Set the Controls for the Heart of the Sun

Size: px
Start display at page:

Download "Set the Controls for the Heart of the Sun"

Transcription

1 Sixty Years of Satellites Parker Solar Probe Set the Controls for the Heart of the Sun Matthew STUTTARD, Advanced Systems Architect Science Museum, London, 5 October 2018

2 Why Study the Sun? Understand how stars work Develop high energy plasma physics (fusion) Understand solar activity to improve forecasts of severe space weather 2 5 October, 2018 Solar Missions, Science Museum, Stuttard

3 Saint Patrick s Day Storm: March 17, October, 2018 Solar Missions, Science Museum, Stuttard

4 Solar Orbiter a close-up high resolution study of the sun 4 5 October, 2018 Solar Missions, Science Museum, Stuttard

5 What is Solar Orbiter? A spacecraft that will study the Sun and inner heliosphere for 7 years instruments to study surface and atmosphere imagers, spectrometers instruments to measure environment around the spacecraft particle detectors, magnetometers Adding to knowledge gained from past missions SOHO, Ulysses, STEREO A & B, SDO..and current missions Parker Solar Probe Procured by: European Space Agency with NASA participation Prime contractor: Airbus Defence and Space Ltd Solar Orbiter exploring the Sun's realm; Copyright: ESA/AOES Launch Window: 6-24 February 2020 Determined by Earth-Venus geometry 5 5 October, 2018 Solar Missions, Science Museum, Stuttard

6 What questions will it answer? How solar eruptions produce energetic particle radiation that fills the heliosphere How the sun dynamo works and drives connections between the Sun and the heliosphere How and where the solar wind plasma and magnetic field originate in the corona How solar transients drive heliospheric variability 6 5 October, 2018 Solar Missions, Science Museum, Stuttard

7

8 What will Solar Orbiter do that previous missions haven t? In-situ measurements close to the Sun 20 fly-bys Pristine solar wind streams Reduced scattering of energetic particles Quasi co-rotating vantage point Solar Orbiter tracks the same features as it orbits Can watch magnetic activity building up that can lead to flares/ CMEs Remote Sensing observations High data rate acquisition In situ observations low data rate acquisition Max heliospheric latitude +/- 5 days Perihelion +/- 5 days Simultaneous high-res imaging and spectroscopic observations North and South Solar Pole observations We cannot see the polar regions from Earth s orbit Min heliospheric latitude +/- 5 days Synergies with Solar Probe measurements Simultaneous In-situ measurements of particle fluxes at 9 and 59 solar radii Earth GAM Venus GAM Science Window LEOP 7 days NECP ~2 months CP ~3 years NMP ~3.5 years EMP ~2.5 years Launch 8 5 October, 2018 Solar Missions, Science Museum, Stuttard

9 How Does it Work? Spacecraft Sub-systems PYR (A+B) Communication System X/Ka- HGA X-MGA PYR (A+B) X-LGA 1 X-LGA 2 MGA Safe Pos. DC/DC X/Ka- Bd Feed HDs Status (A+B) HDs Status (A+B) HGA Safe Pos. HGAPM (2-axis) MGAPM (3-axis) Drv A+B (3-axis) APME RT N R Drv A+B (2-axis) RT N R DC/DC RFDA WGS -4 WGS -3 WGS -1 WGS -2 WGS-6 Short X - Dipl.1 Ka-RFI-1 Ka-RFI-2 X- Dipl. 2 X-RFI-1 X-RFI-2 WGS-5 WGS-1 Ka-TWTA-1 EPC Ka-TWTA-2 EPC X-TWTA-1 EPC X-TWTA-2 EPC WGS-2 WGS-1 A Pos 1 WGS-1 B Pos 1 WGS-1 A Pos 2 WGS-1 B Pos 2 WGS-1 A Status WGS-1 B Status WGS-2 A Pos 1 WGS-2 B Pos 1 WGS-2 A Pos 2 WGS-2 B Pos 2 WGS-2 A Status WGS-2 B Status LCL(A) TC/TM LCL(B) TC/TM LCL(A) TC/TM LCL(B) TC/TM WGS-3 WGS-3 A Pos 1 WGS-3 B Pos 1 WGS-3 A Pos 2 WGS-3 B Pos 2 WGS-3 A Status Ka- Coupler 3 db Coupler WGS-4 WGS-3 B Status WGS-4 A Pos 1 WGS-4 B Pos 1 WGS-4 A Pos 2 WGS-4 B Pos 2 WGS-4 A Status WGS-4 B Status Ka-Band Trans. X-Band Trans. A A X-Band Receiver /Demod DST-1 Ka-Band Trans. X-Band Trans. B A WGS-5 WGS-5 A Pos 1 WGS-5 B Pos 1 WGS-5 A Pos 2 WGS-5 B Pos 2 WGS-5 A Status WGS-5 B Status Ka-TM 1A Ka-TM 1B LCL DC/DC X-TM 1A X-TM 1B FCL DC/DC X-TC 1A X-TC 1B Discrete TM/TC B X-Band Receiver /Demod B DST-2 RT N R Ka-TM 2A Ka-TM 2B LCL DC/DC X-TM 2A X-TM 2B FCL DC/DC X-TC 2A X-TC 2B Discrete TM/TC RT N R WGS-6 WGS-6 A Pos 1 WGS-6 B Pos 1 WGS-6 A Pos 2 WGS-6 B Pos 2 WGS-6 A Status WGS-6 B Status X-TC (Test) X-TC (Test) DMS RIU EHP ANP (24) ANY (80) AN2 (12) AN1 (8) BLD (12) RSA (48) SHP (64) PTA (8) ANT LCL DC/DC EHP ANP (24) ANY (80) AN2 (12) AN1 (8) BLD (12) RSA (48) SHP (64) PTA (8) ANT CD/DC ANP (24) ANY (80) AN2 (12) AN1 (8) BLD (12) RSA (48) SHP (64) CD/DC STD I/O A STD I/O B STD I/O C C (2) C (2) C (2) C (2) ZZ 9 5 October, 2018 Solar Missions, Science Museum, Stuttard

10 Four local environment (In-situ) instruments MAG, SWA, EPD, RPW Provide data on the local Solar plasma environment particles, mag fields, plasma flux, radio bursts EPD: Measuring properties of accelerated energetic particles emitted from the Sun RPW: Studying local electromagnetic and electrostatic waves and Solar radio bursts SWA: Sampling constituents of the Solar wind MAG: High precision measurements of the heliospheric magnetic field 10 5 October, 2018 Solar Missions, Science Museum, Stuttard

11 Six Remote sensing instruments EUI, METIS, PHI, SolOHI, SPICE, STIX Match in-situ observations with their source regions on the Sun SPICE: Spectroscopy of the solar disk and corona in UV. EUI: UV imaging of the Solar corona (studying eruptions as they propagate out from the Solar surface). METIS: High resolution UV and EUV coronagraphy PHI: Full disk and high-resolution visible light imaging of the Sun. STIX: Provides imaging spectroscopy of solar thermal and non-thermal X-ray emission. Also acts as a flare monitor for the other instruments SolOHI: Observe light scattered by the solar wind to pinpoint coronal mass ejections (CMEs) October, 2018 Solar Missions, Science Museum, Stuttard

12 Remote sensing instruments on the MY panel PHI METIS EUI STIX SPICE Demanding alignment requirement (0.03 ) 12 5 October, 2018 Solar Missions, Science Museum, Stuttard

13 Fields of View SPICE PHI HRT EUI HRI METIS STIX/ PHI FDT EUI FSI 13 5 October, 2018 Solar Missions, Science Museum, Stuttard

14 Design Challenges: Communications (X-band) High data rate is just 180kbs Transfer rates are less than a standard 3G or Wifi link Instruments rely on on-board data processing and compression to meet the telemetry requirements Many instruments are prioritising data for download Instruments are capable of overwriting data Non-contact periods of up to 64 days Spacecraft implements a store and forward approach on-board Spacecraft must be autonomous and able to cope autonomously with FDIR Management of three different antennas: LGAs (LEOP and backup) 4π sr MGA (Survival Mode, Strobing) HGA (Nominal) Distortion and pointing error in spec LGA 2 MGA GEU OBC IMU SSMM PCDU Comms Structure LGA 1 RIU Comms IMU SADE Battery Other design challenges Thermal environment From +600C to -180C Pointing stability Power generation Densely packed payloads Cleanliness on ground Cleanliness in orbit Electro-magnetic cleanliness 14 5 October, 2018 Solar Missions, Science Museum, Stuttard HGA

15 Solar Orbiter - Flight Build Completed in Stevenage Solar Orbiter is now entering the next key phase: one year in Environmental Test at IABG, Munich 15 5 October, 2018 Solar Missions, Science Museum, Stuttard

16 Parker Solar Probe Magnetometer Boom Deployed 16 5 October, 2018 Solar Missions, Science Museum, Stuttard

17 NASA Mission: Parker Solar Probe Understand origin /evolution of solar wind energy flows structure and dynamics of magnetic fields. mechanisms that accelerate and transport energetic particles Launch: 12 Aug VGAs over 7 years Science phase of 24 solar orbits Will enter the Sun s outer atmosphere (corona) 4 million miles (~9Rs) from surface photosphere Where solar wind speeds up from subsonic to supersonic and highest energy particles originate Four instrument suites Fields Coronal imager (WISPR) Particles (SWEAP) Particles (ISʘIS) Technologies : 11.5cm thick carbon composite heat shield External temp 1377C, 650kW/sq.m Close approach (<0.25AU) solar array uses pumped fluid cooling 5 October, 2018

18 Solar Orbiter and Parker Solar Orbiter Parker Closest approach 43m km (59 Rs) 7m km (9Rs) Particles & Fields measured Synergistic data Solar feature imaging/spectroscopy Solar Polar Observation Coronal Entry 5 October, 2018

19 Thank You!

SOLAR ORBITER Linking the Sun and Inner Heliosphere. Daniel Müller

SOLAR ORBITER Linking the Sun and Inner Heliosphere. Daniel Müller SOLAR ORBITER Linking the Sun and Inner Heliosphere Outline Science goals of Solar Orbiter Focus of HELEX joint mission Mission requirements Science payload Status update Top level scientific goals of

More information

Solar Orbiter. T.Appourchaux, L.Gizon and the SO / PHI team derived from M.Velli's and P.Kletzkine's presentations

Solar Orbiter. T.Appourchaux, L.Gizon and the SO / PHI team derived from M.Velli's and P.Kletzkine's presentations Solar Orbiter T.Appourchaux, L.Gizon and the SO / PHI team derived from M.Velli's and P.Kletzkine's presentations 2 nd Solar-C definition meeting, Tokyo, Japan Content Science Objectives of Solar Orbiter

More information

ILWS Related Activities in Germany (Update) Prague, June 11-12, 2008

ILWS Related Activities in Germany (Update) Prague, June 11-12, 2008 ILWS Related Activities in Germany (Update) Prague, June 11-12, 2008 ILWS, DLR, Dr. Frings Overview Update is based on previous ILWS Presentations Focus on recent developments and achievements SOL-ACES

More information

Marchionni Massimo. United Kingdom. Airbus Defence and Space Ltd ID : Title : Solar Orbiter Purge System: Modelling with Ecosim.

Marchionni Massimo. United Kingdom. Airbus Defence and Space Ltd ID : Title : Solar Orbiter Purge System: Modelling with Ecosim. Powered by TCPDF (www.tcpdf.org) Marchionni Massimo United Kingdom Airbus Defence and Space Ltd ID : 3125379 Title : Solar Orbiter Purge System: Modelling with Ecosim Theme : Resume : To answer the second

More information

ZOOMING IN ON THE CORONAL POLES WITH SOLAR ORBITER

ZOOMING IN ON THE CORONAL POLES WITH SOLAR ORBITER ZOOMING IN ON THE CORONAL POLES WITH SOLAR ORBITER DAVID BERGHMANS 1, DAN SEATON 2,3, MATTHEW WEST 1 ON BEHALF OF THE EUI TEAM POLAR PERSPECTIVES MEETING, HAO, BOULDER, COLORADO SEPTEMBER 2018 1ROYAL OBSERVATORY

More information

Sun Earth Connection Missions

Sun Earth Connection Missions Sun Earth Connection Missions ACE Advanced Composition Explorer The Earth is constantly bombarded with a stream of accelerated particles arriving not only from the Sun, but also from interstellar and galactic

More information

ILWS Italian SpaceAgency (ASI) Contribution

ILWS Italian SpaceAgency (ASI) Contribution ILWS Italian SpaceAgency (ASI) Contribution Ester Antonucci Nice April 14-15 2003 ILWS Italian SpaceAgency (ASI) Contribution LWS NASA ESA SPECTRE SolarDynamicsObservatory HERSCHEL Solar Orbiter Bepi Colombo

More information

Exploring the Solar Wind with Ultraviolet Light

Exploring the Solar Wind with Ultraviolet Light Timbuktu Academy Seminar, Southern University and A&M College, November 19, 2003 Exploring the Solar Wind with Ultraviolet Light Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics, Cambridge,

More information

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS Space Physics: Recent Advances and Near-term Challenge Chi Wang National Space Science Center, CAS Feb.25, 2014 Contents Significant advances from the past decade Key scientific challenges Future missions

More information

Tracing Heliospheric Structures to Their Solar Origin

Tracing Heliospheric Structures to Their Solar Origin Tracing Heliospheric Structures to Their Solar Origin Robert Wimmer-Schweingruber wimmer@physik.uni-kiel.de Christian Albrechts University Kiel Kiel, Germany for the Solar Orbiter Team 1 Tracing Heliospheric

More information

JUICE: the first European mission to Jupiter and its Icy Moons

JUICE: the first European mission to Jupiter and its Icy Moons JUICE: the first European mission to Jupiter and its Icy Moons Giuseppe Sarri Knowledge Transfer Seminar @ CERN 26 April 2018 ESA UNCLASSIFIED - For Official Use European Space Agency (ESA) The European

More information

STEREO Beacon. O. C. St. Cyr. The Catholic University of America NASA-Goddard Space Flight Center (301)

STEREO Beacon. O. C. St. Cyr. The Catholic University of America NASA-Goddard Space Flight Center (301) STEREO Beacon O. C. St. Cyr The Catholic University of America NASA-Goddard Space Flight Center (301) 286-2575 cstcyr@grace.nascom.nasa.gov J. M. Davila NASA-Goddard Space Flight Center (301) 286-8366

More information

A Concept for Real-Time Solar Wind Monitor at Multiple Locations

A Concept for Real-Time Solar Wind Monitor at Multiple Locations A Concept for Real-Time Solar Wind Monitor at Multiple Locations L5 in Tandem with L1: Future Space-Weather Missions Workshop March 8 th, 2017 George C. Ho Sector Science and Space Instrumentation Branch

More information

Design exercise: the EUI Data Centre at the Royal Observatory of Belgium

Design exercise: the EUI Data Centre at the Royal Observatory of Belgium Design exercise: the EUI Data Centre at the Royal Observatory of Belgium Cis Verbeeck, David Berghmans, Samuel Gissot, Koen Stegen, Bogdan Nicula (ROB) SCIOPS 2013, ESAC, September 13, 2013 Presentation

More information

Remote Imaging of Electron Acceleration at the Sun with a Lunar Radio Array

Remote Imaging of Electron Acceleration at the Sun with a Lunar Radio Array Remote Imaging of Electron Acceleration at the Sun with a Lunar Radio Array J. Kasper Harvard-Smithsonian Center for Astrophysics 6 October 2010 Robotic Science From the Moon: Gravitational Physics, Heliophysics

More information

Operational Aspects of Space Weather-Related Missions

Operational Aspects of Space Weather-Related Missions Operational Aspects of Space Weather-Related Missions Richard G. Marsden, ESA/SCI-SH Outline SOHO: Example of Near-Earth Observatory-class Mission Ulysses: Example of Deep Space Monitor-class Mission Solar

More information

1 A= one Angstrom = 1 10 cm

1 A= one Angstrom = 1 10 cm Our Star : The Sun )Chapter 10) The sun is hot fireball of gas. We observe its outer surface called the photosphere: We determine the temperature of the photosphere by measuring its spectrum: The peak

More information

Science Activity Plan. Yannis Zouganelis & The Solar Orbiter SOC

Science Activity Plan. Yannis Zouganelis & The Solar Orbiter SOC Science Activity Plan Yannis Zouganelis & The Solar Orbiter SOC Science Activity Plan We have a first draft! Yannis Zouganelis & The Solar Orbiter SOC The Science Activity Plan The SAP is the strategic

More information

METIS- ESA Solar Orbiter Mission: internal straylight analysis

METIS- ESA Solar Orbiter Mission: internal straylight analysis METIS- ESA Solar Orbiter Mission: internal straylight analysis E. Verroi, V. Da Deppo, G. Naletto, S. Fineschi, E. Antonucci University of Padova (Italy) CNR-Institute for Photonics and Nanotechnologies

More information

Acceleration of the Solar Wind

Acceleration of the Solar Wind From Sun to Mud: Solar and Space Physics for the UG Classroom Acceleration of the Andrew Jordan All images from SOHO spacecraft This presentation helps introductory physics students apply their skills

More information

ASPIICS: a Giant Solar Coronagraph onboard the PROBA-3 Mission

ASPIICS: a Giant Solar Coronagraph onboard the PROBA-3 Mission SOLI INVICTO ASPIICS: a Giant Solar Coronagraph onboard the PROBA-3 Mission Andrei Zhukov Principal Investigator of PROBA-3/ASPIICS Solar-Terrestrial Centre of Excellence SIDC, Royal Observatory of Belgium

More information

The Project. National Schools Observatory

The Project. National Schools Observatory Sunspots The Project This project is devised to give students a good understanding of the structure and magnetic field of the Sun and how this effects solar activity. Students will work with sunspot data

More information

1.3j describe how astronomers observe the Sun at different wavelengths

1.3j describe how astronomers observe the Sun at different wavelengths 1.3j describe how astronomers observe the Sun at different wavelengths 1.3k demonstrate an understanding of the appearance of the Sun at different wavelengths of the electromagnetic spectrum, including

More information

The importance of ground-based observations of the solar corona

The importance of ground-based observations of the solar corona The importance of ground-based observations of the solar corona J. Burkepile 1, S. Tomczyk 1, P. Nelson 1, A.G. dewijn 1, S. Sewell 1, D. Elmore 2, L. Sutherland 1, R. Summers 1, D. Kolinski 1, L. Sitongia

More information

Toward Interplanetary Space Weather: Strategies for Manned Missions to Mars

Toward Interplanetary Space Weather: Strategies for Manned Missions to Mars centre for fusion, space and astrophysics Toward Interplanetary Space Weather: Strategies for Manned Missions to Mars Presented by: On behalf of: Jennifer Harris Claire Foullon, E. Verwichte, V. Nakariakov

More information

Sun-Earth Connection Missions

Sun-Earth Connection Missions ACE (1997 ) Cosmic and Heliospheric Study of the physics and chemistry Advanced Composition Explorer Learning Center of the solar corona, the solar wind, http://helios.gsfc.nasa.gov/ace/ http://helios.gsfc.nasa.gov

More information

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He Our sole source of light and heat in the solar system A common star: a glowing ball of plasma held together by its own gravity and powered by nuclear fusion at its center. Nuclear fusion: Combining of

More information

Space Weather and Satellite System Interaction

Space Weather and Satellite System Interaction Space Engineering International Course, Kyutech, 4 th Quarter Semester 2017 Space Weather and Satellite System Interaction Lecture 2: Space Weather Concept, Reporting and Forecasting Assoc. Prof. Ir. Dr.

More information

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1 Solar Magnetic Fields 1 11 Jun 07 UA/NSO Summer School 1 If the sun didn't have a magnetic field, then it would be as boring a star as most astronomers think it is. -- Robert Leighton 11 Jun 07 UA/NSO

More information

POLAR-ECLIPTIC PATROL (PEP) FOR SOLAR STUDIES AND MONITORING OF SPACE WEATHER

POLAR-ECLIPTIC PATROL (PEP) FOR SOLAR STUDIES AND MONITORING OF SPACE WEATHER Proc. 2 nd International conference-exibition. Small satellities. New technologies, miniaturization. Areas of effective applications in XXI century. Section 1: Remote sensing of the Earth and space. Korolev,

More information

Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA

Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA IAU340 1-day School, Saturday 24th February 2018 Jaipur India CMEs & their Consequences

More information

AIA DATA ANALYSIS OVERVIEW OF THE AIA INSTRUMENT

AIA DATA ANALYSIS OVERVIEW OF THE AIA INSTRUMENT AIA DATA ANALYSIS OVERVIEW OF THE AIA INSTRUMENT SDO SUMMER SCHOOL ~ August 2010 ~ Yunnan, China Marc DeRosa (LMSAL) ~ derosa@lmsal.com WHAT IS SDO? The goal of Solar Dynamics Observatory (SDO) is to understand:

More information

The importance of solar wind magnetic. the upcoming Sunjammer solar sail. field observations & mission

The importance of solar wind magnetic. the upcoming Sunjammer solar sail. field observations & mission The importance of solar wind magnetic field observations & the upcoming Sunjammer solar sail mission J. P. Eastwood The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK 13 November 2013

More information

An L5 Mission Concept for Compelling New Space Weather Science

An L5 Mission Concept for Compelling New Space Weather Science An L5 Mission Concept for Compelling New Space Weather Science RESCO (China) REal-time Sun-earth Connections Observatory INSTANT (Europe) INvestigation of Solar-Terrestrial Associated Natural Threats Ying

More information

The Interior Structure of the Sun

The Interior Structure of the Sun The Interior Structure of the Sun Data for one of many model calculations of the Sun center Temperature 1.57 10 7 K Pressure 2.34 10 16 N m -2 Density 1.53 10 5 kg m -3 Hydrogen 0.3397 Helium 0.6405 The

More information

Scott Bolton OPAG February 1, 2016

Scott Bolton OPAG February 1, 2016 Scott Bolton OPAG February 1, 2016 Juno Status Launched August 2011 Earth flyby October 2013 Jupiter arrival July 4, 2016 Spacecraft is healthy and all instruments are working. Juno Science Juno Science

More information

michele piana dipartimento di matematica, universita di genova cnr spin, genova

michele piana dipartimento di matematica, universita di genova cnr spin, genova michele piana dipartimento di matematica, universita di genova cnr spin, genova first question why so many space instruments since we may have telescopes on earth? atmospheric blurring if you want to

More information

SOLAR-C Mission Option-A (Plan-A)

SOLAR-C Mission Option-A (Plan-A) SOLAR-C Mission Option-A (Plan-A) H. Hara(NAOJ) JAXA SOLAR-C WG 2010 Oct 10 3 rd SOLAR-C Science Definition Meeting Interim Report SOLAR-C Concept Two options are under study: Option-A (so-called Plan-A):

More information

Space Weather. S. Abe and A. Ikeda [1] ICSWSE [2] KNCT

Space Weather. S. Abe and A. Ikeda [1] ICSWSE [2] KNCT Space Weather S. Abe and A. Ikeda [1] ICSWSE [2] KNCT Outline Overview of Space Weather I. Space disasters II. Space weather III. Sun IV. Solar wind (interplanetary space) V. Magnetosphere VI. Recent Space

More information

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity

! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun. The Sun & Solar Activity ! The Sun as a star! Structure of the Sun! The Solar Cycle! Solar Activity! Solar Wind! Observing the Sun The Sun & Solar Activity The Sun in Perspective Planck s Law for Black Body Radiation ν = c / λ

More information

8.2 The Sun pg Stars emit electromagnetic radiation, which travels at the speed of light.

8.2 The Sun pg Stars emit electromagnetic radiation, which travels at the speed of light. 8.2 The Sun pg. 309 Key Concepts: 1. Careful observation of the night sky can offer clues about the motion of celestial objects. 2. Celestial objects in the Solar System have unique properties. 3. Some

More information

Lecture 5 The Formation and Evolution of CIRS

Lecture 5 The Formation and Evolution of CIRS Lecture 5 The Formation and Evolution of CIRS Fast and Slow Solar Wind Fast solar wind (>600 km/s) is known to come from large coronal holes which have open magnetic field structure. The origin of slow

More information

Space Weather Activities in Switzerland

Space Weather Activities in Switzerland Space Weather Activities in Switzerland Margit Haberreiter PMOD/WRC, Davos, Switzerland 1 Reports Space Research in Switzerland 2012-2014 In preparation: Space Research in Switzerland 2015-2017 2 Reports

More information

Solar-terrestrial relation and space weather. Mateja Dumbović Hvar Observatory, University of Zagreb Croatia

Solar-terrestrial relation and space weather. Mateja Dumbović Hvar Observatory, University of Zagreb Croatia Solar-terrestrial relation and space weather Mateja Dumbović Hvar Observatory, University of Zagreb Croatia Planets Comets Solar wind Interplanetary magnetic field Cosmic rays Satellites Astronauts HELIOSPHERE

More information

Outline. Astronomy: The Big Picture. Earth Sun comparison. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned.

Outline. Astronomy: The Big Picture. Earth Sun comparison. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned. Next homework due Oct 24 th. I will not be here on Wednesday, but Paul Ricker will present the lecture! My Tuesday

More information

Solar Orbiter Science Management Plan

Solar Orbiter Science Management Plan Solar Orbiter Science Management Plan Prepared by Richard Marsden Reference SOL-EST-PL-00880 Issue 2 Revision 2 Date of Issue 16/02/2012 Status Draft Document Type PL Distribution Title Issue 2 Revision

More information

NASA s Contribution to International Living With a Star

NASA s Contribution to International Living With a Star NASA s Contribution to International Living With a Star Madhulika Guhathakurta Office of Space Science, CodeSS NASA Headquarters October 17,2002 Sun-Earth Connection (Sec) Program Planet Varying Radiation

More information

Ooty Radio Telescope Space Weather

Ooty Radio Telescope Space Weather Ooty Radio Telescope Space Weather P.K. Manoharan Radio Astronomy Centre National Centre for Radio Astrophysics Tata Institute of Fundamental Research Ooty 643001, India mano@ncra.tifr.res.in Panel Meeting

More information

Turbulent Origins of the Sun s Hot Corona and the Solar Wind

Turbulent Origins of the Sun s Hot Corona and the Solar Wind Turbulent Origins of the Sun s Hot Corona and the Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics Turbulent Origins of the Sun s Hot Corona and the Solar Wind Outline: 1. Solar

More information

Solar System Exploration in Germany

Solar System Exploration in Germany Solar System Exploration in Germany German Space Program (Key points) Formation and development of the Solar System Formation of stars and planets Comparison of terrestrial planets with Earth The Sun and

More information

X-ray observations of Solar Flares. Marina Battaglia Fachhochschule Nordwestschweiz (FHNW)

X-ray observations of Solar Flares. Marina Battaglia Fachhochschule Nordwestschweiz (FHNW) X-ray observations of Solar Flares Marina Battaglia Fachhochschule Nordwestschweiz (FHNW) marina.battaglia@fhnw.ch 2 3 The solar corona Close by astrophysical laboratory allows us to study: Release of

More information

Geomagnetic Disturbances (GMDs) History and Prediction

Geomagnetic Disturbances (GMDs) History and Prediction Geomagnetic Disturbances (GMDs) History and Prediction J. Patrick Donohoe, Ph.D., P.E. Dept. of Electrical and Computer Engineering Mississippi State University Box 9571 Miss. State, MS 39762 donohoe@ece.msstate.edu

More information

Solar Orbiter/SPICE: composition studies

Solar Orbiter/SPICE: composition studies Solar Orbiter/SPICE: composition studies Alessandra Giunta 1-2/10/2015 - ADAS workshop 1 Solar Orbiter/SPICE Door Mechanism Grating Assembly Particle Deflector SPICE Slit Change Mechanism Mirror & Scan

More information

The Magnetic Sun. CESAR s Booklet

The Magnetic Sun. CESAR s Booklet The Magnetic Sun CESAR s Booklet 1 Introduction to planetary magnetospheres and the interplanetary medium Most of the planets in our Solar system are enclosed by huge magnetic structures, named magnetospheres

More information

2-1-4 Preceding Monitoring of Solar Wind Toward the Earth Using STEREO

2-1-4 Preceding Monitoring of Solar Wind Toward the Earth Using STEREO 2-1-4 Preceding Monitoring of Solar Wind Toward the Earth Using STEREO NAGATSUMA Tsutomu, AKIOKA Maki, MIYAKE Wataru, and OHTAKA Kazuhiro Acquisition of solar wind information before it reaches the earth

More information

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc.

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc. Chapter 14 Lecture The Cosmic Perspective Seventh Edition Our Star 14.1 A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is

More information

NASA s STEREO Mission

NASA s STEREO Mission NASA s STEREO Mission J.B. Gurman STEREO Project Scientist W.T. Thompson STEREO Chief Observer Solar Physics Laboratory, Helophysics Division NASA Goddard Space Flight Center 1 The STEREO Mission Science

More information

Solar eruptive phenomena

Solar eruptive phenomena Solar eruptive phenomena Andrei Zhukov Solar-Terrestrial Centre of Excellence SIDC, Royal Observatory of Belgium 26/01/2018 1 Eruptive solar activity Solar activity exerts continous influence on the solar

More information

Solar Energetic Particles in the Inner Heliosphere

Solar Energetic Particles in the Inner Heliosphere Author: Mariona Adillón Corbera Advisor: Neus Agueda Costafreda Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Abstract: The upcoming missions Solar Orbiter (SolO)

More information

Chapter 14 Our Star A Closer Look at the Sun. Why was the Sun s energy source a major mystery?

Chapter 14 Our Star A Closer Look at the Sun. Why was the Sun s energy source a major mystery? Chapter 14 Our Star 14.1 A Closer Look at the Sun Our goals for learning Why was the Sun s energy source a major mystery? Why does the Sun shine? What is the Sun s structure? Why was the Sun s energy source

More information

Our sun is the star in our solar system, which lies within a galaxy (Milky Way) within the universe. A star is a large glowing ball of gas that

Our sun is the star in our solar system, which lies within a galaxy (Milky Way) within the universe. A star is a large glowing ball of gas that Our sun is the star in our solar system, which lies within a galaxy (Milky Way) within the universe. A star is a large glowing ball of gas that generates energy through nuclear fusion in its core. The

More information

Space environment (natural and artificial) Realtime solar activity and space environment information for spacecraft operation

Space environment (natural and artificial) Realtime solar activity and space environment information for spacecraft operation ISO 2008 All rights reserved ISO TC 20/SC 14 N873 Date: 2012-07-31 ISO/CDV 16709 ISO TC 20/SC 14/WG 4 Secretariat: Space environment (natural and artificial) Realtime solar activity and space environment

More information

The Solar Resource: The Active Sun as a Source of Energy. Carol Paty School of Earth and Atmospheric Sciences January 14, 2010

The Solar Resource: The Active Sun as a Source of Energy. Carol Paty School of Earth and Atmospheric Sciences January 14, 2010 The Solar Resource: The Active Sun as a Source of Energy Carol Paty School of Earth and Atmospheric Sciences January 14, 2010 The Sun: A Source of Energy Solar Structure Solar Wind Solar Cycle Solar Activity

More information

STATUS OF THE JUICE MISSION

STATUS OF THE JUICE MISSION STATUS OF THE JUICE MISSION D. Titov, O. Witasse, N. Altobelli, G. Sarri, Ph. Gare, C. Erd JUICE Science Team ESA Project Team JUICE artist impression (Credits ESA, AOES) JUICE: JUpiter Icy moons Explorer

More information

Extended Missions. Dr. Art Poland Heliophysics Senior Review Chair George Mason University

Extended Missions. Dr. Art Poland Heliophysics Senior Review Chair George Mason University Extended Missions Dr. Art Poland Heliophysics Senior Review Chair George Mason University My Experience Experiment scientist on Skylab 1973- Experiment scientist on SMM 1980- US project Scientist for the

More information

Solar Wind Ion Composition Measurements: Direct Measurements of Properties of the Corona

Solar Wind Ion Composition Measurements: Direct Measurements of Properties of the Corona Solar Wind Ion Composition Measurements: Direct Measurements of Properties of the Corona White Paper Submitted to the Decadal Survey Panel on Solar and Heliospheric Physics November 12, 2010 Stefano A.

More information

The Sun. Never look directly at the Sun, especially NOT through an unfiltered telescope!!

The Sun. Never look directly at the Sun, especially NOT through an unfiltered telescope!! The Sun Introduction We will meet in class for a brief discussion and review of background material. We will then go outside for approximately 1 hour of telescope observing. The telescopes will already

More information

Solar Activity during the Rising Phase of Solar Cycle 24

Solar Activity during the Rising Phase of Solar Cycle 24 International Journal of Astronomy and Astrophysics, 213, 3, 212-216 http://dx.doi.org/1.4236/ijaa.213.3325 Published Online September 213 (http://www.scirp.org/journal/ijaa) Solar Activity during the

More information

Space Weather Awareness in the Arctic. Torsten Neubert Head of Section for Solar System Physics

Space Weather Awareness in the Arctic. Torsten Neubert Head of Section for Solar System Physics Space Weather Awareness in the Arctic Torsten Neubert Head of Section for Solar System Physics Technology in the Arctic There is significant potential Resources Tourism helped by receding ocean ice There

More information

INTERPLANETARY ASPECTS OF SPACE WEATHER

INTERPLANETARY ASPECTS OF SPACE WEATHER INTERPLANETARY ASPECTS OF SPACE WEATHER Richard G. Marsden Research & Scientific Support Dept. of ESA, ESTEC, P.O. Box 299, 2200 AG Noordwijk, NL, Email: Richard.Marsden@esa.int ABSTRACT/RESUME Interplanetary

More information

High energy particles from the Sun. Arto Sandroos Sun-Earth connections

High energy particles from the Sun. Arto Sandroos Sun-Earth connections High energy particles from the Sun Arto Sandroos Sun-Earth connections 25.1.2006 Background In addition to the solar wind, there are also particles with higher energies emerging from the Sun. First observations

More information

Tracking Solar Eruptions to Their Impact on Earth Carl Luetzelschwab K9LA September 2016 Bonus

Tracking Solar Eruptions to Their Impact on Earth Carl Luetzelschwab K9LA September 2016 Bonus Tracking Solar Eruptions to Their Impact on Earth Carl Luetzelschwab K9LA September 2016 Bonus In June 2015, the Sun emitted several M-Class flares over a 2-day period. These flares were concurrent with

More information

Chapter 10 Our Star. X-ray. visible

Chapter 10 Our Star. X-ray. visible Chapter 10 Our Star X-ray visible Radius: 6.9 10 8 m (109 times Earth) Mass: 2 10 30 kg (300,000 Earths) Luminosity: 3.8 10 26 watts (more than our entire world uses in 1 year!) Why does the Sun shine?

More information

Lecture 3: The Earth, Magnetosphere and Ionosphere.

Lecture 3: The Earth, Magnetosphere and Ionosphere. Lecture 3: The Earth, Magnetosphere and Ionosphere. Sun Earth system Magnetospheric Physics Heliophysics Ionospheric Physics Spacecraft Heating of Solar Corona Convection cells Charged particles are moving

More information

The Solar Orbiter mission Ester Antonucci INAF OsservatorioAstronomicodi Torino

The Solar Orbiter mission Ester Antonucci INAF OsservatorioAstronomicodi Torino The Solar Orbiter mission Ester Antonucci INAF OsservatorioAstronomicodi Torino XCVII CongressoNazionaledella SIF L Aquila 26-30 Settembre 2011 a mission to fully understand how the Sun creates and controls

More information

Radio Observations and Space Weather Research

Radio Observations and Space Weather Research Radio Observations and Space Weather Research Jasmina Magdalenić Solar-Terrestrial Centre of Excellence SIDC, Royal Observatory of Belgium What is space weather and why is it important? Eruptive processes:

More information

Appendix G. Solar Orbiter SPICE Thermal Design, Analysis and Testing. Samuel Tustain (RAL Space, United Kingdom)

Appendix G. Solar Orbiter SPICE Thermal Design, Analysis and Testing. Samuel Tustain (RAL Space, United Kingdom) 137 Appendix G Solar Orbiter SPICE Thermal Design, Analysis and Testing Samuel Tustain (RAL Space, United Kingdom) 138 Solar Orbiter SPICE Thermal Design, Analysis and Testing Abstract 1 The Spectral Imaging

More information

Payload & Data Rate for Option-A. H. Hara(NAOJ) JAXA SOLAR-C WG 2010 Mar 9

Payload & Data Rate for Option-A. H. Hara(NAOJ) JAXA SOLAR-C WG 2010 Mar 9 Payload & Data Rate for Option-A H. Hara(NAOJ) JAXA SOLAR-C WG 2010 Mar 9 Requirements for S/C System Design Sojourn time >40 days (TBD) for a solar latitude of >30 deg (TBD) Target of max. latitude :

More information

Solar Orbiter and Solar C Mission Concepts and Instrumentation

Solar Orbiter and Solar C Mission Concepts and Instrumentation Solar Orbiter and Solar C Mission Concepts and Instrumentation Udo Schühle, Luca Teriaca 26 October 2010 International Max Planck Research School Solar Orbiter Payload Instruments Mission requirements

More information

Juno Status and Earth Flyby Plans. C. J. Hansen

Juno Status and Earth Flyby Plans. C. J. Hansen Juno Status and Earth Flyby Plans C. J. Hansen July 2013 Juno will improve our understanding of the history of the solar system by investigating the origin and evolution of Jupiter. To accomplish this

More information

Chapter 8 Geospace 1

Chapter 8 Geospace 1 Chapter 8 Geospace 1 Previously Sources of the Earth's magnetic field. 2 Content Basic concepts The Sun and solar wind Near-Earth space About other planets 3 Basic concepts 4 Plasma The molecules of an

More information

The Sun. the main show in the solar system. 99.8% of the mass % of the energy. Homework due next time - will count best 5 of 6

The Sun. the main show in the solar system. 99.8% of the mass % of the energy. Homework due next time - will count best 5 of 6 The Sun the main show in the solar system 99.8% of the mass 99.9999...% of the energy 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Homework due next time - will count best 5 of 6 The

More information

Solar Activity The Solar Wind

Solar Activity The Solar Wind Solar Activity The Solar Wind The solar wind is a flow of particles away from the Sun. They pass Earth at speeds from 400 to 500 km/s. This wind sometimes gusts up to 1000 km/s. Leaves Sun at highest speeds

More information

The Solar Wind Space physics 7,5hp

The Solar Wind Space physics 7,5hp The Solar Wind Space physics 7,5hp Teknisk fysik '07 1 Contents History... 3 Introduction... 3 Two types of solar winds... 4 Effects of the solar wind... 5 Magnetospheres... 5 Atmospheres... 6 Solar storms...

More information

Lecture 17 The Sun October 31, 2018

Lecture 17 The Sun October 31, 2018 Lecture 17 The Sun October 31, 2018 1 2 Exam 2 Information Bring a #2 pencil! Bring a calculator. No cell phones or tablets allowed! Contents: Free response problems (2 questions, 10 points) True/False

More information

The Sun ASTR /17/2014

The Sun ASTR /17/2014 The Sun ASTR 101 11/17/2014 1 Radius: 700,000 km (110 R ) Mass: 2.0 10 30 kg (330,000 M ) Density: 1400 kg/m 3 Rotation: Differential, about 25 days at equator, 30 days at poles. Surface temperature: 5800

More information

The Sun sends the Earth:

The Sun sends the Earth: The Sun sends the Earth: Solar Radiation - peak wavelength.visible light - Travels at the speed of light..takes 8 minutes to reach Earth Solar Wind, Solar flares, and Coronal Mass Ejections of Plasma (ionized

More information

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc.

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc. Chapter 14 Lecture Chapter 14: Our Star 14.1 A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is it on FIRE? Is it on FIRE?

More information

Question: Origin of coronal eruptions?

Question: Origin of coronal eruptions? Magnetic field extrapolation methods: state-of-the-art applications Motivation: Instabilities in the coronal magnetic field cause eruptions. Thomas Wiegelmann Max-Planck-Institut für Sonnensystemforschung

More information

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky The Sun as Our Star Last class we talked about how the Sun compares to other stars in the sky Today's lecture will concentrate on the different layers of the Sun's interior and its atmosphere We will also

More information

AUTOMATIC PREDICTION OF SOLAR FLARES USING A NEURAL NETWORK. James Negus University of Chicago Mentor: Andrew Jones LASP

AUTOMATIC PREDICTION OF SOLAR FLARES USING A NEURAL NETWORK. James Negus University of Chicago Mentor: Andrew Jones LASP AUTOMATIC PREDICTION OF SOLAR FLARES USING A NEURAL NETWORK James Negus University of Chicago Mentor: Andrew Jones LASP SOLAR FLARE A flare is defined as a sudden, rapid, and intense variation in brightness.

More information

Potential ESA Contributions to International Living With a Star (ILWS)

Potential ESA Contributions to International Living With a Star (ILWS) Potential ESA Contributions to International Living With a Star (ILWS) NASA ESA International Japan Russia Canada... LWS Cover Page ILWS should contain more than the NASA LWS Line and international add-ons......

More information

JUICE/Laplace Mission Summary & Status

JUICE/Laplace Mission Summary & Status JUICE/Laplace Mission Summary & Status C. Erd JUICE Instrument WS, Darmstadt 9/11/2011 Activities during the Reformulation Phase 1. Feasible JGO s/c as a starting point a. no re-design of s/c necessary

More information

Forecasting Earthquakes and Space Weather

Forecasting Earthquakes and Space Weather On the Ground at the AGU Conference Forecasting Earthquakes and Space Weather By Peter Martinson SAN FRANCISCO, Dec. 7, 2011 The most revolutionary and important advances in human knowledge always bear

More information

Predictions for Dusty Mass Loss from Asteroids during Close Encounters with Solar Probe Plus

Predictions for Dusty Mass Loss from Asteroids during Close Encounters with Solar Probe Plus Predictions for Dusty Mass Loss from Asteroids during Close Encounters with Solar Probe Plus Steven R. Cranmer University of Colorado Boulder, LASP Paper: http://arxiv.org/abs/1606.01785 Introduction

More information

Space weather. Introduction to lectures by Dr John S. Reid. Image courtesy:

Space weather. Introduction to lectures by Dr John S. Reid. Image courtesy: Space weather Introduction to lectures by Dr John S. Reid Image courtesy: http://www.astro-photography.com/ss9393.htm Sunspot 9393 First pass from late March to early April, 2001 See: Storms from the Sun

More information

GOES-R Instrument Status and Accommodations. Barbara Pfarr GOES-R Program Systems Engineering January 2010 AMS Conference

GOES-R Instrument Status and Accommodations. Barbara Pfarr GOES-R Program Systems Engineering January 2010 AMS Conference GOES-R Instrument Status and Accommodations Barbara Pfarr GOES-R Program Systems Engineering January 2010 AMS Conference Agenda Instrument Developmental Status Significant Changes in the Last Year Introducing

More information

An Introduction to Space Weather. J. Burkepile High Altitude Observatory / NCAR

An Introduction to Space Weather. J. Burkepile High Altitude Observatory / NCAR An Introduction to Space Weather J. Burkepile High Altitude Observatory / NCAR What is Space Weather? Space Weather refers to conditions in interplanetary space, produced by the Sun, that can disrupt

More information

A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS

A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS A NEW MODEL FOR REALISTIC 3-D SIMULATIONS OF SOLAR ENERGETIC PARTICLE EVENTS Nicolas Wijsen KU Leuven In collaboration with: A. Aran (University of Barcelona) S. Poedts (KU Leuven) J. Pomoell (University

More information

Solar Dynamics Affecting Skywave Communications

Solar Dynamics Affecting Skywave Communications Solar Dynamics Affecting Skywave Communications Ken Larson KJ6RZ October 2010 1 Page Subject 3 1.0 Introduction 3 2.0 Structure of the Sun 3 2.1 Core 3 2.2 Radiation Zone 4 2.3 Convection Zone 4 2.4 Photosphere

More information