DEVELOPMENT OF TRACKING SYSTEM FOR SATELLITE GROUND STATION

Size: px
Start display at page:

Download "DEVELOPMENT OF TRACKING SYSTEM FOR SATELLITE GROUND STATION"

Transcription

1 8th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING April 2012, Tallinn, Estonia DEVELOPMENT OF TRACKING SYSTEM FOR SATELLITE GROUND STATION Winter, E.; Dahl, J.; Nordling, K.; Praks, J.;Kiviluoma, P.; Kuosmanen, P. Abstract: A satellite, in this context, is a man-made object that orbits around the earth. Aalto-1 is the first Finnish satellite and its design follows the popular CubeSat nanosatellite standard. The Aalto-1 is designed to use S-bandwidth which is not typical in small size satellites. To handle the communication with such a small satellite orbiting the earth, a ground station with an accurate tracking antenna is needed. In this paper we present ideas how to design, build and calibrate a low-cost and simple S- band satellite tracking system for educational purpose. The goal was to achieve a tracking accuracy better than one degree. Key words: ground station, S-band, pointing calibration, helix antenna, nanosatellite 1. INTRODUCTION At this very moment hundreds of satellites in all sizes are orbiting and observing the earth and giving navigation and weather information. Aalto-1 is the first Finnish satellite and its design follows the popular CubeSat nanosatellite standard. The dimensions of the satellite are 340x100x100 mm. One of the main payloads is a spectrometer which takes pictures of the earth in different wavelengths [1]. Because of the large data-packages sent from the spectrometer the satellite needs a high speed wireless connection to the ground station. The Aalto-1 is designed to use S-bandwidth that ranges from 2.4 GHz to 2.5 GHz which is not typical in small size satellites. To handle the communication with such a small satellite orbiting the earth, a ground station with an accurate tracking antenna is needed, to communicate with the satellite while it passes over the station. Highly directional antennas are getting more and more popular on satellites because of the need for massive amount of data-transfer [2]. This affects the ground station design so that a highly accurate pointing calibration method is needed. An accurate mechanical structure should also be designed to make this possible. For pointing calibration on S- band frequencies one can use radio objects in the sky e.g. radio galaxies, remains from supernovas or the sun as reference. A problem with highly directional antennas is the side lobes from the antenna which are getting power from surrounding environment. Most of the wireless disturbance around us is in the S-band frequency range and S-band antennas can pick up disturbance from these sources. Another method for calibration is to use an optical device to track the sun. This method can be sensitive for weather and there is inaccuracy caused by the atmosphere. Light scatters and refracts in the atmosphere so that the sun s position is not actually where it is observed. The refractions are zero at zenith and increases to about 0.6 degrees when watching the horizon [3]. Therefore the calibration should be executed when the sun is as high in the sky as possible. In this paper we present ideas how to design, build and calibrate a low-cost and simple S- band satellite tracking system for educational

2 purpose. This system consists of an antenna connected to a computer controlled rotating actuator, attached to a mast. The design of the mast has to be lightweight but strong enough to hold the wind load from the antenna. To make the ground station more versatile the mast has to be compatible with different kind of antennas. The goal was to achieve a tracking accuracy less than one degree. To test the accuracy of the ground station, signal strength from several tracked satellites can be measured. Different pointing accuracy calibration methods are evaluated to see which method would provide the most accurate calibration. The aiming accuracy depends mostly on the mechanical structure where the antenna is attached and on the calibration of the antenna. It is not possible to compensate for the displacement caused by wind load on the mechanical structure since it is a varying load. Therefore the mechanical structure has to be rigid enough not to deform under high wind load. A storm in Finland is defined for wind speeds over 20 m/s [4]. A wind load of 31 m/s was used for a safety margin. Higher wind speeds have been measured in Finland but designing the mechanical structure for higher values is not reasonable since it would add unwanted weight to the structure. 2. METHODS 2.1 Structure The ground station consists of an antenna connected to a computer controlled rotating actuator, attached to a mast. The aiming accuracy of the mechanical structure can be improved by making the structure stiff enough to reduce displacement caused by wind load on the antenna. By examining current solutions and their features one could by brainstorming choose between the different features and finally make a design that would suit this project. A three legged design (Fig. 1) was chosen since it is both simple and stable. To ensure adequate stiffness on the mechanical structure for the ground station a FEM analysis was performed. Fig. 1. The mechanical structure of the ground station The mechanical structure was also designed to be adjustable. This makes it possible to compensate for inaccuracy from small manufacturing errors. All of the legs on the mechanical structure have adjustment screws. This makes it possible to tilt the vertical centre axis of the mechanical structure. Both rotating axes on the rotating device are also adjustable. The rotating device is an azimuth and elevation rotator. It is possible for the rotator to turn around two axes, the azimuth and elevation axis. Azimuth is the angular measurement for turning along the horizon and elevation is for the height above the horizon. The rotator used in the testing of the calibration had a pointing accuracy of ±1 degree.

3 2.2 Calibration For the calibration part different types of calibration methods were examined to see which one would provide us with the best result and the simplest procedure. Four different kinds of calibration methods were found. Using photoresistor and signal measurements from antenna to calculate the position of the sun. Using radio objects (active galactic nuclei, supernova remnant). Using geostationary satellites. Maximising strength of the received signal from tracked object. All these objects have known positions in the sky and any of these objects can be used as a reference point when calibrating antennas. Two of the above mentioned calibration methods were disqualified. Geostationary satellites are below the horizon in Finland, and using received signal does not help getting information about how accurate the rotator is. In this paper a proof of concept for the sun tracking calibration system is presented. The calibration method used involves locating the position of the sun by measuring the brightness with a photoresistor. The schematic of the measuring equipment is illustrated in Figure 2 below. It consists of a photoresistor in a tube with a narrow opening to reduce the spreading angle of the photons from the sun (Fig. 3). The photoresistor is connected to a microcontroller that measures the voltage over the resistor through an analog-to-digital converter. The voltage over the photoresistor changes according to the intensity of the light hitting it. The microcontroller then sends the measurement to a computer on request. The computer stores the received data and plots it in a diagram after the measurements are done. The data contains the values for the intensity of the light and the azimuth and elevation rotation angle of the rotator at that moment. By this method the brightest spot in the measured area which is expected to be the sun can be located. Measurements from the sun produce data that should match a Gaussian function [5]. When the centre of the sun is found the results can be compared to an online database for the position of the sun at the moment of the measuring. From this the offset of the rotator can be found and adjusted so that it points accurately at the tracked object. Fig. 2. The principle of the solar locating system Fig. 3. Attachment of the photoresistor to the calibration tube The calibration test was done by first determining the position of the sun with the solar locating photoresistor and then by using a helix antenna for getting different

4 kinds of data to compare. With the data achieved from the two readings a calibration error can be estimated. Calibration starts by setting the zero point of the rotator to the north or south with the help of a compass. Then the edges of the sun were measured by the photoresistor and the centre position of the sun was calculated. The results were compared to values from Stellarium software [6]. Stellarium is an online software that gives the altitude and azimuth of the sun s position both in units of degrees. The next step was to check if it is possible to measure the signal strength from radio objects in the sky. Two objects were chosen for this, Cygnus A and Cassiopeia A [7]. Both of these are circumpolar objects in Finland, so they are always above the horizon [8]. It was approximated, based on information gathered from NASA/IPAC extragalactic database [7], that these objects are radiating at 2.4 GHz frequency with enough intensity so that they can be detected with a helix array antenna according to calculations below. Calculations are done for a helix antenna array consisting of 16 helix antennas. This array is the equivalent of a 3m dish antenna. Equation (1) below is used for calculating the brightness needed for observing an object in the sky, as well as for calculating the brightness achieved by the chosen objects. This gives us approximately minimum brightness of 172 Jy 1 Jy = W m 2 Hz needed of an object to be observed with our antenna. Cygnus A radiates at 2.7 GHz with 785 Jy and Cassiopeia A with 1495 Jy at 2.8 GHz. This means that the objects are bright enough to be observed by the antenna. 3. STATUS AND RESULTS A FEM analysis of the mechanical structure was made for a worst case scenario with a wind speed of 31 m/s on a 3 m in diameter mesh antenna. An image from the results can be found in Figure 4. The displacement caused by the wind load is so small that the attachment point for the antenna is just 0.04 degrees off-centre during the worst case scenario. The bending of the mechanical structure is therefore almost insignificant under normal weather conditions. S = 8kk sysk s ηπd 2 (tb) 0.5 (1) Where: k = Boltzmann constant k sys = system temperature k s = radiometer constant t = measurement time B = bandwidth η = efficiency Fig. 4. Results from FEM analysis The weather in Finland is very demanding in point of view of sun calibration. In winter the sky is cloudy most of the time, which makes it very hard to use the sun as

5 calibration. Below are the results from measurement of the amount of light hitting the photoresistor at a given turning angle. The equipment used in the testing allowed a ± 0.27 degree spreading angle of the photons travelling from the sun to the photoresistor. Figures 5 and 6 are presenting measurements from elevation angle and azimuth angle. Figure 5 represents the measurement results in azimuth direction. The maximum value on the fitted function can be found at 46.7 degrees on the rotator. Measurements were done on at 11:20 local time GMT +2. Fig. 6. Elevation measurements with fitted function 4. DISCUSSION Fig. 5. Azimuth measurements with fitted function Figure 6 represents the measurement results in elevation direction. The maximum value of the fitted curve can be found at degrees, which gives a corresponding value of degrees on the rotator. These measurements were done on 11:35 GMT +2. From the measurement values in Figures 5 and 6 one can easily read at which turning angle the light intensity is the strongest. The rotator was not reset to north before the testing so any values of the turning angle are not to be taken into account. The mast which was used for testing was built for VHF/UHF antennas and the beam width on VHF/UHF antennas are huge compared to the S-band antenna beam width. By making the antenna stiffer and by doing more sweeps over the sun the results could be improved. It is also possible to make the measurement equipment more light sensitive by reducing the size of the hole from where light is allowed to pass to the photoresistor. According to calculations it is not possible to achieve desired pointing accuracy with the equipment used in the tests. The goal was to achieve a pointing accuracy less than ±1 degree, which is the same as the accuracy on the rotating device. A more accurate rotating device should be obtained before

6 doing more serious testing but the present testing proves that the concept is valid. 5. FURTHER RESEARCH Next step would be to estimate how accurate the calibration is by measuring sun s position multiple times at different times of the day. One can then compare those results with the actual position of the sun on the Stellarium software and estimate the real pointing accuracy with this calibration method. For improving the accuracy, the used rotator has to be renewed. The same model used in the test is also available as a high resolution model, which has an accuracy of just ±0.2 degrees. The ground station is intended to be a part of the global educational network for satellite operations (GENSO) which connects ground stations all over the world and enables contact with satellites even when they are not in sight of local ground station. This allows scientist worldwide to access their satellites through this ground station. 6. REFERENCES 1. Kestilä, A. et al, Aalto-1, a Finnish hyperspectral remote-sensing nanosatellite: current progress,.4th European CubeSat Symposium, Modrzewski, R., Highly directional patch antenna for CubeSat applications, 4th European CubeSat Symposium, Allen, C. W., Astrophysical Quantities, 3rd ed., Athlone, London, Finnish Meteorological Institute [WWW] ( ) 5.Verma, R., Gregorini, L., Prandoni, I., Orfei, A., Pointing calibration campaign at 21 GHz with K-band multi-feed receiver, IRA 441/11, Stellarium, open source planetarium [WWW] ( ) 7. NASA/IPAC extragalactic database [WWW] ( ) 8. Karttunen, H., Kröger, P., Oja, H., Poutanen, M., Donner, K.J., Fundamental Astronomy, Springer, Helsinki, CORRESPONDING ADDRESS Panu Kiviluoma, D.Sc. (Tech.), Post-doc researcher Aalto University School of Engineering Department of Engineering Design and Production P.O.Box 14100, Aalto, Finland Phone: , panu.kiviluoma@aalto.fi 8. ADDITIONAL DATA ABOUT AUTHORS Winter, Edward, B.Sc. (Tech) Phone: edward.winter@aalto.fi Dahl, Johan Phone: johan.dahl@aalto.fi Nordling, Kalle Phone: kalle.nordling@aalto.fi Kuosmanen, Petri, D.Sc. (Tech.), Professor Phone: petri.kuosmanen@aalto.fi Jaan Praks, M. Sc. University Teacher Department of Radio Science and Engineering Aalto University School of Electrical Engineering Phone: jaan.praks@aalto.fi

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing Remote Sensing in Meteorology: Satellites and Radar AT 351 Lab 10 April 2, 2008 Remote Sensing Remote sensing is gathering information about something without being in physical contact with it typically

More information

Chapter 5: Telescopes

Chapter 5: Telescopes Chapter 5: Telescopes You don t have to know different types of reflecting and refracting telescopes. Why build bigger and bigger telescopes? There are a few reasons. The first is: Light-gathering power:

More information

Moon disc temperature as a function of phase at 1700 MHz

Moon disc temperature as a function of phase at 1700 MHz APRAXOS Radio Telescope ETH Zürich, Switzerland Moon disc temperature as a function of phase at 1700 MHz Marina Battaglia Departement Physik, ETHZ, Switzerland, mabattag@student.ethz.ch Created 26.02.2003

More information

Cassiopeia A flux density measured with APRAXOS

Cassiopeia A flux density measured with APRAXOS Research Collection Report Cassiopeia A flux density measured with APRAXOS Author(s): Riahi, Nima Publication Date: 2002 Permanent Link: https://doi.org/10.3929/ethz-a-004362686 Rights / License: In Copyright

More information

Science In Action 9 Unit 5 Space Exploration Summary of Key Concepts and Review Questions Booklet

Science In Action 9 Unit 5 Space Exploration Summary of Key Concepts and Review Questions Booklet Section 1.0 Understanding of Earth and Space has Changed over Time Key Concepts Ancient cultures myths and legends What myths and legends explained about space by ancient cultures? Fill in the table. First

More information

Galactic Structure Mapping through 21cm Hyperfine Transition Line

Galactic Structure Mapping through 21cm Hyperfine Transition Line Galactic Structure Mapping through 21cm Hyperfine Transition Line Henry Shackleton MIT Department of Physics (Dated: May 14, 2017) Using a Small Radio Telescope (SRT), we measure electromagnetic radiation

More information

Satellite communications and the environment of space. V 1.1 Swiss Space Summer Camp 2016 Images: NASA 1

Satellite communications and the environment of space. V 1.1 Swiss Space Summer Camp 2016 Images: NASA 1 Satellite communications and the environment of space Swiss Space Summer Camp 2016 Images: NASA 1 Can you name these satellites? Sputnik The first man made satellite Launched in 1957 by The USSR Mass 84kg,

More information

Lecture Outlines. Chapter 5. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 5. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 5 Astronomy Today 8th Edition Chaisson/McMillan Chapter 5 Telescopes Units of Chapter 5 5.1 Optical Telescopes 5.2 Telescope Size 5.3 Images and Detectors 5.4 High-Resolution Astronomy

More information

The Principles of Astronomical Telescope Design

The Principles of Astronomical Telescope Design The Principles of Astronomical Telescope Design Jingquan Cheng National Radio Astronomy Observatory Charlottesville, Virginia,.USA " 4y Springer Fundamentals of Optical Telescopes 1 1.1 A Brief History

More information

More Optical Telescopes

More Optical Telescopes More Optical Telescopes There are some standard reflecting telescope designs used today All have the common feature of light entering a tube and hitting a primary mirror, from which light is reflected

More information

1 Lecture, 2 September 1999

1 Lecture, 2 September 1999 1 Lecture, 2 September 1999 1.1 Observational astronomy Virtually all of our knowledge of astronomical objects was gained by observation of their light. We know how to make many kinds of detailed measurements

More information

ACCELEROMETER BASED IN SITU RUNOUT MEASUREMENT OF ROTORS

ACCELEROMETER BASED IN SITU RUNOUT MEASUREMENT OF ROTORS 7th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING" 22-24 April 21, Tallinn, Estonia ACCELEROMETER BASED IN SITU RUNOUT MEASUREMENT OF ROTORS Kiviluoma, P., Porkka, E., Pirttiniemi, J. &

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Bernard F. Burke Massachusetts Institute of Technology and Francis Graham-Smith Jodrell Bank, University of Manchester CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements

More information

x Contents Segmented Mirror Telescopes Metal and Lightweight Mirrors Mirror Polishing

x Contents Segmented Mirror Telescopes Metal and Lightweight Mirrors Mirror Polishing Contents 1 Fundamentals of Optical Telescopes... 1 1.1 A Brief History of Optical Telescopes.................... 1 1.2 General Astronomical Requirements..................... 6 1.2.1 Angular Resolution.............................

More information

How to improve the high-frequency capabilities of the SRT

How to improve the high-frequency capabilities of the SRT Mem. S.A.It. Suppl. Vol. 10, 136 c SAIt 2006 Memorie della Supplementi How to improve the high-frequency capabilities of the SRT T. Pisanu 1, F. Buffa 2, M. Morsiani 3, M. Natalini 1, C. Pernechele 2,

More information

Refraction is the bending of light when it passes from one substance into another. Your eye uses refraction to focus light.

Refraction is the bending of light when it passes from one substance into another. Your eye uses refraction to focus light. Telescopes Portals of Discovery Chapter 6 Lecture The Cosmic Perspective 6.1 Eyes and Cameras: Everyday Light Sensors How do eyes and cameras work? Seventh Edition Telescopes Portals of Discovery The Eye

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Second edition Bernard F. Burke and Francis Graham-Smith CAMBRIDGE UNIVERSITY PRESS Contents Preface to the second edition page x 1 Introduction 1 1.1 The role of radio

More information

Writing very large numbers

Writing very large numbers 19.1 Tools of Astronomers Frequently in the news we hear about discoveries that involve space. Since the 1970s, space probes have been sent to all of the planets in the solar system and we have seen them

More information

AST 101 Intro to Astronomy: Stars & Galaxies

AST 101 Intro to Astronomy: Stars & Galaxies AST 101 Intro to Astronomy: Stars & Galaxies Telescopes Mauna Kea Observatories, Big Island, HI Imaging with our Eyes pupil allows light to enter the eye lens focuses light to create an image retina detects

More information

Collecting Light. In a dark-adapted eye, the iris is fully open and the pupil has a diameter of about 7 mm. pupil

Collecting Light. In a dark-adapted eye, the iris is fully open and the pupil has a diameter of about 7 mm. pupil Telescopes Collecting Light The simplest means of observing the Universe is the eye. The human eye is sensitive to light with a wavelength of about 400 and 700 nanometers. In a dark-adapted eye, the iris

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 3 Telescopes Lecture Presentation 3.0 Imaging the universe Our original observations of the universe depended on our eyes! What other

More information

Radio Interferometry and VLBI. Aletha de Witt AVN Training 2016

Radio Interferometry and VLBI. Aletha de Witt AVN Training 2016 Radio Interferometry and VLBI Aletha de Witt AVN Training 2016 Radio Interferometry Single element radio telescopes have limited spatial resolution θ = 1.22 λ/d ~ λ/d Resolution of the GBT 100m telescope

More information

Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset

Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset Chapter 6 Telescopes: Portals of Discovery Agenda Announce: Read S2 for Thursday Ch. 6 Telescopes 6.1 Eyes and Cameras: Everyday Light Sensors How does your eye form an image? Our goals for learning How

More information

Chapter 5 Telescopes

Chapter 5 Telescopes Chapter 5 Telescopes Units of Chapter 5 Telescope Design Images and Detectors The Hubble Space Telescope Telescope Size High-Resolution Astronomy Radio Astronomy Interferometry Space-Based Astronomy Full-Spectrum

More information

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 05 SOME OBSERVING INSTRUMENTS. Instrument Enclosure.

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 05 SOME OBSERVING INSTRUMENTS. Instrument Enclosure. Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information

Ancillary Calibration Instruments Specifications and Requirements

Ancillary Calibration Instruments Specifications and Requirements SCID-90.05.13.00-001-A-SPE Version: A 2004 June 15 Prepared By: Name(s) and Signature(s) Organization Date 2004-06-15 Approved By: Name and Signature Organization Date Released By: Name and Signature Organization

More information

Educational Product Teachers Grades K-12 EG MSFC

Educational Product Teachers Grades K-12 EG MSFC Educational Product Teachers Grades K-12 NASA Spacelink Optics: An Educators Guide With Activities In Science and Mathematics is available in electronic format through NASA Spacelink one of the Agency

More information

Atmospheric phase correction for ALMA with water-vapour radiometers

Atmospheric phase correction for ALMA with water-vapour radiometers Atmospheric phase correction for ALMA with water-vapour radiometers B. Nikolic Cavendish Laboratory, University of Cambridge January 29 NA URSI, Boulder, CO B. Nikolic (University of Cambridge) WVR phase

More information

Chapter 3 Telescopes 2/19/2014. Lecture Outline. 3.1 Optical Telescopes. 3.1 Optical Telescopes. Units of Chapter Optical Telescopes

Chapter 3 Telescopes 2/19/2014. Lecture Outline. 3.1 Optical Telescopes. 3.1 Optical Telescopes. Units of Chapter Optical Telescopes Lecture Outline Chapter 3 Telescopes Images can be formed through reflection or refraction. Reflecting mirror Chapter 3 Telescopes Refracting lens Units of Chapter 3 Optical Telescopes Telescope Size High-Resolution

More information

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 5 Telescopes Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Tools of the Trade: Telescopes The Powers of a Telescope Collecting Power Bigger telescope,

More information

LIFE12 ENV/FIN/ First Data Document 31/05/2015

LIFE12 ENV/FIN/ First Data Document 31/05/2015 LIFE Project Number First Data Document Action B.3 Summary report of albedo data Reporting Date 31/05/2015 LIFE+ PROJECT NAME or Acronym Climate change indicators and vulnerability of boreal zone applying

More information

Science 30 Unit C Review Outline GCCHS. Negatively charged Positively charged Coulomb Conductor Electric potential difference

Science 30 Unit C Review Outline GCCHS. Negatively charged Positively charged Coulomb Conductor Electric potential difference Science 30 Unit C Review Outline GCCHS Negatively charged Positively charged Coulomb Conductor Electric potential difference volt voltage Insulator Test body Gravitational field Field lines Solar wind

More information

Universe Now. 2. Astronomical observations

Universe Now. 2. Astronomical observations Universe Now 2. Astronomical observations 2. Introduction to observations Astronomical observations are made in all wavelengths of light. Absorption and emission can reveal different things on different

More information

2017 Near Space Balloon Competition (NSBC) Proposal Submission Form

2017 Near Space Balloon Competition (NSBC) Proposal Submission Form The North Dakota Space Grant Consortium (NDSGC) and the University of North Dakota (UND) will be holding the sixth annual Near Space Balloon Competition in the fall of 2016. We invite all interested North

More information

Chapter 6 Telescopes: Portals of Discovery

Chapter 6 Telescopes: Portals of Discovery Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning: How does your eye form an image? How do we record images? How does your eye form an image?

More information

Technology and Space Exploration

Technology and Space Exploration Technology and Space Exploration When did people first become interested in learning about Space and the Universe? Records from the earliest civilizations show that people studied and asked questions about

More information

Advanced Topic in Astrophysics Lecture 1 Radio Astronomy - Antennas & Imaging

Advanced Topic in Astrophysics Lecture 1 Radio Astronomy - Antennas & Imaging Advanced Topic in Astrophysics Lecture 1 Radio Astronomy - Antennas & Imaging Course Structure Modules Module 1, lectures 1-6 (Lister Staveley-Smith, Richard Dodson, Maria Rioja) Mon Wed Fri 1pm weeks

More information

Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695

Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695 Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695 Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 26 July 2004 Revised

More information

Determining the Specification of an Aperture Array for Cosmological Surveys

Determining the Specification of an Aperture Array for Cosmological Surveys Determining the Specification of an Aperture Array for Cosmological Surveys P. Alexander University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, UK. A. J. aulkner Jodrell Bank

More information

Multi-frequency imaging of Cygnus A with LOFAR

Multi-frequency imaging of Cygnus A with LOFAR Netherlands Institute for Radio Astronomy Multi-frequency imaging of Cygnus A with LOFAR John McKean (ASTRON) and all the imaging busy week team! ASTRON is part of the Netherlands Organisation for Scientific

More information

Introduction to Radioastronomy: The ESA-Haystack telescope

Introduction to Radioastronomy: The ESA-Haystack telescope Introduction to Radioastronomy: The ESA-Haystack telescope J.Köppen joachim.koppen@astro.unistra.fr http://astro.u-strasbg.fr/~koppen/jkhome.html 2007 ESA-Dresden (1.2 m) 2009 ESA-Haystack (2.3 m) 1956

More information

Interference Problems at the Effelsberg 100-m Telescope

Interference Problems at the Effelsberg 100-m Telescope Interference Problems at the Effelsberg 100-m Telescope Wolfgang Reich Max-Planck-Institut für Radioastronomie, Bonn Abstract: We summarise the effect of interference on sensitive radio continuum and polarisation

More information

The Search for Extraterrestrial Intelligence

The Search for Extraterrestrial Intelligence The Search for Extraterrestrial Intelligence Methods for searching for life! Direct searches for microbial life in the solar system! rovers, sample return missions to Mars, Europa, etc.! Indirect searches

More information

Measurement of the radiation from thermal and nonthermal radio sources

Measurement of the radiation from thermal and nonthermal radio sources Measurement of the radiation from thermal and nonthermal radio sources Preethi Pratap MIT Haystack Observatory, Westford, Massachusetts 01886 Gordon McIntosh Division of Science and Mathematics, University

More information

GCSE PHYSICS REVISION LIST

GCSE PHYSICS REVISION LIST GCSE PHYSICS REVISION LIST OCR Gateway Physics (J249) from 2016 Topic P1: Matter P1.1 Describe how and why the atomic model has changed over time Describe the structure of the atom and discuss the charges

More information

Part 3: Spectral Observations: Neutral Hydrogen Observations with the 25m Dish in the Milky Way

Part 3: Spectral Observations: Neutral Hydrogen Observations with the 25m Dish in the Milky Way The "Astropeiler Stockert Story" Part 3: Spectral Observations: Neutral Hydrogen Observations with the 25m Dish in the Milky Way Wolfgang Herrmann 1. Introduction This is the third part of a series of

More information

Chapter 23. Light, Astronomical Observations, and the Sun

Chapter 23. Light, Astronomical Observations, and the Sun Chapter 23 Light, Astronomical Observations, and the Sun The study of light Electromagnetic radiation Visible light is only one small part of an array of energy Electromagnetic radiation includes Gamma

More information

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings COSGC Space Research Symposium 2009 BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings BOWSER 1 Mission Premise 4.3 km above sea level 402.3km above sea level BOWSER 2 Information

More information

UNIT 3 The Study of the. Universe. Chapter 7: The Night Sky. Chapter 8: Exploring Our Stellar Neighbourhood. Chapter 9:The Mysterious.

UNIT 3 The Study of the. Universe. Chapter 7: The Night Sky. Chapter 8: Exploring Our Stellar Neighbourhood. Chapter 9:The Mysterious. UNIT 3 The Study of the Universe Chapter 7: The Night Sky Chapter 8: Exploring Our Stellar Neighbourhood Chapter 9:The Mysterious Universe CHAPTER 8 Exploring Our Stellar Neighbourhood In this chapter,

More information

Chapter 2 Available Solar Radiation

Chapter 2 Available Solar Radiation Chapter 2 Available Solar Radiation DEFINITIONS Figure shows the primary radiation fluxes on a surface at or near the ground that are important in connection with solar thermal processes. DEFINITIONS It

More information

Properties of Thermal Radiation

Properties of Thermal Radiation Observing the Universe: Telescopes Astronomy 2020 Lecture 6 Prof. Tom Megeath Today s Lecture: 1. A little more on blackbodies 2. Light, vision, and basic optics 3. Telescopes Properties of Thermal Radiation

More information

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes Foundations of Astronomy 13e Seeds Chapter 6 Light and Telescopes Guidepost In this chapter, you will consider the techniques astronomers use to study the Universe What is light? How do telescopes work?

More information

Space Notes 3B. Covers objectives 5, 10, and 11

Space Notes 3B. Covers objectives 5, 10, and 11 Space Notes 3B Covers objectives 5, 10, and 11 Technologies Designed To Explore Space Space Shuttle History Rocket Propulsion 1. Rockets transport astronauts and materials into space. 2. Animals such as

More information

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 5 Telescopes Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Learning Objectives Upon completing this chapter you should be able to: 1. Classify the

More information

The well-composed image was recorded over a period of nearly 2 hours as a series of 30 second long, consecutive exposures on the night of October 5.

The well-composed image was recorded over a period of nearly 2 hours as a series of 30 second long, consecutive exposures on the night of October 5. Happy Thursday! The well-composed image was recorded over a period of nearly 2 hours as a series of 30 second long, consecutive exposures on the night of October 5. The exposures were made with a digital

More information

Space weather. Introduction to lectures by Dr John S. Reid. Image courtesy:

Space weather. Introduction to lectures by Dr John S. Reid. Image courtesy: Space weather Introduction to lectures by Dr John S. Reid Image courtesy: http://www.astro-photography.com/ss9393.htm Sunspot 9393 First pass from late March to early April, 2001 See: Storms from the Sun

More information

Chapter 26. Objectives. Describe characteristics of the universe in terms of time, distance, and organization

Chapter 26. Objectives. Describe characteristics of the universe in terms of time, distance, and organization Objectives Describe characteristics of the universe in terms of time, distance, and organization Identify the visible and nonvisible parts of the electromagnetic spectrum Compare refracting telescopes

More information

Dr. John Kelley Radboud Universiteit, Nijmegen

Dr. John Kelley Radboud Universiteit, Nijmegen arly impressive. An ultrahighoton triggers a cascade of particles mulation of the Auger array. The Many Mysteries of Cosmic Rays Dr. John Kelley Radboud Universiteit, Nijmegen Questions What are cosmic

More information

Satellite-Based Detection of Fog and Very Low Stratus

Satellite-Based Detection of Fog and Very Low Stratus Satellite-Based Detection of Fog and Very Low Stratus A High-Latitude Case Study Centred on the Helsinki Testbed Experiment J. Cermak 1, J. Kotro 2, O. Hyvärinen 2, V. Nietosvaara 2, J. Bendix 1 1: Laboratory

More information

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc.

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc. Chapter 31 Maxwell s Equations and Electromagnetic Waves Units of Chapter 31 Changing Electric Fields Produce Magnetic Fields; Ampère s Law and Displacement Current Gauss s Law for Magnetism Maxwell s

More information

Measurements of the DL0SHF 8 GHz Antenna

Measurements of the DL0SHF 8 GHz Antenna Measurements of the DL0SHF 8 GHz Antenna Joachim Köppen, DF3GJ Inst.Theoret.Physik u.astrophysik, Univ. Kiel September 2015 Pointing Correction Position errors had already been determined on a few days

More information

ALMA Memo No. 345 Phase Fluctuation at the ALMA site and the Height of the Turbulent Layer January 24, 2001 Abstract Phase compensation schemes are ne

ALMA Memo No. 345 Phase Fluctuation at the ALMA site and the Height of the Turbulent Layer January 24, 2001 Abstract Phase compensation schemes are ne Yasmin Robson Mullard Radio Astronomy Observatory, Cavendish Laboratory, Cambridge CB3 OHE, UK yr@astro.ox.ac.uk Richard Hills Mullard Radio Astronomy Observatory, Cavendish Laboratory, Cambridge CB3 OHE,

More information

Some radio-source data

Some radio-source data Franck F5SE, kozton@free.fr Foreword Some radio-source data In the following, flux is given in Jansky (Jy), as well as in db(w/m²/hz). One Jansky = 10-26 W/m²/Hz, or, in logarithmic format, 260 db(w/m²/hz).

More information

Tools of Astronomy Tools of Astronomy

Tools of Astronomy Tools of Astronomy Tools of Astronomy Tools of Astronomy The light that comes to Earth from distant objects is the best tool that astronomers can use to learn about the universe. In most cases, there is no other way to study

More information

Neutrinos with a cosmic ray detector. Cosmic rays with a neutrino detector

Neutrinos with a cosmic ray detector. Cosmic rays with a neutrino detector Instead of Neutrinos with a cosmic ray detector Cosmic rays with a neutrino detector Anna Nelles University of California Radio emission of showers High energy particles interacting in dense medium (or

More information

Development of a solar imaging array of Very Small Radio Telescopes

Development of a solar imaging array of Very Small Radio Telescopes Development of a solar imaging array of Very Small Radio Telescopes Ted Tsiligaridis University of Washington, Seattle Mentor: Alan E.E. Rogers MIT Haystack Observatory Summer 27 Outline 1. Solar Physics

More information

High (Angular) Resolution Astronomy

High (Angular) Resolution Astronomy High (Angular) Resolution Astronomy http://www.mrao.cam.ac.uk/ bn204/ mailto:b.nikolic@mrao.cam.ac.uk Astrophysics Group, Cavendish Laboratory, University of Cambridge January 2012 Outline Science Drivers

More information

Radio Telescopes of the Future

Radio Telescopes of the Future Radio Telescopes of the Future Cristina García Miró Madrid Deep Space Communications Complex NASA/INTA AVN Training School HartRAO, March 2017 Radio Telescopes of the Future Characteristics FAST SKA (EHT)

More information

How do you make an image of an object?

How do you make an image of an object? How do you make an image of an object? Use a camera to take a picture! But what if the object is hidden?...or invisible to the human eye?...or too far away to see enough detail? Build instruments that

More information

Telescopes. Optical Telescope Design. Reflecting Telescope

Telescopes. Optical Telescope Design. Reflecting Telescope Telescopes The science of astronomy was revolutionized after the invention of the telescope in the early 17th century Telescopes and detectors have been constantly improved over time in order to look at

More information

Pointing calibration campaign at 21 GHz with K-band multi-feed receiver

Pointing calibration campaign at 21 GHz with K-band multi-feed receiver Pointing calibration campaign at 1 GHz with K-band multi-feed receiver R.Verma, L.Gregorini, I.Prandoni, A.Orfei IRA 1/11 February 17, 11 Contents 1 Pointing Model 5 1.1 Primary pointing equations...............................

More information

Memo 106 Composite Applications for Radio Telescopes (CART): The Mk2 Reflector Results.

Memo 106 Composite Applications for Radio Telescopes (CART): The Mk2 Reflector Results. Memo 106 Composite Applications for Radio Telescopes (CART): The Mk2 Reflector Results. D. Chalmers G. Lacy 01/09 www.skatelescope.org/pages/page_memos.htm 1 SKA Memo 106 Composite Applications for Radio

More information

The Solar Wind Space physics 7,5hp

The Solar Wind Space physics 7,5hp The Solar Wind Space physics 7,5hp Teknisk fysik '07 1 Contents History... 3 Introduction... 3 Two types of solar winds... 4 Effects of the solar wind... 5 Magnetospheres... 5 Atmospheres... 6 Solar storms...

More information

What s the longest single-shot exposure ever recorded of any object or area of space by Hubble?

What s the longest single-shot exposure ever recorded of any object or area of space by Hubble? Hubblecast Episode 50: Q&A with Dr J 00:00 Have you ever wondered why Hubble can make detailed images of of galaxies, but stars appear as featureless blobs? What the most distant object ever observed is?

More information

CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015

CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015 CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015 [Most of the material for this lecture has been taken from the Wireless Communications & Networks book by Stallings (2 nd edition).] Effective

More information

SOLAR WATER HEATER WITH TRACKING SYSTEM

SOLAR WATER HEATER WITH TRACKING SYSTEM SOLAR WATER HEATER WITH TRACKING SYSTEM Jyoti Verma 1, Shweta Tyagi 2, R. B. Dubey 3 1,2,3 Department of Electronics and Communication Engineering Hindu College of Engineering, Sonepat, Haryana, (India)

More information

Radio Transient Surveys with The Allen Telescope Array & the SKA. Geoffrey C Bower (UC Berkeley)

Radio Transient Surveys with The Allen Telescope Array & the SKA. Geoffrey C Bower (UC Berkeley) Radio Transient Surveys with The Allen Telescope Array & the SKA Geoffrey C Bower (UC Berkeley) Transient Science is Exploding New Phenomena An Obscured Radio Supernova in M82 Discovered serendipitously

More information

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer.

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer. Experiment 9 Emission Spectra 9.1 Objectives By the end of this experiment, you will be able to: measure the emission spectrum of a source of light using the digital spectrometer. find the wavelength of

More information

SPIDER 500A PROFESSIONAL RADIO TELESCOPE

SPIDER 500A PROFESSIONAL RADIO TELESCOPE PROFESSIONAL RADIO TELESCOPE High gain and directivity parabolic antennas Weatherproof alt-az computerized mounts Spectrometer and radiometer low noise receivers Remote control capabilities Interferometry

More information

Radio Astronomy with a Satellite Dish

Radio Astronomy with a Satellite Dish Radio Astronomy with a Satellite Dish Michael Gaylard Hartebeesthoek Radio Astronomy Observatory September 13, 2012 1 Theory 1.1 Radio Waves Radio waves are electromagnetic waves having wavelengths greater

More information

Active Galaxies and Quasars

Active Galaxies and Quasars Active Galaxies and Quasars Radio Astronomy Grote Reber, a radio engineer and ham radio enthusiast, built the first true radio telescope in 1936 in his backyard. By 1944 he had detected strong radio emissions

More information

SUBJECT AREA(S): science, math, solar power, visible light, ultraviolet (UV), infrared (IR), energy, Watt, atmospheric conditions

SUBJECT AREA(S): science, math, solar power, visible light, ultraviolet (UV), infrared (IR), energy, Watt, atmospheric conditions Our Place in Space Cosmic Rays AUTHOR: Jamie Repasky GRADE LEVEL(S): 3-5 SUBJECT AREA(S): science, math, solar power, visible light, ultraviolet (UV), infrared (IR), energy, Watt, atmospheric conditions

More information

AUTOMATIC MONITORING OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER ABSTRACT

AUTOMATIC MONITORING OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER ABSTRACT AUTOMATIC MONITORING OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER Christoph Münkel 1, Reijo Roininen 1 Vaisala GmbH, Schnackenburgallee 1d, 55 Hamburg, Germany Phone +9 89 1, Fax +9 89 11, E-mail christoph.muenkel@vaisala.com

More information

PoS(ICRC2015)641. Cloud Monitoring using Nitrogen Laser for LHAASO Experiment. Z.D. Sun 1,Y. Zhang 2,F.R. Zhu 1 for the LHAASO Collaboration

PoS(ICRC2015)641. Cloud Monitoring using Nitrogen Laser for LHAASO Experiment. Z.D. Sun 1,Y. Zhang 2,F.R. Zhu 1 for the LHAASO Collaboration Cloud Monitoring using Nitrogen Laser for LHAASO Experiment Z.D. Sun 1,Y. Zhang 2,F.R. Zhu 1 for the LHAASO Collaboration [1]School of Physical Science and Technology, Southwest Jiaotong University, Chengdu

More information

Nucleus Hydrogen nucleus. hydrogen. helium

Nucleus Hydrogen nucleus. hydrogen. helium 1. (a) Once formed, a star can have a stable life for billions of years. Describe the two main forces at work in the star during this period of stability. 1.... 2.... What happens to a star once this stable

More information

DAY LABORATORY EXERCISE: SPECTROSCOPY

DAY LABORATORY EXERCISE: SPECTROSCOPY AS101 - Day Laboratory: Spectroscopy Page 1 DAY LABORATORY EXERCISE: SPECTROSCOPY Goals: To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are

More information

Motion of the Sun. View Comments

Motion of the Sun. View Comments Login 2017 Survey to Improve Photovoltaic Education Christiana Honsberg and Stuart Bowden View Comments Instructions 1. Introduction 2. Properties of Sunlight 2.1. Basics of Light Properties of Light Energy

More information

Past and Future General Relativity Experiments: Equivalence Principle, Time Delay, and Black Holes. Irwin Shapiro 21 October 2005

Past and Future General Relativity Experiments: Equivalence Principle, Time Delay, and Black Holes. Irwin Shapiro 21 October 2005 Past and Future General Relativity Experiments: Equivalence Principle, Time Delay, and Black Holes Irwin Shapiro 21 October 2005 Translation of Title (a.k.a Outline) Tests of the (Weak) Equivalence Principle

More information

Continuum Observing. Continuum Emission and Single Dishes

Continuum Observing. Continuum Emission and Single Dishes July 11, 2005 NAIC/NRAO Single-dish Summer School Continuum Observing Jim Condon Continuum Emission and Single Dishes Continuum sources produce steady, broadband noise So do receiver noise and drift, atmospheric

More information

Telescopes and the Atmosphere

Telescopes and the Atmosphere Telescopes and the Atmosphere Our goals for learning How does Earth s atmosphere affect ground-based observations? Why do we put telescopes into space? How does Earth s atmosphere affect ground-based observations?

More information

Light and Telescope 10/24/2018. PHYS 1403 Introduction to Astronomy. Reminder/Announcement. Chapter Outline. Chapter Outline (continued)

Light and Telescope 10/24/2018. PHYS 1403 Introduction to Astronomy. Reminder/Announcement. Chapter Outline. Chapter Outline (continued) PHYS 1403 Introduction to Astronomy Light and Telescope Chapter 6 Reminder/Announcement 1. Extension for Term Project 1: Now Due on Monday November 12 th 2. You will be required to bring your cross staff

More information

Stochastic modeling of Extinction coefficients for solar power applications

Stochastic modeling of Extinction coefficients for solar power applications 1(77) Stochastic modeling of Extinction coefficients for solar power applications Ingemar Mathiasson January 2007 Department for Energy and Environment Division of Electric Power Engineering Chalmers University

More information

neutrino astronomy francis halzen university of wisconsin

neutrino astronomy francis halzen university of wisconsin neutrino astronomy francis halzen university of wisconsin http://icecube.wisc.edu 50,000 year old sterile ice instead of water we built a km 3 neutrino detector 3 challenges: drilling optics of ice atmospheric

More information

Light Work Memo 4 rev 3: System Temperature Measurements July 7 1

Light Work Memo 4 rev 3: System Temperature Measurements July 7 1 Light Work Memo 4 rev 3: System Temperature Measurements - 2015 July 7 1 Subject: System Temperature Measurements set 4 Memo: 4, rev 3 From: Glen Langston Date: 2015 July 7 This note describes a Radio

More information

McMath-Pierce Adaptive Optics Overview. Christoph Keller National Solar Observatory, Tucson

McMath-Pierce Adaptive Optics Overview. Christoph Keller National Solar Observatory, Tucson McMath-Pierce Adaptive Optics Overview Christoph Keller National Solar Observatory, Tucson Small-Scale Structures on the Sun 1 arcsec Important astrophysical scales (pressure scale height in photosphere,

More information

AS 101: Day Lab #2 Summer Spectroscopy

AS 101: Day Lab #2 Summer Spectroscopy Spectroscopy Goals To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are related To see spectral lines from different elements in emission and

More information

What Channel Is That?

What Channel Is That? TOPIC 5 What Channel Is That? Light isn t the only kind of radiation coming from the stars. In the late nineteenth century, scientists found out that light is just one form of electromagnetic radiation.

More information

StellarXplorers IV Qualifying Round 2 (QR2) Quiz Answer Key

StellarXplorers IV Qualifying Round 2 (QR2) Quiz Answer Key 1. Which of these Electromagnetic radiation bands has the longest wavelength (λ)? [Section 12.1] a. X-Ray b. Visible Light c. Infrared d. Radio 2. How is energy in Electromagnetic (EM) radiation related

More information

PHYS 160 Astronomy Test #2 Fall 2017 Version A

PHYS 160 Astronomy Test #2 Fall 2017 Version A PHYS 160 Astronomy Test #2 Fall 2017 Version A I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. A blackbody emits all of its radiation

More information

PROBA 1. F. Teston ESA/ESTEC D/TEC-EL

PROBA 1. F. Teston ESA/ESTEC D/TEC-EL PROBA 1 F. Teston ESA/ESTEC D/TEC-EL Frederic.Teston@esa.int PROBA 1 launch PROBA 1 has been launched on 21 October 2001 Orbital parameters: Altitude: 681-561 km Near polar (inclination of 97.9 ) Sun-synchronous

More information