On-Orbit Performance of KOMPSAT-2 AOCS Korea Aerospace Research Institute Seung-Wu Rhee, Ph. D.

Size: px
Start display at page:

Download "On-Orbit Performance of KOMPSAT-2 AOCS Korea Aerospace Research Institute Seung-Wu Rhee, Ph. D."

Transcription

1 SSC07-VII-9 On-Orbit Performance of AOCS Korea Aerospace Research Institute Seung-Wu Rhee, Ph. D. 1

2 Program - is Low Earth Orbit Satellite - Mission : Cartographic Mission of Korean Peninsula for MAP Generation - Program Period : ~ Payload : 1 m PAN + 4 m Multi-Spectral Camera - Launch Date : July 28, Launch Vehicle : ROKOT - Major Responsible Institute : Korea Aerospace Research Institute - Government Funded Program (MOST/MOCIE/MIC) 2

3 Summary - Orbit : Altitude : 685km, Sun Synchronous (LMTAN : 10:50AM), Inc degree - Swath Width of Optical Camera : 15km - Mass : ~800kg, Power : 1.1Kw, Deployed Length : 6.8m - Zero Momentum Biased 3 Axis Stabilized Satellite - Required AOCS Pointing Accuracy : deg - Required AOCS Pointing Knowledge : 0.02 deg - Required Pointing Stability : deg/sec 3

4 Deployed Configuration 4

5 AOCS Control Modes AOCS Modes AOCS Modes Sun Mode (3 (3 Submodes) Science Mode (2 (2 Submodes) Maneuver Mode (2 (2 Submodes) Back-up Mode (3 (3 Submodes) Power Safe Mode Power Safe Mode 5

6 AOCS Control Mode Transition Diagram A2 Back-up Earth Search Submode B1 A2 Back-up Attitude Hold Submode Power Safe Mode B3 A3 A2 B1 Back-up Sun Pointing Submode A1 A2 B2 B1 Safe Hold Submode (Contigency Mode) B1 A1 Sun Pointing Submode B1 B1 A1 Science Fine Submode (Normal Mission Mode) B1 B1 Earth Search Submode A2, A3, B2 and B3 paths in figure are newly developed to increase an operational flexibility and robustness for. A2 A2 Science Coarse Submode A1 Attitude Hold Submode Note: Path A1 is the Recovery Path with Thruster Path A2 is the Recovery Path with RWA Path A3 is the Recovery Path with Ground Gyro Configuration Path B1 is the Contigency Path Path B2 is the Contigency Path for Star Tracker Failure Path B3 is the Contigency Path for Gyro Selection Logic Fail A1 6

7 AOCS Science Mode Science Mode Science mode consists of two submodes : Science Coarse Submode, Science Fine Submode Science Coarse Submode - Purpose : Coarse Earth Pointing for Cartographic Mission - Sensor : Conical Earth Sensor, Fine Sun Sensor, Gyro, Tri-Axis Magetometer - Actuator : Reaction Wheel Assembly, Magnetic Torque Rod 7

8 AOCS Science Mode Science Fine Submode - Purpose : Fine Earth Pointing for Cartographic Mission - Sensor : Star Tracker, Gyro, Tri-Axis Magetometer - Actuator : Reaction Wheel Assembly, Magnetic Torque Rod 8

9 AOCS H/W Connection Local 1553 Data Bus 9

10 AOCS Main Components Valve Drive Electronics Gyro Assembly Remote Drive Unit (On-Board Computer) Thruster Bank Star Tracker Reaction Wheel Assembly 10

11 Pyramid Type of Reaction Wheel Configuration +Z(Yaw) H3 H2 RWA 3 RWA 2 H4 H1 RWA 4 β RWA 1 +Y(Pitch) α +X(Roll) Pyramid Type with Four Reaction Wheels 11

12 Non-Linear Simulation Results Pointing Accuracy in Science Fine Submode(<0.009deg) Pointing Knowledge in Science Fine Submode(<0.008deg) 12

13 Non-Linear Simulation Results S/C Body Rate with SA Rotation ( <0.02deg/s) S/C Body Rate with SA Rotation Stop (<0.0006deg/s) 13

14 On-Orbit Performance of Science Fine Submode Attitude Between LVLH and Body Frame Using Star Tracker #2 Quaternion 0.05 Roll[deg] Pitch[deg] Yaw[deg] x x x 10 5 Pointing Knowledge of Science Fine Submode(<0.008deg) Body Rate with Solar Array Rotation(<0.02deg/s) 14

15 On-Orbit Performance of Science Fine Submode Body Rate with Solar Array Rotation Stop(<0.0025deg/s) 25 deg Roll Maneuver Case 15

16 On-Orbit Performance of Science Fine Submode -2.0~-2.5deg/hr -1.0~-1.1deg/hr 0.4~0.9deg/hr Estimated Gyro Bias Profile 16

17 Conclusion Remarks - The AOCS Control Logic of has been successfully developed and implemented to meet the 1 meter high resolution imaging mission requirements. - The pointing knowledge of Science Fine Submode is < 0.008deg(3sig) according to On-Orbit data - On-Orbit Data shows that the flexibility and stepping effects of solar array increase rate amplitude up to 0.02deg/sec. - While, the rate amplitude is decreased by ~10 times to deg/sec when solar array stopped. - According to on-orbit pointing knowledge error data, constant error in pitch axis is observed, which comes from OBT desynchronization problem. - Unexpectedly large rate bias in gyro set is observed: ~2-2.5deg/hr probably, due to gyro misalignment wrt star tracker. 17

18 Thanks for your attention!!!! 18

Generation X. Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San. July 27, 2000

Generation X. Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San. July 27, 2000 Generation X Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San July 27, 2000 ACS Overview Requirements Assumptions Disturbance Torque Assessment Component and Control Mode Recommendations

More information

Attitude Determination and. Attitude Control

Attitude Determination and. Attitude Control Attitude Determination and Placing the telescope in orbit is not the end of the story. It is necessary to point the telescope towards the selected targets, or to scan the selected sky area with the telescope.

More information

Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission

Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission Dr. Simon Grocott Dr. Robert E Zee Dr. Jaymie Matthews Dynacon Inc UTIAS SFL UBC 13 August 2003 Outline MOST (Microvariability and

More information

Spinning Satellites Examples. ACS: Gravity Gradient. ACS: Single Spin

Spinning Satellites Examples. ACS: Gravity Gradient. ACS: Single Spin Attitude Determination and Attitude Control Placing the telescope in orbit is not the end of the story. It is necessary to point the telescope towards the selected targets, or to scan the selected sky

More information

Pointing Control for Low Altitude Triple Cubesat Space Darts

Pointing Control for Low Altitude Triple Cubesat Space Darts Pointing Control for Low Altitude Triple Cubesat Space Darts August 12 th, 2009 U.S. Naval Research Laboratory Washington, D.C. Code 8231-Attitude Control System James Armstrong, Craig Casey, Glenn Creamer,

More information

Spacecraft Bus / Platform

Spacecraft Bus / Platform Spacecraft Bus / Platform Propulsion Thrusters ADCS: Attitude Determination and Control Subsystem Shield CDH: Command and Data Handling Subsystem Payload Communication Thermal Power Structure and Mechanisms

More information

Attitude Determination and Control System Design for STU-2A Cubesat and In-Orbit Results

Attitude Determination and Control System Design for STU-2A Cubesat and In-Orbit Results 13 th Annual Summer CubeSat Developer s Workshop August 6-7, 2016, Logan, Utah Attitude Determination and Control System Design for STU-2A Cubesat and In-Orbit Results Presented by Shufan Wu Guowen Sun,

More information

Lunar Satellite Attitude Determination System

Lunar Satellite Attitude Determination System Lunar Satellite Attitude Determination System SENIOR DESIGN PROPOSAL PRESENTATION TEAM EPOCH KUPOLUYI, TOLULOPE (LEAD DEVELOPER) SONOIKI, OLUWAYEMISI (LEAD RESEARCHER) WARREN, DANAH (PROJECT MANAGER) NOVEMBER

More information

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING Elias F. Solorzano University of Toronto (Space Flight Laboratory) Toronto, ON (Canada) August 10 th, 2016 30 th AIAA/USU

More information

Attitude control system for ROCSAT-3 microsatellite: a conceptual design

Attitude control system for ROCSAT-3 microsatellite: a conceptual design Acta Astronautica 56 (5) 9 5 www.elsevier.com/locate/actaastro Attitude control system for ROCSAT- microsatellite: a conceptual design Y.W. Jan a;b; ;, J.C. Chiou b; a National Space Program Oce, Hsinchu,

More information

Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System

Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System SSC06-VII-5 Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System Young-Keun Chang, Seok-Jin Kang, Byung-Hoon Lee, Jung-on Choi, Mi-Yeon Yun and Byoung-Young Moon School of Aerospace and

More information

New Worlds Observer Operations Concept NEW WORLDS OBSERVER OPERATIONS CONCEPT (OPSCON)

New Worlds Observer Operations Concept NEW WORLDS OBSERVER OPERATIONS CONCEPT (OPSCON) NEW WORLDS OBSERVER OPERATIONS CONCEPT (OPSCON) 1 Table of Contents 1.0 Mission Overview... 1 1.1 NWO scope... 1 2.0 System Overview... 2 2.1 System constituents... 2 2.2 system functional architecture...

More information

Attitude Determination and Control Subsystem (ADCS) Review

Attitude Determination and Control Subsystem (ADCS) Review Attitude Determination and Control Subsystem (ADCS) Review Contents Attitude Determination and Control Subsystem (ADCS) Function Impact of Mission Requirements and Other Subsystems on ADCS ADCS Design

More information

Attitude Control on the Pico Satellite Solar Cell Testbed-2

Attitude Control on the Pico Satellite Solar Cell Testbed-2 SSC12-II-1 Attitude Control on the Pico Satellite Solar Cell Testbed-2 Siegfried W. Janson, Brian S. Hardy, Andrew Y. Chin, Daniel L. Rumsey, Daniel A. Ehrlich, and David A. Hinkley The Aerospace Corporation

More information

Attitude Control Simulator for the Small Satellite and Its Validation by On-orbit Data of QSAT-EOS

Attitude Control Simulator for the Small Satellite and Its Validation by On-orbit Data of QSAT-EOS SSC17-P1-17 Attitude Control Simulator for the Small Satellite and Its Validation by On-orbit Data of QSAT-EOS Masayuki Katayama, Yuta Suzaki Mitsubishi Precision Company Limited 345 Kamikmachiya, Kamakura

More information

PRELIMINARY HARDWARE DESIGN OF ATTITUDE CONTROL SUBSYSTEM OF LEONIDAS SPACECRAFT

PRELIMINARY HARDWARE DESIGN OF ATTITUDE CONTROL SUBSYSTEM OF LEONIDAS SPACECRAFT PRELIMINARY HARDWARE DESIGN OF ATTITUDE CONTROL SUBSYSTEM OF LEONIDAS SPACECRAFT Chak Shing Jackie Chan College of Engineering University of Hawai i at Mānoa Honolulu, HI 96822 ABSTRACT In order to monitor

More information

Sliding Mode Control Strategies for Spacecraft Rendezvous Maneuvers

Sliding Mode Control Strategies for Spacecraft Rendezvous Maneuvers Osaka University March 15, 2018 Sliding Mode Control Strategies for Spacecraft Rendezvous Maneuvers Elisabetta Punta CNR-IEIIT, Italy Problem Statement First Case Spacecraft Model Position Dynamics Attitude

More information

GP-B Attitude and Translation Control. John Mester Stanford University

GP-B Attitude and Translation Control. John Mester Stanford University GP-B Attitude and Translation Control John Mester Stanford University 1 The GP-B Challenge Gyroscope (G) 10 7 times better than best 'modeled' inertial navigation gyros Telescope (T) 10 3 times better

More information

PRELIMINAJ3.:( 6/8/92 SOFTWARE REQUIREMENTS SPECIFICATION FOR THE DSPSE GUIDANCE, NAVIGATION, AND CONTROL CSCI. Prepared by

PRELIMINAJ3.:( 6/8/92 SOFTWARE REQUIREMENTS SPECIFICATION FOR THE DSPSE GUIDANCE, NAVIGATION, AND CONTROL CSCI. Prepared by PRELIMINAJ3.:( SOFTWARE REQUIREMENTS SPECIFICATION FOR THE DSPSE GUIDANCE, NAVIGATION, AND CONTROL CSCI Prepared by Space Applications Corporation 6/8/92.. 1 SCOPE 1.1 IDENTIFICATION 1.2 OVERVIEW This

More information

A Miniaturized Satellite Attitude Determination and Control System with Autonomous Calibration Capabilities

A Miniaturized Satellite Attitude Determination and Control System with Autonomous Calibration Capabilities A Miniaturized Satellite Attitude Determination and Control System with Autonomous Calibration Capabilities Sanny Omar Dr. David Beale Dr. JM Wersinger Introduction ADACS designed for CubeSats CubeSats

More information

A Concept of Nanosatellite Small Fleet for Earth Observation

A Concept of Nanosatellite Small Fleet for Earth Observation A Concept of Nanosatellite Small Fleet for Earth Observation Prof. Janusz Narkiewicz jnark@meil.pw.edu.pl Sebastian Topczewski stopczewski@meil.pw.edu.pl Mateusz Sochacki msochacki@meil.pw.edu.pl 10-11

More information

Design Architecture of Attitude Determination and Control System of ICUBE

Design Architecture of Attitude Determination and Control System of ICUBE Design Architecture of Attitude Determination and Control System of ICUBE 9th Annual Spring CubeSat Developers' Workshop, USA Author : Co-Author: Affiliation: Naqvi Najam Abbas Dr. Li YanJun Space Academy,

More information

Lightweight, Low-Power Coarse Star Tracker

Lightweight, Low-Power Coarse Star Tracker Lightweight, Low-Power Coarse Star Tracker Ray Zenick AeroAstro Inc. 17th Annual AIAA/USU Conference on Small Satellites Paper Number SSC03-X-7 August 14, 2003 The LIST Concept Medium accuracy star tracker

More information

Design of Sliding Mode Attitude Control for Communication Spacecraft

Design of Sliding Mode Attitude Control for Communication Spacecraft Design of Sliding Mode Attitude Control for Communication Spacecraft Erkan Abdulhamitbilal 1 and Elbrous M. Jafarov 1 ISTAVIA Engineering, Istanbul Aeronautics and Astronautics Engineering, Istanbul Technical

More information

Creating Large Space Platforms From Small Satellites

Creating Large Space Platforms From Small Satellites SSC99-VI-6 Creating Large Space Platforms From Small Satellites Andrew W. Lewin Principal Systems Engineer Orbital Sciences Corporation Dulles, VA 20166 (703) 406-5000 lewin.andy@orbital.com Abstract.

More information

Preliminary Development of an Experimental Lightweight Pulsed Plasma Thruster for Solar Sail Attitude Control

Preliminary Development of an Experimental Lightweight Pulsed Plasma Thruster for Solar Sail Attitude Control Preliminary Development of an Experimental Lightweight Pulsed Plasma Thruster for Solar Sail Attitude Control Kevin Pryor, Bong Wie, and Pavlos Mikellides Arizona State University 18 th Annual AIAA/USU

More information

Proba-3 mission and the ASPIICS coronagraph

Proba-3 mission and the ASPIICS coronagraph Proba-3 mission and the ASPIICS coronagraph Marek Stęślicki 1 and the Proba-3 SWT 1 Space Research Centre Polish Academy of Sciences General objectives The Proba-3 project aims: To develop and demonstrate

More information

THE MICRO ADVANCED STELLAR COMPASS FOR ESA S PROBA 2 MISSION

THE MICRO ADVANCED STELLAR COMPASS FOR ESA S PROBA 2 MISSION THE MICRO ADVANCED STELLAR COMPASS FOR ESA S PROBA 2 MISSION P.S. Jørgensen (1), J.L. Jørgensen (1), T. Denver (1), Pieter van den Braembuche (2) (1) Technical University of Denmark, Ørsted*DTU, Measurement

More information

Integrated Test Facility for Nanosat Assessment and Verification

Integrated Test Facility for Nanosat Assessment and Verification Integrated Test Facility for Nanosat Assessment and Verification Steve Wassom, Quinn Young, Bryan Bingham, Rees Fullmer, Mitch Whiteley, Robert Burt, Mike Watson, Tom Ortiz, Joe Richards, Sam Wilcox Utah

More information

THE ATTITUDE CONTROL SYSTEM DESIGN FOR THE WIDE-FIELD INFRARED EXPLORER MISSION

THE ATTITUDE CONTROL SYSTEM DESIGN FOR THE WIDE-FIELD INFRARED EXPLORER MISSION THE ATTITUDE CONTROL SYSTEM DESIGN FOR THE WIDE-FIELD INFRARED EXPLORER MISSION Michael D. Fennell*, Victoriano Z. Untalan III+ & Dr. Michael H. Lee** NASA Goddard Space Flight Center Greenbelt, MD 20771

More information

ESSE Payload Design. 1.2 Introduction to Space Missions

ESSE Payload Design. 1.2 Introduction to Space Missions ESSE4360 - Payload Design 1.2 Introduction to Space Missions Earth, Moon, Mars, and Beyond Department of Earth and Space Science and Engineering Room 255, Petrie Science and Engineering Building Tel: 416-736

More information

PROBA 1. F. Teston ESA/ESTEC D/TEC-EL

PROBA 1. F. Teston ESA/ESTEC D/TEC-EL PROBA 1 F. Teston ESA/ESTEC D/TEC-EL Frederic.Teston@esa.int PROBA 1 launch PROBA 1 has been launched on 21 October 2001 Orbital parameters: Altitude: 681-561 km Near polar (inclination of 97.9 ) Sun-synchronous

More information

GUIDANCE, NAVIGATION, AND CONTROL TECHNIQUES AND TECHNOLOGIES FOR ACTIVE DEBRIS REMOVAL

GUIDANCE, NAVIGATION, AND CONTROL TECHNIQUES AND TECHNOLOGIES FOR ACTIVE DEBRIS REMOVAL GUIDANCE, NAVIGATION, AND CONTROL TECHNIQUES AND TECHNOLOGIES FOR ACTIVE DEBRIS REMOVAL Antonio Rinalducci, Guillermo Ortega Hernando, Sven Erb, Alexander Cropp, Thomas Voirin, Olivier Dubois-Matra, Gianfranco

More information

ATTITUDE CONTROL FOR GRACE THE FIRST LOW-FLYING SATELLITE FORMATION

ATTITUDE CONTROL FOR GRACE THE FIRST LOW-FLYING SATELLITE FORMATION ATTITUDE CONTROL FOR GRACE THE FIRST LOW-FLYING SATELLITE FORMATION J. Herman (1), D. Presti (1,2), A. Codazzi (1), C. Belle (3) (1) German SpaceOperations Centre; DLR-GSOC, 82234 Wessling Germany, E-mail:

More information

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture Berlin, 20 th - 24 th 2015 University of Pisa 10 th IAA Symposium on Small Satellites for Earth Observation Student Conference A Regional Microsatellite Constellation with Electric Propulsion In Support

More information

ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS

ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS IAA-AAS-DyCoSS2-14-07-02 ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS Ozan Tekinalp, * Omer Atas INTRODUCTION Utilization of solar sails for the de-orbiting of satellites is

More information

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna Presentation by Indian Delegation to 49 th STSC UNCOPUOS February 2012 Vienna ASTROSAT Astrosat is India s first dedicated multiwavelength astronomy satellite with a capability to observe target sources

More information

The Attitude and Orbit Control of XMM

The Attitude and Orbit Control of XMM carel haakman r bulletin 100 december 1999 The Attitude and Orbit Control of XMM A. Elfving XMM Project, ESA Directorate for Scientific Programmes, ESTEC, Noordwijk, The Netherlands The Attitude and Orbit

More information

Attitude Determination and Control

Attitude Determination and Control Attitude Determination and Control Dan Hegel Director, Advanced Development hegel@bluecanyontech.com 1 Dan Hegel - Intro Director of Advanced Development at Blue Canyon Technologies Advanced mission concepts

More information

Exploring Space on a Small Satellite, STSAT-2 : A Test Bed for New Technologies

Exploring Space on a Small Satellite, STSAT-2 : A Test Bed for New Technologies 17 th AIAA/USU Conference on Small Satellites @ Logan, Utah, USA. - 2003.8.13. Exploring Space on a Small Satellite, STSAT-2 : A Test Bed for New Technologies Jong-Tae LIM, Myeong-Ryong NAM, Kwangsun RYU,

More information

Agile Maneuvers for Near Earth Object (NEO) Fly-by Missions

Agile Maneuvers for Near Earth Object (NEO) Fly-by Missions Agile Maneuvers for Near Earth Object (NEO) Fly-by Missions Vaios Lappas 1, Bong Wie 2 and Jozef van der Ha 3 1 Surrey Space Centre, University of Surrey, GU2 7XH, United Kingdom, E-mail: v.lappas@surrey.ac.uk

More information

Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels

Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels Fuyuto Terui a, Nobutada Sako b, Keisuke Yoshihara c, Toru Yamamoto c, Shinichi Nakasuka b a National Aerospace Laboratory

More information

Status of X-ray Astronomy Satellite Hitomi (ASTRO-H)

Status of X-ray Astronomy Satellite Hitomi (ASTRO-H) tatus of X-ray Astronomy atellite Hitomi (ATRO-H) April 15th, 2016 JAXA Time in this material is expressed in JT (Blank) 2 ontents of explanation today In the previous press briefings, JAXA has reported

More information

DARE Mission and Spacecraft Overview

DARE Mission and Spacecraft Overview DARE Mission and Spacecraft Overview October 6, 2010 Lisa Hardaway, PhD Mike Weiss, Scott Mitchell, Susan Borutzki, John Iacometti, Grant Helling The information contained herein is the private property

More information

Concordia University Department of Electrical and Computer Engineering Fundamentals of Control Systems (ELEC372) S. Hashtrudi Zad

Concordia University Department of Electrical and Computer Engineering Fundamentals of Control Systems (ELEC372) S. Hashtrudi Zad Concordia University Department of Electrical and Computer Engineering Fundamentals of Control Systems (ELEC372) S. Hashtrudi Zad Project: Analysis of the Performance of a Satellite Pitch Control System

More information

An Inverse Dynamics Attitude Control System with Autonomous Calibration. Sanny Omar Dr. David Beale Dr. JM Wersinger

An Inverse Dynamics Attitude Control System with Autonomous Calibration. Sanny Omar Dr. David Beale Dr. JM Wersinger An Inverse Dynamics Attitude Control System with Autonomous Calibration Sanny Omar Dr. David Beale Dr. JM Wersinger Outline Attitude Determination and Control Systems (ADACS) Overview Coordinate Frames

More information

Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis, V. Antakis, G.

Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis, V. Antakis, G. GLEME: GLOBAL LIDAR EXPLORATION OF THE MESOSPHERE Project Technical Officer: E. Armandillo Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis,

More information

CHAPTER 3 PERFORMANCE

CHAPTER 3 PERFORMANCE PERFORMANCE The launch performance given in this chapter is based on the following assumptions: The LV system parameters being all nominal values; Mass of the LV adapter and the separation system are included

More information

Overview of the Current Baseline of the Solar-C Spacecraft System

Overview of the Current Baseline of the Solar-C Spacecraft System Overview of the Current Baseline of the Solar-C Spacecraft System Keisuke YOSHIHARA (JAXA) 11 November, 2013 Solar-C Science Meeting Hida Earth Wisdom Center, Takayama, Japan Solar-C Spacecraft System

More information

Lunette: Satellite to Satellite Gravity Mapping of the Moon

Lunette: Satellite to Satellite Gravity Mapping of the Moon Lunette: Satellite to Satellite Gravity Mapping of the Moon Maria Short 9th ILEWG International Conference on Exploration and Utilisation n of the Moon Authors: M. Short, C. Short, A. Philip, J. Gryzmisch,

More information

Design of Attitude Determination and Control Subsystem

Design of Attitude Determination and Control Subsystem Design of Attitude Determination and Control Subsystem 1) Control Modes and Requirements Control Modes: Control Modes Explanation 1 ) Spin-Up Mode - Acquisition of Stability through spin-up maneuver -

More information

FORMOSAT-3 Satellite Thermal Control Design and Analysis *

FORMOSAT-3 Satellite Thermal Control Design and Analysis * Journal of Aeronautics, Astronautics and Aviation, Series A, Vol.39, No.4, pp.287-292 (27) 287 Technical Note FORMOSAT-3 Satellite Thermal Control Design and Analysis * Ming-Shong Chang **, Chia-Ray Chen,

More information

VELOX-CI: Advanced Application of GPS for Radio Occultation and Satellite Attitude Determination

VELOX-CI: Advanced Application of GPS for Radio Occultation and Satellite Attitude Determination VELOX-CI: Advanced Application of GPS for Radio Occultation and Satellite Attitude Determination Yung-Fu Tsai, Guo Xiong Lee and Kay Soon Low Satellite Research Centre (SaRC) School of Electrical and Electronic

More information

NEW EUMETSAT POLAR SYSTEM ATTITUDE MONITORING SOFTWARE

NEW EUMETSAT POLAR SYSTEM ATTITUDE MONITORING SOFTWARE NEW EUMETSAT POLAR SYSTEM ATTITUDE MONITORING SOFTWARE Pablo García Sánchez (1), Antonio Pérez Cambriles (2), Jorge Eufrásio (3), Pier Luigi Righetti (4) (1) GMV Aerospace and Defence, S.A.U., Email: pgarcia@gmv.com,

More information

BINARY ASTEROID ORBIT MODIFICATION

BINARY ASTEROID ORBIT MODIFICATION 2013 IAA PLANETARY DEFENSE CONFERENCE BEAST BINARY ASTEROID ORBIT MODIFICATION Property of GMV All rights reserved TABLE OF CONTENTS 1. Mission Concept 2. Asteroid Selection 3. Physical Principles 4. Space

More information

The post launch assessment review confirmed the following previous assertions about the mission status:

The post launch assessment review confirmed the following previous assertions about the mission status: 1 GRACE Newsletter No. 2 August 15, 2003 Topics: http://www.csr.utexas/grace/ http://www.gfz-potsdam.de/grace 1. Editorial 2. Major events in Mission Operations since last Newsletter 3. Current status

More information

Prox-1 Attitude Determination and Control

Prox-1 Attitude Determination and Control Prox-1 Attitude Determination and Control Amanda N. Pietruszewski Prox-1 Attitude Determination and Control Subsystem Lead gth694e@mail.gatech.edu David A. Spencer Research Advisor, Prox-1 Principal Investigator

More information

Quaternion-Based Tracking Control Law Design For Tracking Mode

Quaternion-Based Tracking Control Law Design For Tracking Mode A. M. Elbeltagy Egyptian Armed forces Conference on small satellites. 2016 Logan, Utah, USA Paper objectives Introduction Presentation Agenda Spacecraft combined nonlinear model Proposed RW nonlinear attitude

More information

New Worlds Observer Final Report Appendix E. Section E: Starshades Subsection E.6: Starshade Spacecraft Lead Author: Amy Lo

New Worlds Observer Final Report Appendix E. Section E: Starshades Subsection E.6: Starshade Spacecraft Lead Author: Amy Lo Section E: Starshades Subsection E.6: Starshade Spacecraft Lead Author: Amy Lo Introduction Starshade Spacecraft Functional Requirements The main function of the starshade spacecraft is to: 1) support

More information

The NEAR Guidance and Control System

The NEAR Guidance and Control System THE NEAR GUIDANCE AND CONTROL SYSTEM The NEAR Guidance and Control System Thomas E. Strikwerda, J. Courtney Ray, and David R. Haley The Near Earth Asteroid Rendezvous (NEAR) spacecraft guidance and control

More information

Naoteru Gouda(NAOJ) Taihei Yano (NAOJ) Nano-JASMINE project team

Naoteru Gouda(NAOJ) Taihei Yano (NAOJ) Nano-JASMINE project team A very small satellite for space astrometry: Nano-JASMINE Yoichi Hatsutori(NAOJ) Naoteru Gouda(NAOJ) Yukiyasu Kobayashi(NAOJ) Taihei Yano (NAOJ) Yoshiyuki Yamada (Kyoto Univ.) Nano-JASMINE project team

More information

What s Up in Space? Dean W McCall, Ed.D.

What s Up in Space? Dean W McCall, Ed.D. What s Up in Space? Dean W McCall, Ed.D. In no particular order Brief aerospace CV Systems Engineering Space mission types Examples Gotchas Terminology & Slang Please ask questions McCall Background Hughes

More information

ADCSS 2017: Sodern presentation

ADCSS 2017: Sodern presentation ADCSS 2017: Sodern presentation 1 Agenda Star trackers road map: a wide range of products End of CCD star trackers: SED26 replaced by Horus as standalone multi mission star tracker Hydra maintained beyond

More information

AKATSUKI s Second Journey to Venus. 7 October 2015 Chikako Hirose Japan Aerospace Exploration Agency

AKATSUKI s Second Journey to Venus. 7 October 2015 Chikako Hirose Japan Aerospace Exploration Agency AKATSUKI s Second Journey to Venus 7 October 2015 Chikako Hirose Japan Aerospace Exploration Agency My STK usage history (2005-2009) JAXA conjunction assessment system JAXA CA system was developed in 2007

More information

A CubeSat Mission for Exoplanet Transit Detection and Astroseismology

A CubeSat Mission for Exoplanet Transit Detection and Astroseismology A CubeSat Mission for Exoplanet Transit Detection and Astroseismology Jeremy Bailey (UNSW, Physics) Steve Tsitas (UNSW, ACSER) Daniel Bayliss (RSAA, ANU) Tim Bedding (Univ. Sydney) ESO Very Large Telescope

More information

The division of energy sources and the working substance in electric propulsioncan determines the range of applicability of electro jet propulsion sys

The division of energy sources and the working substance in electric propulsioncan determines the range of applicability of electro jet propulsion sys Vacuum Arc thruster development for Horyu-4 satellite KaterynaAheieva, Shingo Fuchikami, Hiroshi Fukuda, Tatsuo Shimizu, Kazuhiro Toyoda, Mengu Cho Kyushu Institute of Technology1 N589502a@mail.kyutech.jp

More information

STS41-D Solar Array Flight Experiment

STS41-D Solar Array Flight Experiment The Space Congress Proceedings 1984 (21st) New Opportunities In Space Apr 1st, 8:00 AM STS41-D Solar Array Flight Experiment Gary F. Turner Manager, Solar Array Programs Lockheed Missiles & Space Co.,

More information

CNESOC FLIGHT DYNAMICS MONITORING AND COMMAND OPERATIONS DURING GALILEO FOC1 LEOP AND RECOVERY.

CNESOC FLIGHT DYNAMICS MONITORING AND COMMAND OPERATIONS DURING GALILEO FOC1 LEOP AND RECOVERY. CNESOC FLIGHT DYNAMICS MONITORING AND COMMAND OPERATIONS DURING GALILEO FOC1 LEOP AND RECOVERY Jorge Lopez Merida (1), Livio Tucci (2), Riccardo Di Corato (3), Fernando Alonso Zotes (4) (1) GMV @ESA/ESOC,

More information

From an experimental idea to a satellite

From an experimental idea to a satellite From an experimental idea to a satellite Hansjörg Dittus Institute of Space Systems, Bremen German Aerospace Center Looking back in History Yukawa potential Gravity at large scales Weak gravity Nordtvedt

More information

MAE 142 Homework #5 Due Friday, March 13, 2009

MAE 142 Homework #5 Due Friday, March 13, 2009 MAE 142 Homework #5 Due Friday, March 13, 2009 Please read through the entire homework set before beginning. Also, please label clearly your answers and summarize your findings as concisely as possible.

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Vehicle dynamics and control is a rich subject involving a variety of topics from mechanics and control theory. In a first course in dynamics, students learn that the motion of a

More information

REACTION WHEEL CONFIGURATIONS FOR HIGH AND MIDDLE INCLINATION ORBITS

REACTION WHEEL CONFIGURATIONS FOR HIGH AND MIDDLE INCLINATION ORBITS REACTION WHEEL CONFIGURATIONS FOR HIGH AND MIDDLE INCLINATION ORBITS Zuliana Ismail and Renuganth Varatharajoo Department of Aerospace Engineering, Universiti Putra Malaysia, Malaysia E-Mail: zuliana.ismail@gmail.com

More information

Status of GOCI-II Development

Status of GOCI-II Development Status of GOCI-II Development Seongick CHO On the behalf of Dr. YoungJe Park, Director of KOSC Korea Ocean Satellite Center (KOSC) Korea Institute of Ocean Science & Technology (KIOST) IOCS Meeting 2015,

More information

PRATHAM IIT BOMBAY STUDENT SATELLITE. Critical Design Report Attitude Determination and Control System (ADCS) for Pratham

PRATHAM IIT BOMBAY STUDENT SATELLITE. Critical Design Report Attitude Determination and Control System (ADCS) for Pratham PRATHAM IIT BOMBAY STUDENT SATELLITE Critical Design Report Attitude Determination and Control System (ADCS) for Pratham Indian Institute of Technology, Bombay 26 June, 2010 Chapter 1 Objectives of ADCS

More information

Attitude Determination using Infrared Earth Horizon Sensors

Attitude Determination using Infrared Earth Horizon Sensors SSC14-VIII-3 Attitude Determination using Infrared Earth Horizon Sensors Tam Nguyen Department of Aeronautics and Astronautics, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge,

More information

Launches and On-Orbit Performance

Launches and On-Orbit Performance Launches and On-Orbit Performance An Update on Nanosatellite Missions at the UTIAS Space Flight Laboratory Daniel D. Kekez,, Robert E. Zee, Freddy M. Pranajaya Space Flight Laboratory University of Toronto

More information

Individual Adapter Solutions for Multi-Spacecraft Launches on Rockot

Individual Adapter Solutions for Multi-Spacecraft Launches on Rockot SSC14-IV-9 Individual Adapter Solutions for Multi-Spacecraft Launches on Rockot York Viertel, Peter Freeborn, Markus Poetsch, Anna Zorina Eurockot Launch Services GmbH Flughafenalle 26, 28199 Bremen, Germany

More information

Rosetta Optical Navigation

Rosetta Optical Navigation Rosetta Optical Navigation Mathias Lauer ESA / ESOC / Flight Dynamics Page 1 Overview Rosetta: Mission and Spacecraft Asteroid Flybys (Steins): - Scenario - Navigation Strategy - Image Processing - Autonomous

More information

GODDARD RAPID SPACECRAFT DEVELOPMENT OFFICE (RSDO) CATALOG SPACECRAFT BUS APPROACH. RSDO Catalog

GODDARD RAPID SPACECRAFT DEVELOPMENT OFFICE (RSDO) CATALOG SPACECRAFT BUS APPROACH. RSDO Catalog ABSTRACT This Paper is a Case Study Describing the Adaptation of Spectrum Astro s SA- 200HP (High Performance) RSDO Catalog Spacecraft Bus to Two Very Different Low Earth Orbiting (LEO) Science Missions,

More information

SENTINEL-1A FLIGHT DYNAMICS LEOP OPERATIONAL EXPERIENCE

SENTINEL-1A FLIGHT DYNAMICS LEOP OPERATIONAL EXPERIENCE SENTINEL-1A FLIGHT DYNAMICS LEOP OPERATIONAL EXPERIENCE M. A. Martín Serrano (1), M. Catania (2), J. Sánchez (3), A. Vasconcelos (4), D. Kuijper (5) and X. Marc (6) (1)(4) SCISYS Deutschland GmbH at ESA/ESOC,

More information

Nano-JASMINE project

Nano-JASMINE project Nano-JASMINE project NAOJ Y. Kobayashi Overview nj project Plan of talk Aim of nj project Historic facts Collaboration with University of Tokyo Telescope and CCD Observation along great circle Cosmic radiation

More information

A Stellar Gyroscope for CubeSat Attitude Determination

A Stellar Gyroscope for CubeSat Attitude Determination A Stellar Gyroscope for CubeSat Attitude Determination Samir A. Rawashdeh and James E. Lumpp, Jr. Space Systems Laboratory University of Kentucky James Barrington-Brown and Massimiliano Pastena SSBV Space

More information

Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond

Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond Adam Nelessen / Alex Austin / Joshua Ravich / Bill Strauss NASA Jet Propulsion Laboratory Ethiraj Venkatapathy / Robin Beck

More information

Andrea Sainati, Anupam Parihar, Stephen Kwan Seklam 31 A Very Low Altitude Constellation For Earth Observation

Andrea Sainati, Anupam Parihar, Stephen Kwan Seklam 31 A Very Low Altitude Constellation For Earth Observation Andrea Sainati, Anupam Parihar, Stephen Kwan Seklam 31 A Very Low Altitude Constellation For Earth Observation Andrea Sainati, Anupam Parihar, Stephen Kwan Seklam MSc students, Department of Aerospace

More information

Technical Note. Secondary AOCS Design. Laszlo Szerdahelyi, Astrium GmbH. Walter Fichter, Astrium GmbH. Alexander Schleicher, ZARM Date:

Technical Note. Secondary AOCS Design. Laszlo Szerdahelyi, Astrium GmbH. Walter Fichter, Astrium GmbH. Alexander Schleicher, ZARM Date: Technical Note HYPER Title: Secondary AOCS Design Laszlo Szerdahelyi, Astrium GmbH Walter Fichter, Astrium GmbH Prepared by: Alexander Schleicher, ZARM Date: 28-05-2003 Project Management: Ulrich Johann

More information

Using the International Space Station as an Engineering Technology Research Laboratory for Space Based Telescopes

Using the International Space Station as an Engineering Technology Research Laboratory for Space Based Telescopes Using the International Space Station as an Engineering Technology Research Laboratory for Space Based Telescopes David W. Miller Director, Professor, MIT Dept. of Aeronautics and Astronautics Javier de

More information

IAC-11-C1.5.9 INERTIA-FREE ATTITUDE CONTROL OF SPACECRAFT WITH UNKNOWN TIME-VARYING MASS DISTRIBUTION

IAC-11-C1.5.9 INERTIA-FREE ATTITUDE CONTROL OF SPACECRAFT WITH UNKNOWN TIME-VARYING MASS DISTRIBUTION 6nd International Astronautical Congress, Cape Town, SA. Copyright by the International Astronautical Federation. All rights reserved IAC--C.5.9 INERTIA-FREE ATTITUDE CONTROL OF SPACECRAFT WITH UNKNOWN

More information

ONE of the challenges in the design of attitude control

ONE of the challenges in the design of attitude control IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1 Adaptive Sliding Mode Fault Tolerant Attitude Tracking Control for Flexible Spacecraft Under Actuator Saturation Bing Xiao, Qinglei Hu, Member, IEEE, YouminZhang,

More information

James Paul Mason CU Boulder LASP

James Paul Mason CU Boulder LASP On-Orbit Performance and the First Flight of the BCT XACT 3-axis ADCS James Paul Mason CU Boulder LASP photo credit: NASA/ESA Tim Peake Matthew D. Baumgart, Thomas N. Woods, Chloe Downs, (BCT) Daniel Hegel,

More information

Satellite Attitude Determination with Attitude Sensors and Gyros using Steady-state Kalman Filter

Satellite Attitude Determination with Attitude Sensors and Gyros using Steady-state Kalman Filter Satellite Attitude Determination with Attitude Sensors and Gyros using Steady-state Kalman Filter Vaibhav V. Unhelkar, Hari B. Hablani Student, email: v.unhelkar@iitb.ac.in. Professor, email: hbhablani@aero.iitb.ac.in

More information

Nano-JASMINE: A Small Infrared Astrometry Satellite

Nano-JASMINE: A Small Infrared Astrometry Satellite SSC07-VI-4 Nano-JASMINE: A Small Infrared Astrometry Satellite 21 st Annual AIAA/USU Conference on Small Satellites 14th/August/2007 Intelligent Space Systems Laboratory, University of Tokyo Nobutada Sako,

More information

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010 Orbit Design Marcelo Suárez Orbit Design Requirements The following Science Requirements provided drivers for Orbit Design: Global Coverage: the entire extent (100%) of the ice-free ocean surface to at

More information

Absolute Radiometric Calibration Using a Solar Reflector in Near-Geosynchronous Orbit

Absolute Radiometric Calibration Using a Solar Reflector in Near-Geosynchronous Orbit Absolute Radiometric Calibration Using a Solar Reflector in Near-Geosynchronous Orbit Richard J. Rudy, Ray W. Russell, Dan J. Mabry, Andrea M. Gilbert, Paul V. Anderson, David J. Gutierrez (The Aerospace

More information

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded Code No: R05322106 Set No. 1 1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded rocket nozzles. (b) While on its way into orbit a space shuttle with an initial mass

More information

Joint Milli-Arcsecond Pathfinder Survey (JMAPS): Overview and Application to NWO Mission

Joint Milli-Arcsecond Pathfinder Survey (JMAPS): Overview and Application to NWO Mission Joint Milli-Arcsecond Pathfinder Survey (JMAPS): Overview and Application to NWO Mission B. Dorland and R. Dudik US Naval Observatory 11 March 2009 1 Mission Overview The Joint Milli-Arcsecond Pathfinder

More information

Ball Aerospace & Technologies Corp. & L Garde Inc.

Ball Aerospace & Technologies Corp. & L Garde Inc. Ball Aerospace & Technologies Corp. & L Garde Inc. Rapid De-Orbit of LEO Space Vehicles Using Towed owed Rigidizable Inflatable nflatable Structure tructure (TRIS) Technology: Concept and Feasibility Assessment

More information

ExoplanetSat: A Nanosatellite Space Telescope for Detecting Transiting Exoplanets

ExoplanetSat: A Nanosatellite Space Telescope for Detecting Transiting Exoplanets 1 2 ExoplanetSat: A Nanosatellite Space Telescope for Detecting Transiting Exoplanets Matthew W. Smith 1 (m_smith@mit.edu), Sara Seager 1, Christopher M. Pong 1, Sungyung Lim 2, Matthew W. Knutson 1, Timothy

More information

Structure and algorithms of motion control system's software of the small spacecraft

Structure and algorithms of motion control system's software of the small spacecraft Structure and algorithms of motion control system's software of the small spacecraft Filatov A.V., Progress Space Rocket Centre, Samara Tkachenko I.S., Tyugashev A.A., Sopchenko E.V. Samara State Aerospace

More information

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT INCA Ionospheric Neutron Content Analyzer New Mexico State University University NanoSat-8 CubeSat Workshop Presentation August 2, 2014; Logan, UT Presentation Outline Mission Overview Mission Relevance

More information

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT INCA Ionospheric Neutron Content Analyzer New Mexico State University University NanoSat-8 CubeSat Workshop Presentation August 2, 2014; Logan, UT Mission Overview Mission Relevance ConOps INCA Payload

More information