Turbulence and Reconnection

Size: px
Start display at page:

Download "Turbulence and Reconnection"

Transcription

1 Turbulence and Reconnection Jeff Tessein July 10, 2011 NASA turbulence study at Wallops Island, Virginia

2 Outline Turbulence (length scales, Reynolds decomposition) Navier-Stokes Equation Turbulence Spectrum Observations Reconnnection Turbulence and Reconnection The Dissipation of Solar Wind Turbulence

3 Introduction to Turbulence Large Reynolds number Dissipation: energy injection required to maintain a turbulent flow 3D vorticity fluctuations: Vortex lines do not break v Feature of the flow, not a fluid property Turbulence is observed in: Corona, solar wind, outer heliosphere, intergalactic fields Weather systems, wind tunnels, fusion plasmas

4 Turbulent Flows Key characteristics of turbulent flows: disorder, efficient mixing, vorticity, large range of scales Right: Hot, turbulent smoke from a cigarette. Left: Breakdown of a drop of ink in water (Tennekes & Lumley 1970)

5 Newton's 2 Law for fluids Navier-Stokes Equation u 2 u u= p u F t TROUBLE Reynolds number: u u 2 u Reynolds decomposition: Ũ = Ū+u' (mean and fluctuating components)

6 Turbulence Spectrum Inertial range slope not always -5/3 There is a cascade from large to small scales Below: Sample energy spectrum from the solar wind using ACE data (Hamilton et. al. 1998). Note the spectral break where the inertial ranges transitions in to the dissipation range.

7 Reconnection Magnetic fields generated by stars and planets through the dynamo Massive amount of energy stored in magnetic fields can be released explosively Magnetic fields lines have tension: rubber band Magnetic reconnection is the fast release of this magnetic energy Examples: Meeting of Earth and Sun magnetic field, solar prominences, substorms Process occurs at a reconnection site where two oppositely directed magnetic field lines interact

8 Reconnection and Turbulence Right: Reconnection occurring in the solar wind. Reynolds number in the solar wind is of order 106. Left: Reconnnection occurs in a tuburlent simulation. Reconnection sites are represented by X. Rm =5000. From Servidio et. al Right: Example of reconnecting field lines in the solar corona. The corona is turbulent. Reynolds number in the corona is of order 104. Image from Burch & Drake 2009.

9 11. The Dissipation of Solar Wind Turbulence I. Observations: 1. General observations of turbulent fluctuations. 2. Plasma heating by dissipation of turbulence. 3. Observational Analysis Methods. II. THEORY/SIMULATION: 1. What are the salient properties and measurable predictions of various models for the turbulent fluctuations in the dissipation range? 2. What numerical approaches are most useful for investigations of the solar wind dissipation range, and what are their primary advantages and limitations? 3. What theoretical arguments support a small but non zero amount of fluctuation energy in wave vectors that have mainly parallel components? 4. Contrast the role of homogeneous vs inhomogeneous dissipation processes for the turbulence in the solar wind. 5. What implications do the various theories for imbalanced/non-zero cross helicity plasma turbulence have for the physical mechanisms responsible for dissipation of the turbulence? 6. How do temperature anisotropies, including related instabilities, likely affect our interpretations of turbulent fluctuations and heating in the dissipation range? III. GENERAL: 1. Discuss the controversial topic of the quasi-linear vs. inherently nonlinear (coherent structures and discontinuities) views of plasma turbulence.

10 References Burch, L. and J. F. Drake "Reconnecting magnetic fields", American Scientist, vol. 97, no. 5, pp , Hamilton, K., C. W. Smith, B. J. Vasquez, and R. J. Leamon (2008), Anisotropies and helicities in the solar wind inertial and dissipation ranges at 1 AU, J. Geophys. Res., 113, A01106, doi: /2007ja Servidio, S. and Matthaeus, W. H. and Shay, M. A. and Cassak, P. A. and Dmitruk, P. (2009), Magnetic Reconnection in Two-Dimensional Magnetohydrodynamic Turbulence, Phys Rev Lett, 102, 11, , doi: /physrevlett @article{ , Tennekes, H. and J.L. Lumley. A First Course in Turbulence. Cambridge, Massachusetts: The MIT Press, 1970.

Solar Wind Turbulence

Solar Wind Turbulence Solar Wind Turbulence Presentation to the Solar and Heliospheric Survey Panel W H Matthaeus Bartol Research Institute, University of Delaware 2 June 2001 Overview Context and SH Themes Scientific status

More information

MHD turbulence in the solar corona and solar wind

MHD turbulence in the solar corona and solar wind MHD turbulence in the solar corona and solar wind Pablo Dmitruk Departamento de Física, FCEN, Universidad de Buenos Aires Motivations The role of MHD turbulence in several phenomena in space and solar

More information

Fundamentals of Turbulence

Fundamentals of Turbulence Fundamentals of Turbulence Stanislav Boldyrev (University of Wisconsin - Madison) Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas What is turbulence? No exact definition.

More information

Solar Wind Turbulent Heating by Interstellar Pickup Protons: 2-Component Model

Solar Wind Turbulent Heating by Interstellar Pickup Protons: 2-Component Model Solar Wind Turbulent Heating by Interstellar Pickup Protons: 2-Component Model Philip A. Isenberg a, Sean Oughton b, Charles W. Smith a and William H. Matthaeus c a Inst. for Study of Earth, Oceans and

More information

Fluctuation dynamo amplified by intermittent shear bursts

Fluctuation dynamo amplified by intermittent shear bursts by intermittent Thanks to my collaborators: A. Busse (U. Glasgow), W.-C. Müller (TU Berlin) Dynamics Days Europe 8-12 September 2014 Mini-symposium on Nonlinear Problems in Plasma Astrophysics Introduction

More information

Review of electron-scale current-layer dissipation in kinetic plasma turbulence

Review of electron-scale current-layer dissipation in kinetic plasma turbulence Meeting on Solar Wind Turbulence Kennebunkport, ME, June 4-7, 2013 Review of electron-scale current-layer dissipation in kinetic plasma turbulence Minping Wan University of Delaware W. H. Matthaeus, P.

More information

Turbulence Analysis of a Flux Rope Plasma on the Swarthmore Spheromak Experiment

Turbulence Analysis of a Flux Rope Plasma on the Swarthmore Spheromak Experiment Research supported by US DOE and NSF Turbulence Analysis of a Flux Rope Plasma on the Swarthmore Spheromak Experiment David Schaffner Swarthmore College, NSF Center for Magnetic Self-Organization with

More information

Special topic JPFR article Prospects of Research on Innovative Concepts in ITER Era contribution by M. Brown Section 5.2.2

Special topic JPFR article Prospects of Research on Innovative Concepts in ITER Era contribution by M. Brown Section 5.2.2 Special topic JPFR article Prospects of Research on Innovative Concepts in ITER Era contribution by M. Brown Section 5.2.2 5.2.2 Dynamo and Reconnection Research: Overview: Spheromaks undergo a relaxation

More information

Francesco Califano. Physics Department, University of Pisa. The role of the magnetic field in the interaction of the solar wind with a magnetosphere

Francesco Califano. Physics Department, University of Pisa. The role of the magnetic field in the interaction of the solar wind with a magnetosphere Francesco Califano Physics Department, University of Pisa The role of the magnetic field in the interaction of the solar wind with a magnetosphere Collaboration with M. Faganello & F. Pegoraro Vien na,

More information

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere L. A. Fisk Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor,

More information

Effect of current sheets on the power spectrum of the solar wind magnetic field using a cell model

Effect of current sheets on the power spectrum of the solar wind magnetic field using a cell model Available online at www.sciencedirect.com Advances in Space Research 49 (2012) 1327 1332 www.elsevier.com/locate/asr Effect of current sheets on the power spectrum of the solar wind magnetic field using

More information

Turbulent dissipation in the solar wind and corona

Turbulent dissipation in the solar wind and corona Turbulent dissipation in the solar wind and corona W. H. Matthaeus, P. Dmitruk, S. Oughton and D. Mullan Bartol Research Institute, University of Delaware, Newark, DE 19716 USA Department of Mathematics,

More information

arxiv: v1 [physics.space-ph] 27 Jun 2013

arxiv: v1 [physics.space-ph] 27 Jun 2013 Proton Kinetic Effects in Vlasov and Solar Wind Turbulence S. Servidio 1, K.T. Osman 2, F. Valentini 1, D. Perrone 1, F. Califano 3, S. Chapman 2, W. H. Matthaeus 4, and P. Veltri 1 1 Dipartimento di Fisica,

More information

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland Magnetic Reconnection: explosions in space and astrophysical plasma J. F. Drake University of Maryland Magnetic Energy Dissipation in the Universe The conversion of magnetic energy to heat and high speed

More information

Turbulent Origins of the Sun s Hot Corona and the Solar Wind

Turbulent Origins of the Sun s Hot Corona and the Solar Wind Turbulent Origins of the Sun s Hot Corona and the Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics Turbulent Origins of the Sun s Hot Corona and the Solar Wind Outline: 1. Solar

More information

Space Physics / Plasma Physics at BRI

Space Physics / Plasma Physics at BRI Observational Theoretical Experimental Space Physics / Plasma Physics at BRI Solar Heliospheric/solar wind Cosmic rays, modulation Scattering and transport theory Turbulence MHD: magnetic reconnection,

More information

Detection and analysis of turbulent structures using the Partial Variance of Increments method

Detection and analysis of turbulent structures using the Partial Variance of Increments method Detection and analysis of turbulent structures using the Partial Variance of Increments method Collaborations: Antonella Greco W. H. Matthaeus, Bartol Research Institute, Delaware, USA K. T. Osman, University

More information

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

Turbulence. 2. Reynolds number is an indicator for turbulence in a fluid stream

Turbulence. 2. Reynolds number is an indicator for turbulence in a fluid stream Turbulence injection of a water jet into a water tank Reynolds number EF$ 1. There is no clear definition and range of turbulence (multi-scale phenomena) 2. Reynolds number is an indicator for turbulence

More information

Turbulence, nonlinear dynamics, and sources of intermittency and variability in the solar wind

Turbulence, nonlinear dynamics, and sources of intermittency and variability in the solar wind Turbulence, nonlinear dynamics, and sources of intermittency and variability in the solar wind Intermittency & turbulence Intermittency is the nonuniform distribution of eddy formations in a stream. The

More information

UNCONDITIONAL STABILITY OF A PARTITIONED IMEX METHOD FOR MAGNETOHYDRODYNAMIC FLOWS

UNCONDITIONAL STABILITY OF A PARTITIONED IMEX METHOD FOR MAGNETOHYDRODYNAMIC FLOWS UNCONDITIONAL STABILITY OF A PARTITIONED IMEX METHOD FOR MAGNETOHYDRODYNAMIC FLOWS CATALIN TRENCHEA Key words. magnetohydrodynamics, partitioned methods, IMEX methods, stability, Elsässer variables. Abstract.

More information

TURBULENCE IN FLUIDS AND SPACE PLASMAS. Amitava Bhattacharjee Princeton Plasma Physics Laboratory, Princeton University

TURBULENCE IN FLUIDS AND SPACE PLASMAS. Amitava Bhattacharjee Princeton Plasma Physics Laboratory, Princeton University TURBULENCE IN FLUIDS AND SPACE PLASMAS Amitava Bhattacharjee Princeton Plasma Physics Laboratory, Princeton University What is Turbulence? Webster s 1913 Dictionary: The quality or state of being turbulent;

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

Project Topic. Simulation of turbulent flow laden with finite-size particles using LBM. Leila Jahanshaloo

Project Topic. Simulation of turbulent flow laden with finite-size particles using LBM. Leila Jahanshaloo Project Topic Simulation of turbulent flow laden with finite-size particles using LBM Leila Jahanshaloo Project Details Turbulent flow modeling Lattice Boltzmann Method All I know about my project Solid-liquid

More information

MHD turbulence in the solar corona and solar wind

MHD turbulence in the solar corona and solar wind MHD turbulence in the solar corona and solar wind Pablo Dmitruk Departamento de Física, FCEN, Universidad de Buenos Aires Turbulence, magnetic reconnection, particle acceleration Understand the mechanisms

More information

Turbulence and transport

Turbulence and transport and transport ` is the most important unsolved problem of classical physics.' - Richard Feynman - Da Vinci 14521519 Image: General Atomics Reynolds, Richardson, Kolmogorov Dr Ben Dudson, University of

More information

Turbulence in Strongly-Stratified Flows

Turbulence in Strongly-Stratified Flows Turbulence in Strongly-Stratified Flows James J. Riley University of Washington 63rd Annual Meeting of the Division of Fluid Dynamics American Physical Society 23 November 2010 Examples of Instabilities

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Small scale solar wind turbulence: Recent observations and theoretical modeling

Small scale solar wind turbulence: Recent observations and theoretical modeling Small scale solar wind turbulence: Recent observations and theoretical modeling F. Sahraoui 1,2 & M. Goldstein 1 1 NASA/GSFC, Greenbelt, USA 2 LPP, CNRS-Ecole Polytechnique, Vélizy, France Outline Motivations

More information

Scaling relations in MHD and EMHD Turbulence

Scaling relations in MHD and EMHD Turbulence Scaling relations in MHD and EMHD Turbulence Jungyeon Cho Chungnam National University, Korea Outline MHD Non-MHD E(k) MHD turb. small-scale turb. ~1/r i k Topic 1. Strong MHD Turbulence Alfven wave Suppose

More information

Magnetic Reconnection in ICME Sheath

Magnetic Reconnection in ICME Sheath WDS'11 Proceedings of Contributed Papers, Part II, 14 18, 2011. ISBN 978-80-7378-185-9 MATFYZPRESS Magnetic Reconnection in ICME Sheath J. Enzl, L. Prech, K. Grygorov, A. Lynnyk Charles University, Faculty

More information

Turbulent boundary layer

Turbulent boundary layer Turbulent boundary layer 0. Are they so different from laminar flows? 1. Three main effects of a solid wall 2. Statistical description: equations & results 3. Mean velocity field: classical asymptotic

More information

The development of a quantitative, predictive understanding of solar windmagnetospheric

The development of a quantitative, predictive understanding of solar windmagnetospheric White Paper: The development of a quantitative, predictive understanding of solar windmagnetospheric coupling Authors: P. A. Cassak, West Virginia University J. E. Borovsky, Los Alamos National Laboratory

More information

Turbulence Instability

Turbulence Instability Turbulence Instability 1) All flows become unstable above a certain Reynolds number. 2) At low Reynolds numbers flows are laminar. 3) For high Reynolds numbers flows are turbulent. 4) The transition occurs

More information

Kinetic Turbulence in the Terrestrial Magnetosheath: Cluster. Observations

Kinetic Turbulence in the Terrestrial Magnetosheath: Cluster. Observations 1 2 Kinetic Turbulence in the Terrestrial Magnetosheath: Cluster Observations 3 4 5 S. Y. Huang 1, F. Sahraoui 2, X. H. Deng 1,3, J. S. He 4, Z. G. Yuan 1, M. Zhou 3, Y. Pang 3, H. S. Fu 5 6 1 School of

More information

JournalofGeophysicalResearch: SpacePhysics

JournalofGeophysicalResearch: SpacePhysics JournalofGeophysicalResearch: SpacePhysics RESEARCH ARTICLE Key Points: Solar wind proton radial component temperature change slope is flatter than 4/3 Proton heating inconclusive for high normalized cross-helicity

More information

Reconnection and the Formation of Magnetic Islands in MHD Models

Reconnection and the Formation of Magnetic Islands in MHD Models Reconnection and the Formation of Magnetic Islands in MHD Models N. F. Loureiro, D. A. Uzdensky, A. A. Schekochihin, R. Samtaney and S. C. Cowley Yosemite 2010 Reconnection Workshop Introduction (I) In

More information

1 TH/P8-43 Role of Impurity Cyclotron Damping in Ion Heating and RFP Turbulence

1 TH/P8-43 Role of Impurity Cyclotron Damping in Ion Heating and RFP Turbulence 1 Role of Impurity Cyclotron Damping in Ion Heating and RFP Turbulence P.W. Terry, V. Tangri, J.S. Sarff, G. Fiksel, A.F. Almagri, Y. Ren, and S.C. Prager Department of Physics, University of Wisconsin-Madison,

More information

3D hybrid-kinetic turbulence and phase-space cascades

3D hybrid-kinetic turbulence and phase-space cascades 3D hybrid-kinetic turbulence and phase-space cascades ( in a β = 1 plasma ) Silvio Sergio Cerri Department of Astrophysical Sciences, Princeton University, USA 11th Plasma Kinetics Working Meeting WPI

More information

What is Turbulence? Fabian Waleffe. Depts of Mathematics and Engineering Physics University of Wisconsin, Madison

What is Turbulence? Fabian Waleffe. Depts of Mathematics and Engineering Physics University of Wisconsin, Madison What is Turbulence? Fabian Waleffe Depts of Mathematics and Engineering Physics University of Wisconsin, Madison it s all around,... and inside us! Leonardo da Vinci (c. 1500) River flow, pipe flow, flow

More information

Sun Earth Connection Missions

Sun Earth Connection Missions Sun Earth Connection Missions ACE Advanced Composition Explorer The Earth is constantly bombarded with a stream of accelerated particles arriving not only from the Sun, but also from interstellar and galactic

More information

Introduction to Turbulence Modeling

Introduction to Turbulence Modeling Introduction to Turbulence Modeling UPV/EHU - Universidad del País Vasco Escuela Técnica Superior de Ingeniería de Bilbao March 26, 2014 G. Stipcich BCAM- Basque Center for Applied Mathematics, Bilbao,

More information

IN-SITU OBSERVATIONS OF MAGNETIC RECONNECTION IN PLASMA TURBULENCE

IN-SITU OBSERVATIONS OF MAGNETIC RECONNECTION IN PLASMA TURBULENCE IN-SITU OBSERVATIONS OF MAGNETIC RECONNECTION IN PLASMA TURBULENCE Z. Vörös 1,2,3 E. Yordanova 4 A. Varsani 2, K. Genestreti 2 1 Institute of Physics, University of Graz, Austria 2 Space Research Institute,

More information

SW103: Lecture 2. Magnetohydrodynamics and MHD models

SW103: Lecture 2. Magnetohydrodynamics and MHD models SW103: Lecture 2 Magnetohydrodynamics and MHD models Scale sizes in the Solar Terrestrial System: or why we use MagnetoHydroDynamics Sun-Earth distance = 1 Astronomical Unit (AU) 200 R Sun 20,000 R E 1

More information

Coronal Heating Problem

Coronal Heating Problem PHY 690C Project Report Coronal Heating Problem by Mani Chandra, Arnab Dhabal and Raziman T V (Y6233) (Y7081) (Y7355) Mentor: Dr. M.K. Verma 1 Contents 1 Introduction 3 2 The Coronal Heating Problem 4

More information

Σχηματισμός και εξισορρόπηση ζωνικών ανέμων σε πλανητικές τυρβώδεις ατμόσφαιρες

Σχηματισμός και εξισορρόπηση ζωνικών ανέμων σε πλανητικές τυρβώδεις ατμόσφαιρες Σχηματισμός και εξισορρόπηση ζωνικών ανέμων σε πλανητικές τυρβώδεις ατμόσφαιρες Ναβίτ Κωνσταντίνου και Πέτρος Ιωάννου Τμήμα Φυσικής Εθνικό και Καποδιστριακό Παν/μιο Αθηνών Πανεπιστήμιο Κύπρου 7 Ιανουαρίου

More information

Plasma properties at the Voyager 1 crossing of the heliopause

Plasma properties at the Voyager 1 crossing of the heliopause Journal of Physics: Conference Series PAPER Plasma properties at the Voyager 1 crossing of the heliopause Recent citations - Reconnection at the Heliopause: Predictions for Voyager 2 S. A. Fuselier and

More information

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014 Reduced MHD Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 19, 2014 These lecture notes are largely based on Lectures in Magnetohydrodynamics by Dalton

More information

The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere. Cary Forest Department of Physics University of Wisconsin

The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere. Cary Forest Department of Physics University of Wisconsin The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere Cary Forest Department of Physics University of Wisconsin February 28, 2001 Planets, stars and perhaps the galaxy

More information

Forced hybrid-kinetic turbulence in 2D3V

Forced hybrid-kinetic turbulence in 2D3V Forced hybrid-kinetic turbulence in 2D3V Silvio Sergio Cerri1,2 1 In collaboration with: 3 F. Califano, F. Rincon, F. Jenko4, D. Told4 1 Physics Department E. Fermi, University of Pisa, Italy fu r Plasmaphysik,

More information

Applied Computational Fluid Dynamics

Applied Computational Fluid Dynamics Lecture 9 - Kolmogorov s Theory Applied Computational Fluid Dynamics Instructor: André Bakker André Bakker (2002-2005) Fluent Inc. (2002) 1 Eddy size Kolmogorov s theory describes how energy is transferred

More information

The Effect of Magnetic Turbulence Energy Spectra and Pickup Ions on the Heating of the Solar Wind

The Effect of Magnetic Turbulence Energy Spectra and Pickup Ions on the Heating of the Solar Wind The Effect of Magnetic Turbulence Energy Spectra and Pickup Ions on the Heating of the Solar Wind C. S. Ng Geophysical Institute, University of Alaska Fairbanks A. Bhattacharjee, P. A. Isenberg, D. Munsi,

More information

Opportunities in Plasma Astrophysics with ngvla

Opportunities in Plasma Astrophysics with ngvla Opportunities in Plasma Astrophysics with ngvla Hui Li Los Alamos National Laboratory On behalf of ngvla Plasma Astrophysics Science Working Group Tim Bastian (NRAO), Arnold Benz (ETH), Paul Cassak (WVU),

More information

The Sun: A Star of Our Own ASTR 2110 Sarazin

The Sun: A Star of Our Own ASTR 2110 Sarazin The Sun: A Star of Our Own ASTR 2110 Sarazin Sarazin Travel Wednesday, September 19 afternoon Friday, September 21 Will miss class Friday, September 21 TA Molly Finn will be guest lecturer Cancel Office

More information

Waves & Turbulence in the Solar Wind: Disputed Origins & Predictions for PSP

Waves & Turbulence in the Solar Wind: Disputed Origins & Predictions for PSP Waves & Turbulence in the Solar Wind: Disputed Origins & Predictions for PSP Steven R. Cranmer University of Colorado Boulder, LASP A. Schiff, S. Van Kooten, C. Gilbert, L. N. Woolsey, A. A. van Ballegooijen,

More information

Observations and Modeling of Turbulence in the Solar Wind

Observations and Modeling of Turbulence in the Solar Wind Observations and Modeling of Turbulence in the Solar Wind Melvyn L. Goldstein NASA Goddard Space Flight Center, USA E-mail: melvyn.l.goldstein@nasa.gov Summary. Alfvénic fluctuations are a ubiquitous component

More information

Homogeneous Turbulence Dynamics

Homogeneous Turbulence Dynamics Homogeneous Turbulence Dynamics PIERRE SAGAUT Universite Pierre et Marie Curie CLAUDE CAMBON Ecole Centrale de Lyon «Hf CAMBRIDGE Щ0 UNIVERSITY PRESS Abbreviations Used in This Book page xvi 1 Introduction

More information

Vortex Dynamos. Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD)

Vortex Dynamos. Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD) Vortex Dynamos Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD) An introduction to vortices Vortices are ubiquitous in geophysical and astrophysical fluid mechanics (stratification & rotation).

More information

From Sun to Earth and beyond, The plasma universe

From Sun to Earth and beyond, The plasma universe From Sun to Earth and beyond, The plasma universe Philippe LOUARN CESR - Toulouse Study of the hot solar system Sun Magnetospheres Solar Wind Planetary environments Heliosphere a science of strongly coupled

More information

Magnetic Reconnection: dynamics and particle acceleration J. F. Drake University of Maryland

Magnetic Reconnection: dynamics and particle acceleration J. F. Drake University of Maryland Magnetic Reconnection: dynamics and particle acceleration J. F. Drake University of Maryland M. Swisdak University of Maryland T. Phan UC Berkeley E. Quatert UC Berkeley R. Lin UC Berkeley S. Lepri U Michican

More information

Incompressible MHD simulations

Incompressible MHD simulations Incompressible MHD simulations Felix Spanier 1 Lehrstuhl für Astronomie Universität Würzburg Simulation methods in astrophysics Felix Spanier (Uni Würzburg) Simulation methods in astrophysics 1 / 20 Outline

More information

Turbulence - Theory and Modelling GROUP-STUDIES:

Turbulence - Theory and Modelling GROUP-STUDIES: Lund Institute of Technology Department of Energy Sciences Division of Fluid Mechanics Robert Szasz, tel 046-0480 Johan Revstedt, tel 046-43 0 Turbulence - Theory and Modelling GROUP-STUDIES: Turbulence

More information

Global Simulations of Black Hole Accretion. John F. Hawley Department of Astronomy, University of Virginia

Global Simulations of Black Hole Accretion. John F. Hawley Department of Astronomy, University of Virginia Global Simulations of Black Hole Accretion John F. Hawley Department of Astronomy, University of Virginia Collaborators and Acknowledgements Julian Krolik, Johns Hopkins University Scott Noble, JHU Jeremy

More information

Recapitulation: Questions on Chaps. 1 and 2 #A

Recapitulation: Questions on Chaps. 1 and 2 #A Recapitulation: Questions on Chaps. 1 and 2 #A Chapter 1. Introduction What is the importance of plasma physics? How are plasmas confined in the laboratory and in nature? Why are plasmas important in astrophysics?

More information

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 311-0102, Japan 1) University

More information

Why is the Solar Corona So Hot? James A. Klimchuk Heliophysics Divison NASA Goddard Space Flight Center

Why is the Solar Corona So Hot? James A. Klimchuk Heliophysics Divison NASA Goddard Space Flight Center Why is the Solar Corona So Hot? James A. Klimchuk Heliophysics Divison NASA Goddard Space Flight Center Total Solar Eclipse Aug. 1, 2008 M. Druckmuller Coronal Soft X-rays Yohkoh / SXT Surface Magnetic

More information

Theory and modelling of turbulent transport in astrophysical phenomena

Theory and modelling of turbulent transport in astrophysical phenomena MHD 2017 Tokyo, 29 August 2017 Theory and modelling of turbulent transport in astrophysical phenomena Nobumitsu YOKOI Institute of Industrial Science (IIS), University of Tokyo In collaboration with Akira

More information

Large scale magnetic fields and Dynamo theory. Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008

Large scale magnetic fields and Dynamo theory. Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008 Large scale magnetic fields and Dynamo theory Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008 The Earth Mainly dipolar magnetic field Would decay in 20kyr if not regenerated Declination of the

More information

3-Fold Decomposition EFB Closure for Convective Turbulence and Organized Structures

3-Fold Decomposition EFB Closure for Convective Turbulence and Organized Structures 3-Fold Decomposition EFB Closure for Convective Turbulence and Organized Structures Igor ROGACHEVSKII and Nathan KLEEORIN Ben-Gurion University of the Negev, Beer-Sheva, Israel N.I. Lobachevsky State University

More information

Max Planck Institut für Plasmaphysik

Max Planck Institut für Plasmaphysik ASDEX Upgrade Max Planck Institut für Plasmaphysik 2D Fluid Turbulence Florian Merz Seminar on Turbulence, 08.09.05 2D turbulence? strictly speaking, there are no two-dimensional flows in nature approximately

More information

Local flow structure and Reynolds number dependence of Lagrangian statistics in DNS of homogeneous turbulence. P. K. Yeung

Local flow structure and Reynolds number dependence of Lagrangian statistics in DNS of homogeneous turbulence. P. K. Yeung Local flow structure and Reynolds number dependence of Lagrangian statistics in DNS of homogeneous turbulence P. K. Yeung Georgia Tech, USA; E-mail: pk.yeung@ae.gatech.edu B.L. Sawford (Monash, Australia);

More information

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS Space Physics: Recent Advances and Near-term Challenge Chi Wang National Space Science Center, CAS Feb.25, 2014 Contents Significant advances from the past decade Key scientific challenges Future missions

More information

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Chapter 1 Earth Science Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Project Representative Yozo Hamano Authors Ataru Sakuraba Yusuke Oishi

More information

INTERACTION OF DRIFT WAVE TURBULENCE AND MAGNETIC ISLANDS

INTERACTION OF DRIFT WAVE TURBULENCE AND MAGNETIC ISLANDS INTERACTION OF DRIFT WAVE TURBULENCE AND MAGNETIC ISLANDS A. Ishizawa and N. Nakajima National Institute for Fusion Science F. L. Waelbroeck, R. Fitzpatrick, W. Horton Institute for Fusion Studies, University

More information

Macroscopic plasma description

Macroscopic plasma description Macroscopic plasma description Macroscopic plasma theories are fluid theories at different levels single fluid (magnetohydrodynamics MHD) two-fluid (multifluid, separate equations for electron and ion

More information

Beyond Ideal MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 8, 2016

Beyond Ideal MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 8, 2016 Beyond Ideal MHD Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 8, 2016 These lecture notes are largely based on Plasma Physics for Astrophysics by

More information

Reduction of Turbulence via Feedback in a Dipole Confined Plasma. Thomas Max Roberts Applied Physics Applied Mathematics Columbia University

Reduction of Turbulence via Feedback in a Dipole Confined Plasma. Thomas Max Roberts Applied Physics Applied Mathematics Columbia University Reduction of Turbulence via Feedback in a Dipole Confined Plasma Thomas Max Roberts Applied Physics Applied Mathematics Columbia University Outline Dipole Confinement Physics The Collisionless Terrella

More information

Jet Stability: A computational survey

Jet Stability: A computational survey Jet Stability Galway 2008-1 Jet Stability: A computational survey Rony Keppens Centre for Plasma-Astrophysics, K.U.Leuven (Belgium) & FOM-Institute for Plasma Physics Rijnhuizen & Astronomical Institute,

More information

Control of Neo-classical tearing mode (NTM) in advanced scenarios

Control of Neo-classical tearing mode (NTM) in advanced scenarios FIRST CHENGDU THEORY FESTIVAL Control of Neo-classical tearing mode (NTM) in advanced scenarios Zheng-Xiong Wang Dalian University of Technology (DLUT) Dalian, China Chengdu, China, 28 Aug, 2018 Outline

More information

Role of polymers in the mixing of Rayleigh-Taylor turbulence

Role of polymers in the mixing of Rayleigh-Taylor turbulence Physics Department University of Genova Italy Role of polymers in the mixing of Rayleigh-Taylor turbulence Andrea Mazzino andrea.mazzino@unige.it Guido Boffetta: University of Torino (Italy) Stefano Musacchio:

More information

Topological Methods in Fluid Dynamics

Topological Methods in Fluid Dynamics Topological Methods in Fluid Dynamics Gunnar Hornig Topologische Fluiddynamik Ruhr-Universität-Bochum IBZ, Februar 2002 Page 1 of 36 Collaborators: H. v. Bodecker, J. Kleimann, C. Mayer, E. Tassi, S.V.

More information

Solar eruptive phenomena

Solar eruptive phenomena Solar eruptive phenomena Andrei Zhukov Solar-Terrestrial Centre of Excellence SIDC, Royal Observatory of Belgium 26/01/2018 1 Eruptive solar activity Solar activity exerts continous influence on the solar

More information

Substorms at Mercury: Old Questions and New Insights. Daniel N. Baker Laboratory for Atmospheric and Space Physics (LASP)

Substorms at Mercury: Old Questions and New Insights. Daniel N. Baker Laboratory for Atmospheric and Space Physics (LASP) Substorms at Mercury: Old Questions and New Insights Daniel N. Baker Laboratory for Atmospheric and Space Physics (LASP) Outline of Presentation Introduction Substorms in the Earth s Magnetosphere Prior

More information

Reynolds-averaged turbulence model for magnetohydrodynamic dynamo in a rotating spherical shell

Reynolds-averaged turbulence model for magnetohydrodynamic dynamo in a rotating spherical shell PHYSICS OF PLASMAS VOLUME 11, NUMBER 11 NOVEMBER 2004 Reynolds-averaged turbulence model for magnetohydrodynamic dynamo in a rotating spherical shell Fujihiro Hamba a) Institute of Industrial Science,

More information

Multifractal Structures Detected by Voyager 1 at the Heliospheric Boundaries

Multifractal Structures Detected by Voyager 1 at the Heliospheric Boundaries Multifractal Structures Detected by Voyager 1 at the Heliospheric Boundaries W. M. Macek 1,2, A. Wawrzaszek 2, and L. F. Burlaga 3 Received ; accepted Submitted to Ap. J. Lett., 15 July 2014, accepted

More information

On Decaying Two-Dimensional Turbulence in a Circular Container

On Decaying Two-Dimensional Turbulence in a Circular Container Frontiers of Computational Sciences Y. Kaneda, H. Kawamura and M. Sasai (Eds.) Springer, 2007, pp. 89-95 On Decaying Two-Dimensional Turbulence in a Circular Container Kai Schneider and Marie Farge Univesité

More information

Astrofysikaliska Dynamiska Processer

Astrofysikaliska Dynamiska Processer Astrofysikaliska Dynamiska Processer VT 2008 Susanne Höfner hoefner@astro.uu.se Aims of this Course - understanding the role and nature of dynamical processes in astrophysical contexts and how to study

More information

ρ Du i Dt = p x i together with the continuity equation = 0, x i

ρ Du i Dt = p x i together with the continuity equation = 0, x i 1 DIMENSIONAL ANALYSIS AND SCALING Observation 1: Consider the flow past a sphere: U a y x ρ, µ Figure 1: Flow past a sphere. Far away from the sphere of radius a, the fluid has a uniform velocity, u =

More information

1 A= one Angstrom = 1 10 cm

1 A= one Angstrom = 1 10 cm Our Star : The Sun )Chapter 10) The sun is hot fireball of gas. We observe its outer surface called the photosphere: We determine the temperature of the photosphere by measuring its spectrum: The peak

More information

An Introduction to Theories of Turbulence. James Glimm Stony Brook University

An Introduction to Theories of Turbulence. James Glimm Stony Brook University An Introduction to Theories of Turbulence James Glimm Stony Brook University Topics not included (recent papers/theses, open for discussion during this visit) 1. Turbulent combustion 2. Turbulent mixing

More information

Magnetic Effects Change Our View of the Heliosheath

Magnetic Effects Change Our View of the Heliosheath Magnetic Effects Change Our View of the Heliosheath M. Opher Λ, P. C. Liewer Λ, M. Velli, T. I. Gombosi ΛΛ, W.Manchester ΛΛ,D. L. DeZeeuw ΛΛ,G.Toth ΛΛ and I. Sokolov ΛΛ Λ Jet Propulsion Laboratory, MS

More information

Spacecraft observations of solar wind turbulence: an overview

Spacecraft observations of solar wind turbulence: an overview INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 47 (2005) B703 B717 PLASMA PHYSICS AND CONTROLLED FUSION doi:10.1088/0741-3335/47/12b/s52 Spacecraft observations of solar wind turbulence:

More information

Self-Organization of Plasmas with Flows

Self-Organization of Plasmas with Flows Self-Organization of Plasmas with Flows ICNSP 2003/ 9/10 Graduate School of Frontier Sciences,, National Institute for Fusion Science R. NUMATA, Z. YOSHIDA, T. HAYASHI ICNSP 2003/ 9/10 p.1/14 Abstract

More information

Spectrally condensed turbulence in two dimensions

Spectrally condensed turbulence in two dimensions Spectrally condensed turbulence in two dimensions Hua Xia 1, Michael Shats 1, Gregory Falovich 1 The Australian National University, Canberra, Australia Weizmann Institute of Science, Rehovot, Israel Acnowledgements:

More information

Magnetic field reconnection is said to involve an ion diffusion region surrounding an

Magnetic field reconnection is said to involve an ion diffusion region surrounding an The magnetic field reconnection site and dissipation region by P.L. Pritchett 1 and F.S. Mozer 2 1. Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 2. Space Sciences Laboratory, University

More information

(U c. t)/b (U t)/b

(U c. t)/b (U t)/b DYNAMICAL MODELING OF THE LARGE-SCALE MOTION OF A PLANAR TURBULENT JET USING POD MODES. S. Gordeyev 1 and F. O. Thomas 1 University of Notre Dame, Notre Dame, USA University of Notre Dame, Notre Dame,

More information

Locality of Energy Transfer

Locality of Energy Transfer (E) Locality of Energy Transfer See T & L, Section 8.2; U. Frisch, Section 7.3 The Essence of the Matter We have seen that energy is transferred from scales >`to scales

More information

arxiv: v1 [astro-ph.sr] 10 Nov 2015

arxiv: v1 [astro-ph.sr] 10 Nov 2015 The Complex Structure of Magnetic Field Discontinuities in the Turbulent Solar Wind A. Greco 1, S. Perri 1, S. Servidio 1, E. Yordanova 2, and P. Veltri 1 1 Dipartimento di Fisica, Università della Calabria,

More information

Cumulative distribution of the stretching and twisting of vortical structures in isotropic turbulence.

Cumulative distribution of the stretching and twisting of vortical structures in isotropic turbulence. APS/...-QED 4 Cumulative distribution of the stretching and twisting of vortical structures in isotropic turbulence. Daniela Tordella and Luca Sitzia Dipartimento di Ingegneria Aeronautica e Spaziale,

More information

Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers

Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers P.D. Mininni NCAR, Boulder, Colorado, USA, and Departamento de Física, Facultad de Cs. Exactas

More information