10 Measuring the Stars Some of the topics included in this chapter Stellar parallax Distance to the stars Stellar motion Luminosity and apparent brightness of stars The magnitude scale Stellar

More information

arxiv: v1 [astro-ph.ga] 19 Apr 2013

arxiv: v1 [astro-ph.ga] 19 Apr 2013 Research in Astron. Astrophys. Vol.0 (200x) No.0, 000 000 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics Key words: radiation mechanisms: thermal ISM:atoms

More information

Results better than Quiz 5, back to normal Distribution not ready yet, sorry Correct up to 4 questions, due Monday, Apr. 26

Results better than Quiz 5, back to normal Distribution not ready yet, sorry Correct up to 4 questions, due Monday, Apr. 26 Brooks observing April 19-22: 9:00 PM to at least 10:15 PM Tonight is a go! April 26-29: 9:30 PM to at least 10:45 PM Regular Friday evening public observing after planetarium shows also an option Begins

More information

Ionization Feedback in Massive Star Formation

Ionization Feedback in Massive Star Formation Ionization Feedback in Massive Star Formation Thomas Peters Institut für Theoretische Astrophysik Zentrum für Astronomie der Universität Heidelberg Ralf Klessen, Robi Banerjee (ITA, Heidelberg) Mordecai-Mark

More information

11/6/18. Today in Our Galaxy (Chap 19)

11/6/18. Today in Our Galaxy (Chap 19) ASTR 1040: Stars & Galaxies Prof. Juri Toomre TAs: Ryan Horton, Loren Matilsky Lecture 21 Tues 6 Nov 2018 zeus.colorado.edu/astr1040-toomre Edge-on spiral galaxy NGG 4013 Today in Our Galaxy (Chap 19)

More information

Direct imaging of extra-solar planets

Direct imaging of extra-solar planets Chapter 6 Direct imaging of extra-solar planets Direct imaging for extra-solar planets means that emission from the planet can be spatially resolved from the emission of the bright central star The two

More information

Probing the embedded phase of star formation with JWST spectroscopy

Probing the embedded phase of star formation with JWST spectroscopy Probing the embedded phase of star formation with JWST spectroscopy NIRSPEC Spitzer NGC 1333 Low mass Herschel Cygnus X High mass Jorgensen et al. Gutermuth et al. 10 10 Motte, Henneman et al. E.F. van

More information

Chapter 15 Star Birth. Star-Forming Clouds. Stars form in dark clouds of dusty gas in interstellar space

Chapter 15 Star Birth. Star-Forming Clouds. Stars form in dark clouds of dusty gas in interstellar space Chapter 15 Star Birth Star-Forming Clouds Stars form in dark clouds of dusty gas in interstellar space The gas between the stars is called the interstellar medium Visible light (Hubble Space Telescope)

More information

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)?

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)? How Long do Stars Live (as Main Sequence Stars)? A star on Main Sequence has fusion of H to He in its core. How fast depends on mass of H available and rate of fusion. Mass of H in core depends on mass

More information

Herbig Ae/Be Star Accretion Rates and the Hertzsprung Russell Diagram

Herbig Ae/Be Star Accretion Rates and the Hertzsprung Russell Diagram Department of Physics and Astronomy BSc Project PHYS3150 Herbig Ae/Be Star Accretion Rates and the Hertzsprung Russell Diagram Author: Alison McSloy Student number: 200549097 Supervisor: Professor Rene

More information

Ionized Hydrogen (HII)

Ionized Hydrogen (HII) Ionized Hydrogen (HII) While ionized hydrogen (protons, electrons) forms the majority of the ionized phase of the ISM, it also contains ionized forms of other elements: e.g., OII, OIII, CIV, MgII. Highest

More information

Stars, Galaxies & the Universe Lecture Outline

Stars, Galaxies & the Universe Lecture Outline Stars, Galaxies & the Universe Lecture Outline A galaxy is a collection of 100 billion stars! Our Milky Way Galaxy (1)Components - HII regions, Dust Nebulae, Atomic Gas (2) Shape & Size (3) Rotation of

More information

Guiding Questions. Stellar Evolution. Stars Evolve. Interstellar Medium and Nebulae

Guiding Questions. Stellar Evolution. Stars Evolve. Interstellar Medium and Nebulae Guiding Questions Stellar Evolution 1. Why do astronomers think that stars evolve? 2. What kind of matter exists in the spaces between the stars? 3. What steps are involved in forming a star like the Sun?

More information

arxiv: v1 [astro-ph.ga] 1 Jul 2011

arxiv: v1 [astro-ph.ga] 1 Jul 2011 Stellar Clusters & Associations: A RIA Workshop on Gaia Granada, 23 rd - 27 th May 2011 Dissecting high-mass star-forming regions; tracing back their complex formation history arxiv:1107.0148v1 [astro-ph.ga]

More information

arxiv: v1 [astro-ph.sr] 14 Jan 2009

arxiv: v1 [astro-ph.sr] 14 Jan 2009 Astronomy & Astrophysics manuscript no. grave2009 c ESO 2018 June 16, 2018 Spitzer-IRAC GLIMPSE of high mass protostellar objects. II SED modelling of a bonafide sample J. M. C. Grave 1,2 and M. S. N.

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum Three Kinds of Spectra Sun: The Nearest Star Radius 696,000 km 109 Re Mass 2 x 10^30 kg 300,000 Me Density 1400 kg/m^3 Luminosity 3.8x10^26 Watts (board calc.) Comp. 70% H,

More information

Chapter 9. The Formation and Structure of Stars

Chapter 9. The Formation and Structure of Stars Chapter 9 The Formation and Structure of Stars The Interstellar Medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

The Ecology of Stars

The Ecology of Stars The Ecology of Stars We have been considering stars as individuals; what they are doing and what will happen to them Now we want to look at their surroundings And their births 1 Interstellar Matter Space

More information

Dark Matter. ASTR 333/433 Spring Today Stars & Gas. essentials about stuff we can see. First Homework on-line Due Feb. 4

Dark Matter. ASTR 333/433 Spring Today Stars & Gas. essentials about stuff we can see. First Homework on-line Due Feb. 4 Dark Matter ASTR 333/433 Spring 2016 Today Stars & Gas essentials about stuff we can see First Homework on-line Due Feb. 4 Galaxies are made of stars - D. Silva (1990) private communication Stars Majority

More information

Astro Fall 2012 Lecture 8. T. Howard

Astro Fall 2012 Lecture 8. T. Howard Astro 101 003 Fall 2012 Lecture 8 T. Howard Measuring the Stars How big are stars? How far away? How luminous? How hot? How old & how much longer to live? Chemical composition? How are they moving? Are

More information

RAMPS: The Radio Ammonia Mid-Plane Survey. James Jackson Institute for Astrophysical Research Boston University

RAMPS: The Radio Ammonia Mid-Plane Survey. James Jackson Institute for Astrophysical Research Boston University RAMPS: The Radio Ammonia Mid-Plane Survey James Jackson Institute for Astrophysical Research Boston University High Frequency Workshop, Green Bank, 21 September 2015 Collaborators (partial list) Taylor

More information

The Milky Way - Chapter 23

The Milky Way - Chapter 23 The Milky Way - Chapter 23 The Milky Way Galaxy A galaxy: huge collection of stars (10 7-10 13 ) and interstellar matter (gas & dust). Held together by gravity. Much bigger than any star cluster we have

More information

Lifecycle of Dust in Galaxies

Lifecycle of Dust in Galaxies Lifecycle of Dust in Galaxies Karl Gordon Space Telescope Science Institute 3700 San Martin Drive Baltimore, MD 21218 Email: kgordon@stsci.edu Phone: 410-338-5031 co-authors: Margaret Meixner (Space Telescope

More information

Astronomy 422! Lecture 7: The Milky Way Galaxy III!

Astronomy 422! Lecture 7: The Milky Way Galaxy III! Astronomy 422 Lecture 7: The Milky Way Galaxy III Key concepts: The supermassive black hole at the center of the Milky Way Radio and X-ray sources Announcements: Test next Tuesday, February 16 Chapters

More information

Chapter 11 Review. 1) Light from distant stars that must pass through dust arrives bluer than when it left its star. 1)

Chapter 11 Review. 1) Light from distant stars that must pass through dust arrives bluer than when it left its star. 1) Chapter 11 Review TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Light from distant stars that must pass through dust arrives bluer than when it left its star. 1)

More information

Intracluster Age Gradients And Disk Longevities In Numerous MYStIX And SFiNCs Young Stellar Clusters

Intracluster Age Gradients And Disk Longevities In Numerous MYStIX And SFiNCs Young Stellar Clusters Intracluster Age Gradients And Disk Longevities In Numerous MYStIX And SFiNCs Young Stellar Clusters K. Getman, E. Feigelson, M. Kuhn, A. Richert, M. Bate, P. Broos, M. Povich, G. Garmire Pennsylvania

More information

Bright Quasar 3C 273 Thierry J-L Courvoisier. Encyclopedia of Astronomy & Astrophysics P. Murdin

Bright Quasar 3C 273 Thierry J-L Courvoisier. Encyclopedia of Astronomy & Astrophysics P. Murdin eaa.iop.org DOI: 10.1888/0333750888/2368 Bright Quasar 3C 273 Thierry J-L Courvoisier From Encyclopedia of Astronomy & Astrophysics P. Murdin IOP Publishing Ltd 2006 ISBN: 0333750888 Institute of Physics

More information

Exam 4 Review EXAM COVERS LECTURES 22-29

Exam 4 Review EXAM COVERS LECTURES 22-29 Exam 4 Review EXAM COVERS LECTURES 22-29 Theoretically is there a center of the universe? Is there an edge? Do we know where Earth is on this? There is no center to the Universe, What kind of light we

More information

The Physics of the Interstellar Medium

The Physics of the Interstellar Medium The Physics of the Interstellar Medium Ulrike Heiter Contact: 471 5970 ulrike@astro.uu.se www.astro.uu.se Matter between stars Average distance between stars in solar neighbourhood: 1 pc = 3 x 1013 km,

More information

The Milky Way Galaxy

The Milky Way Galaxy 1/5/011 The Milky Way Galaxy Distribution of Globular Clusters around a Point in Sagittarius About 00 globular clusters are distributed in random directions around the center of our galaxy. 1 1/5/011 Structure

More information

Dust & Gas around Stars Young & Old, Near & Far

Dust & Gas around Stars Young & Old, Near & Far Dust & Gas around Stars Young & Old, Near & Far Kathleen Kraemer ISR Scientific Collaborators Steve Price (BC) Greg Sloan (Cornell (formerly BC)) Don Mizuno (BC) Tom Kuchar (BC) Charles Engelke (BC) Bev

More information

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10 Lecture 13 : The Interstellar Medium and Cosmic Recycling Midterm Results A2020 Prof. Tom Megeath The Milky Way in the Infrared View from the Earth: Edge On Infrared light penetrates the clouds and shows

More information

Near-infrared images of star forming regions containing masers

Near-infrared images of star forming regions containing masers ASTRONOMY & ASTROPHYSICS MAY I 1998, PAGE 495 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 129, 495-504 (1998) Near-infrared images of star forming regions containing masers Las Campanas observations

More information

Protostellar Jets in the ngvla Era

Protostellar Jets in the ngvla Era Protostellar Jets in the ngvla Era Luis F. Rodríguez (IRyA- UNAM, Mexico) In collabora@on with G. Anglada, C. Carrasco- González, L. Zapata, A. Palau, R. Galván- Madrid, C. Rodríguez- Kamenetzky, A. Araudo,

More information

INTRODUCTION TO SPACE

INTRODUCTION TO SPACE INTRODUCTION TO SPACE 25.3.2019 The Galaxy II: Stars: Classification and evolution Various types of stars Interstellar matter: dust, gas Dark matter ELEC-E4530 Radio astronomy: the Sun, pulsars, microquasars,

More information

IRS Spectroscopy of z~2 Galaxies

IRS Spectroscopy of z~2 Galaxies IRS Spectroscopy of z~2 Galaxies Houck et al., ApJ, 2005 Weedman et al., ApJ, 2005 Lutz et al., ApJ, 2005 Astronomy 671 Jason Marshall Opening the IR Wavelength Regime for Discovery One of the primary

More information