AGB stars as laboratories for nuclear physics

Size: px
Start display at page:

Download "AGB stars as laboratories for nuclear physics"

Transcription

1 AGB stars as laboratories for nuclear physics John Lattanzio with Amanda Karakas 1, Lisa Elliott, Simon Campbell, Maria Lugaro 2, Carolyn Doherty Centre for Stellar and Planetary Astrophysics, Monash University,Australia 1 now at Centre for Computational Astrophysics, St Marys University, Halifax 2 now at Institute of Astronomy, Cambridge University

2

3 AGB Nucleosynthesis 1. He Flashes and hot bottoms etc 2. C stars 3. S-process elements F 25 Mg and 26 Mg (and Al isotopes) 23 Na 7 Li 14 N 9. etc

4 HR Diagram (Globular Cluster) AGB (Second giant branch) Horizontal Branch (core He burning) RGB (first giant branch) Blue Stragglers Main sequence (H burning) White Dwarfs

5 HR Diagram (Globular Cluster) Here be monsters Giants complicated! Friendly Main Sequence Stars Graveyard

6 Nucleosynthesis

7 Z = number of protons Chart of the Nuclides: The big boys/girls periodic table N = number of neutrons

8 Why was it OK to have H, He and Z? For the structure we need the energy generation Burning H to He or He to C covers most of HRD! So we can make accurate models with only H and He burning Very few species needed Me: H, He 3, He 4, C 12, N 14 and O 16

9 H burning PP chains or CNO cycle(s) PP chains: pure H gas is all that s needed CNO cycles require CNO as catalysts

10 First reaction: p + p D 2 + γ D 2 + p He 3 + γ He 3 + He 3 He 4 + 2p PP Chains

11 Branching reaction: PP Chains He 3 + He 4 Be 7 + γ Be 7 + p B 8 He 4 + He 4 Be7 + e Li 7 Li 7 + p He 4 + He 4

12 CNO Cycles: First step is CN cycle C p C 12 + He 4

13 CNO Cycles

14 And then things went CRAZY!

15 Who were the trouble makers? Pre-solar meteorite grains Pieces of stars! In the lab!

16 The Nuclear Network we now use 74 species 506 reactions

17 Basic Stellar Evolution: Mass is the key! no Die as a Brown Dwarf Burn H? yes Die as a He White Dwarf no Burn He? yes no Die as a CO White Dwarf Burn C? yes Die as a O-Ne-Mg White Dwarf no More burning? yes Wolf-Rayet SN II

18 Basic Stellar Evolution: Mass is the key! Mass Initial Mass Function: N ~ M -2.3 SN & WR AGB stars Don t burn more O-Ne-Mg WD Burn more Don t burn C C-O White Dwarf Burn C Don t burn He He White Dwarf Burn He Don t burn H Brown Dwarf Burn H

19 Basic Stellar Evolution at M=1 and 5 Basic Evolution: M=1 & 5

20 H burning summary at M=1

21 End of H burning: He ignition

22 Following He exhaustion: AGB Evolution

23 Early AGB Evolution: Second Dredge-Up

24 Thermally pulsing AGB phase Deep convective Envelope Thin radiative zone H-burning shell He-rich intershell He-burning shell CO core

25 AGB Evolution

26 AGB evolution: M = 6.5, Z=0.02

27 AGB Evolution Energy Sources

28 AGB Evolution Shell Movement

29 Dredge-Up Parameter: λ

30 AGB Evolution Mixing Zones

31 Anatomy of a Thermal Pulse He - C 14 N to 22 Ne M>3: 22 Ne to 25 Mg and 26 Mg

32 AGB movies

33 M MS S C(N) Add C at each drede-up episode Eventually C/O > 1 M star turns into a C star Fits observations (pretty much )

34 Neutron capture: the s and r β + decay: p n + ν + β + processes Valley of beta stability β - decay: n p + ν + β -

35 S-process elements in AGB stars Neutron capture on Fe: Sr, Y, Zr, Ba, Kr etc

36 Mg isotopes in field stars Gay and Lambert found some enhancements in heavy isotopes Does not fit SN models

37 Anatomy of a Thermal Pulse He - C 14 N to 22 Ne M>3: 22 Ne to 25 Mg and 26 Mg

38 Mg 25,26 (and maybe Al 26,27) For T > 300 million (M > 2.5) Al 26 and Al 27 dredged to surface Mg 25 and Mg 26 dredged to surface Another source of neutrons! Ne 22 (α,n)mg 25 Ne 22 (α,γ ) Mg 26 Al 26 and Al 27 made by H shell via proton captures on Mg Al engulfed by convection

39 Intershell abundances: as a function of mass & Z

40 Evolution of the Mg isotopes

41 Massive stars produce most of the galactic magnesium, which is primarily 24 Mg at low Z But 3-6 M sun AGB stars can produce large amounts of the heavy magnesium isotopes (Y. Fenner, A. Karakas, B. Gibson, J. Lattanzio)

42 AGB stars are needed to recover the observed 25,26 M/ 24 Mg ratios at low metallicity Limongi et al. (2002) calculations generate more 25,26 Mg than Woosley & Weaver (1995) (Y. Fenner, A. Karakas, B. Gibson, J. Lattanzio, PASA, 2003)

43 Fluorine Observations show [F/O] correlates with C/O This implicates thermal pulses Complicated - different reaction paths - depends on mass - depends on composition - depends on pulse number

44 Fluorine

45 3. And finally N 15 (α,γ)f Protons made here by Al 26 (n,p)mg O 18 (p,α)n Protons made here by N 14 (n,p)c 14

46 GCE of 19 F Renda et al (submitted) SN, WR and AGB SN & WR x = Milky Way = LMC = ω Cen SN only

47 Sodium 12 C 14 N 22 Ne 23 Na 23 Na 22 Ne 23 Na Note: some 23 Na is primary and some is secondary!

48 Making Li

49 Making Li

50 Primary Nitrogen in the early Universe Various observations 9eg Lyman alpha clouds) show a primary source of N in the early Universe AGB stars again? Primary C is produced by dredge-up (H He C) CNO cycles make N 14 from C and O Thus HBB makes Primary N 14

51

52 Summary of Nucleosynthesis in AGB stars Dredge-up increases: C, Ne 22, Mg 25, Mg 26 H shell and HBB (M>4) burns: 1) C and O into N: O down and N up 2) Ne22 into Na23: Na up 3) Mg25 and Mg26 made: Mg 25,26 increased More massive stars (M > 6?): 1) Mg24 burned into Al27: Mg 24 down Al 27 up Overall 1) Increases in N, Na, heavy Mg, Al 2) Decreases in O, Mg 24

53 The End?

54 More appropriate for a theorist Play Tom Lehrer Song

The Monash Chemical Yields Project

The Monash Chemical Yields Project The Monash Chemical Yields Project Carolyn Doherty (Konkoly Observatory) George Angelou Simon W. Campbell Ross Church Thomas Constantino Sergio Cristallo Pilar Gil Pons Amanda Karakas John Lattanzio Maria

More information

Rubidium, zirconium, and lithium production in massive AGB stars

Rubidium, zirconium, and lithium production in massive AGB stars Rubidium, zirconium, and lithium production in massive AGB stars Sterrekundig Instituut, University of Utrecht, Postbus 80000, 3508 TA Utrecht, The Netherlands E-mail: m.a.vanraai@students.uu.nl M. Lugaro

More information

Evolution and nucleosynthesis of AGB stars

Evolution and nucleosynthesis of AGB stars Evolution and nucleosynthesis of AGB stars Amanda Karakas Research School of Astronomy & Astrophysics Mount Stromlo Observatory Lecture Outline 1. Introduction to AGB stars; evolution prior to the AGB

More information

Evolution and nucleosynthesis prior to the AGB phase

Evolution and nucleosynthesis prior to the AGB phase Evolution and nucleosynthesis prior to the AGB phase Amanda Karakas Research School of Astronomy & Astrophysics Mount Stromlo Observatory Lecture Outline 1. Introduction to AGB stars, and the evolution

More information

Evolution of Intermediate-Mass Stars

Evolution of Intermediate-Mass Stars Evolution of Intermediate-Mass Stars General properties: mass range: 2.5 < M/M < 8 early evolution differs from M/M < 1.3 stars; for 1.3 < M/M < 2.5 properties of both mass ranges MS: convective core and

More information

Introduction to nucleosynthesis in asymptotic giant branch stars

Introduction to nucleosynthesis in asymptotic giant branch stars Introduction to nucleosynthesis in asymptotic giant branch stars Amanda Karakas 1 and John Lattanzio 2 1) Research School of Astronomy & Astrophysics Mt. Stromlo Observatory 2) School of Mathematical Sciences,

More information

The MonKey Project. An Update on Stellar Yields

The MonKey Project. An Update on Stellar Yields The MonKey Project An Update on Stellar Yields Current State of the Art Yields The most boring part of stellar evolution? Or is it isochrone construction? Run lots of models and collect numbers Well its

More information

Stellar Structure and Evolution

Stellar Structure and Evolution Stellar Structure and Evolution Achim Weiss Max-Planck-Institut für Astrophysik 01/2014 Stellar Structure p.1 Stellar evolution overview 01/2014 Stellar Structure p.2 Mass ranges Evolution of stars with

More information

Oxygen in AGB stars and the relevance of planetary nebulae to mapping oxygen in the Universe

Oxygen in AGB stars and the relevance of planetary nebulae to mapping oxygen in the Universe Oxygen in AGB stars and the relevance of planetary nebulae to mapping oxygen in the Universe Amanda Karakas Research School of Astronomy & Astrophysics Mount Stromlo Observatory, Australia Introduction

More information

BRANCHINGS, NEUTRON SOURCES AND POISONS: EVIDENCE FOR STELLAR NUCLEOSYNTHESIS

BRANCHINGS, NEUTRON SOURCES AND POISONS: EVIDENCE FOR STELLAR NUCLEOSYNTHESIS BRANCHINGS, NEUTRON SOURCES AND POISONS: EVIDENCE FOR STELLAR NUCLEOSYNTHESIS MARIA LUGARO ASTRONOMICAL INSTITUTE UNIVERSITY OF UTRECHT (NL) STRUCTURE OF THE TALK 1. Evidence for neutron sources in AGB

More information

Rob Izzard. February 21, University of Utrecht. Binary Star Nucleosynthesis. Nucleosynthesis. Single Star Evolution. Binary Star.

Rob Izzard. February 21, University of Utrecht. Binary Star Nucleosynthesis. Nucleosynthesis. Single Star Evolution. Binary Star. University of Utrecht February 21, 2006 Contents Mechanisms Proton capture: H He via pp-chain, CNO, NeNa, MgAl The Sun and most stars Alpha capture: He C, C O, O Ne... Fe Evolved stars C-burning: C + C

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

Mixing, Nucleosynthesis, and Stellar Yields in Intermediate Mass AGB stars

Mixing, Nucleosynthesis, and Stellar Yields in Intermediate Mass AGB stars Cat's Eye Nebula, APOD 4 Sep 02, Corradi & Goncalves Mixing, Nucleosynthesis, and Stellar Yields in Intermediate Mass AGB stars Falk Herwig Los Alamos National Laboratory, New Mexico, USA Theoretical Astrophysics

More information

Pre Main-Sequence Evolution

Pre Main-Sequence Evolution Stellar Astrophysics: Stellar Evolution Pre Main-Sequence Evolution The free-fall time scale is describing the collapse of the (spherical) cloud to a protostar 1/2 3 π t ff = 32 G ρ With the formation

More information

Einführung in die Astronomie II

Einführung in die Astronomie II Einführung in die Astronomie II Teil 10 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 15. Juni 2017 1 / 47 Overview part 10 Death of stars AGB stars PNe SNe

More information

LECTURE 15 Jerome Fang -

LECTURE 15 Jerome Fang - LECTURE 15 Jerome Fang - Making heavy elements in low-mass stars: the s-process (review) White dwarfs: diamonds in the sky Evolution of high-mass stars (M > 8 M ); post-helium burning fusion processes

More information

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae I Outline of scenarios for neutron capture nucleosynthesis (Red Giants, Supernovae) and implications for laboratory

More information

Lifespan on the main sequence. Lecture 9: Post-main sequence evolution of stars. Evolution on the main sequence. Evolution after the main sequence

Lifespan on the main sequence. Lecture 9: Post-main sequence evolution of stars. Evolution on the main sequence. Evolution after the main sequence Lecture 9: Post-main sequence evolution of stars Lifetime on the main sequence Shell burning and the red giant phase Helium burning - the horizontal branch and the asymptotic giant branch The death of

More information

The Later Evolution of Low Mass Stars (< 8 solar masses)

The Later Evolution of Low Mass Stars (< 8 solar masses) The sun - past and future The Later Evolution of Low Mass Stars (< 8 solar masses) During 10 billion years the suns luminosity changes only by about a factor of two. After that though, changes become rapid

More information

Nucleosynthesis in heliumenriched

Nucleosynthesis in heliumenriched Nucleosynthesis in heliumenriched stars Amanda Karakas With Anna Marino and David Nataf Outline 1. The effect of helium enrichment on the evolution and nucleosynthesis of lowmetallicity AGB models 2. The

More information

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Goals: Death of Stars Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Low Mass Stars (M

More information

A Zoo of Ancient Stellar Relics in our Galactic Halo

A Zoo of Ancient Stellar Relics in our Galactic Halo A Zoo of Ancient Stellar Relics in our Galactic Halo Simon W. Campbell1,2 1) GAA, Dept. Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya 2) CSPA, Australia (Centre for Stellar and Planetary

More information

STELLAR HEAVY ELEMENT ABUNDANCES AND THE NATURE OF THE R-PROCESSR. JOHN COWAN University of Oklahoma

STELLAR HEAVY ELEMENT ABUNDANCES AND THE NATURE OF THE R-PROCESSR. JOHN COWAN University of Oklahoma STELLAR HEAVY ELEMENT ABUNDANCES AND THE NATURE OF THE R-PROCESSR JOHN COWAN University of Oklahoma First Stars & Evolution of the Early Universe (INT) - June 19, 2006 Top 11 Greatest Unanswered Questions

More information

MAURIZIO SALARIS AGB STARS STRUCTURE 2 nd dredge up only for masses above ~4 M Early AGB Thermal pulses M=2.0M Z=0.02 Weiss & Ferguson (2009) HOT BOTTOM BURNING The minimum mass for HBB decreases with

More information

Wind beyond the tip of the AGB and its relevance to stardust grain data

Wind beyond the tip of the AGB and its relevance to stardust grain data Wind beyond the tip of the AGB and its relevance to stardust grain data Centre for Stellar and Planetary Astrophysics Monash University, Victoria, Australia E-mail: Joelene.Buntain@monash.edu M. Lugaro

More information

Lecture 16: Evolution of Low-Mass Stars Readings: 21-1, 21-2, 22-1, 22-3 and 22-4

Lecture 16: Evolution of Low-Mass Stars Readings: 21-1, 21-2, 22-1, 22-3 and 22-4 Lecture 16: Evolution of Low-Mass Stars Readings: 21-1, 21-2, 22-1, 22-3 and 22-4 For the protostar and pre-main-sequence phases, the process was the same for the high and low mass stars, and the main

More information

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission Gamma-ray nucleosynthesis N. Mowlavi Geneva Observatory Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission 1 I. Predictions 2 300 250 200 150 100 50 10 6

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Nuclear Reactions in Stellar Interiors Binding Energy Coulomb Barrier Penetration Hydrogen Burning Reactions

More information

Chapter 17 Lecture. The Cosmic Perspective Seventh Edition. Star Stuff Pearson Education, Inc.

Chapter 17 Lecture. The Cosmic Perspective Seventh Edition. Star Stuff Pearson Education, Inc. Chapter 17 Lecture The Cosmic Perspective Seventh Edition Star Stuff Star Stuff 17.1 Lives in the Balance Our goals for learning: How does a star's mass affect nuclear fusion? How does a star's mass affect

More information

Super-AGB Stars Understood, Unknown and Uncertain Physics

Super-AGB Stars Understood, Unknown and Uncertain Physics Super-AGB Stars Understood, Unknown and Uncertain Physics Richard J. Stancliffe University of Cambridge R.A.S. meeting, 8th February 2008 Page 1 Outline The Understood: overview of stellar evolution The

More information

Impact of Nuclear Reaction Uncertainties on AGB Nucleosynthesis Models

Impact of Nuclear Reaction Uncertainties on AGB Nucleosynthesis Models Impact of Nuclear Reaction Uncertainties on AGB Nucleosynthesis Models, ab R. Gallino, b F. Käppeler, c M. Wiescher, d and C. Travaglio a a INAF - Astronomical Observatory Turin, Turin, Italy b University

More information

Lecture 24: Testing Stellar Evolution Readings: 20-6, 21-3, 21-4

Lecture 24: Testing Stellar Evolution Readings: 20-6, 21-3, 21-4 Lecture 24: Testing Stellar Evolution Readings: 20-6, 21-3, 21-4 Key Ideas HR Diagrams of Star Clusters Ages from the Main Sequence Turn-off Open Clusters Young clusters of ~1000 stars Blue Main-Sequence

More information

Lab Exercises for Low Mass Stars

Lab Exercises for Low Mass Stars School of Physics and Astronomy February 2016 Lab Exercises for Low Mass Stars 1. Isochrones for the globular cluster M4 One common use of stellar models is to determine ages for stellar populations. This

More information

Nucleosynthesis and stellar lifecycles. A. Ruzicka

Nucleosynthesis and stellar lifecycles. A. Ruzicka Nucleosynthesis and stellar lifecycles A. Ruzicka Stellar lifecycles A. Ruzicka Outline: 1. What nucleosynthesis is, and where it occurs 2. Molecular clouds 3. YSO & protoplanetary disk phase 4. Main Sequence

More information

LECTURE 15: WHITE DWARFS AND THE ADVANCED EVOLUTION OF MASSIVE STARS.

LECTURE 15: WHITE DWARFS AND THE ADVANCED EVOLUTION OF MASSIVE STARS. LECTURE 15: WHITE DWARFS AND THE ADVANCED EVOLUTION OF MASSIVE STARS http://apod.nasa.gov/apod/astropix.html White Dwarfs Low mass stars are unable to reach high enough temperatures to ignite elements

More information

10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure

10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure 10/26/16 Lecture Outline 13.1 Star Birth Chapter 13: Star Stuff How do stars form? Our goals for learning: How do stars form? How massive are newborn stars? Star-Forming Clouds Stars form in dark clouds

More information

Stellar Interior: Physical Processes

Stellar Interior: Physical Processes Physics Focus on Astrophysics Focus on Astrophysics Stellar Interior: Physical Processes D. Fluri, 29.01.2014 Content 1. Mechanical equilibrium: pressure gravity 2. Fusion: Main sequence stars: hydrogen

More information

CNO and F abundances in the globular cluster M22 (2012, A&A, 540, 3)

CNO and F abundances in the globular cluster M22 (2012, A&A, 540, 3) CNO and F abundances in the globular cluster M22 (2012, A&A, 540, 3) Alan Alves-Brito ARC Super Science Fellow Gemini Science Meeting 2012: San Francisco, USA, July 16-20 1 Collaborators q David Yong (RSAA,

More information

20. Stellar Death. Interior of Old Low-Mass AGB Stars

20. Stellar Death. Interior of Old Low-Mass AGB Stars 20. Stellar Death Low-mass stars undergo three red-giant stages Dredge-ups bring material to the surface Low -mass stars die gently as planetary nebulae Low -mass stars end up as white dwarfs High-mass

More information

Today. Stars. Evolution of High Mass Stars. Nucleosynthesis. Supernovae - the explosive deaths of massive stars

Today. Stars. Evolution of High Mass Stars. Nucleosynthesis. Supernovae - the explosive deaths of massive stars Today Stars Evolution of High Mass Stars Nucleosynthesis Supernovae - the explosive deaths of massive stars 1 Another good job on exam! Class average was 71% Given the difficulty of the exam, this was

More information

A Star Becomes a Star

A Star Becomes a Star A Star Becomes a Star October 28, 2002 1) Stellar lifetime 2) Red Giant 3) White Dwarf 4) Supernova 5) More massive stars Review Solar winds/sunspots Gases and Dust Molecular clouds Protostars/Birth of

More information

High Mass Stars. Dr Ken Rice. Discovering Astronomy G

High Mass Stars. Dr Ken Rice. Discovering Astronomy G High Mass Stars Dr Ken Rice High mass star formation High mass star formation is controversial! May form in the same way as low-mass stars Gravitational collapse in molecular clouds. May form via competitive

More information

Chapter 12 Stellar Evolution

Chapter 12 Stellar Evolution Chapter 12 Stellar Evolution Guidepost This chapter is the heart of any discussion of astronomy. Previous chapters showed how astronomers make observations with telescopes and how they analyze their observations

More information

CHAPTER 11 LATE EVOLUTION OF M< 8 MSUN

CHAPTER 11 LATE EVOLUTION OF M< 8 MSUN CHAPTER 11 LATE EVOLUTION OF M< 8 MSUN SUMMARY M> 2 SOL AR MASSES H-rich He-rich SUMMARY M> 2 SOL AR MASSES 1) evolution on thermal timescale from ~C to E: very fast : ~105-6 yr ``Hertzspung gap in H-R

More information

Lecture 1: Introduction. Literature: Onno Pols chapter 1, Prialnik chapter 1

Lecture 1: Introduction. Literature: Onno Pols chapter 1, Prialnik chapter 1 Lecture 1: Introduction Literature: Onno Pols chapter 1, Prialnik chapter 1!" Goals of the Course! Understand the global characteristics of stars! Relate relevant microphysics to the global stellar characteristics!

More information

Lecture 16: The life of a low-mass star. Astronomy 111 Monday October 23, 2017

Lecture 16: The life of a low-mass star. Astronomy 111 Monday October 23, 2017 Lecture 16: The life of a low-mass star Astronomy 111 Monday October 23, 2017 Reminders Online homework #8 due Monday at 3pm Exam #2: Monday, 6 November 2017 The Main Sequence ASTR111 Lecture 16 Main sequence

More information

The Later Evolution of Low Mass Stars (< 8 solar masses)

The Later Evolution of Low Mass Stars (< 8 solar masses) The Later Evolution of Low Mass Stars (< 8 solar masses) http://apod.nasa.gov/apod/astropix.html The sun - past and future central density also rises though average density decreases During 10 billion

More information

Supernova events and neutron stars

Supernova events and neutron stars Supernova events and neutron stars So far, we have followed stellar evolution up to the formation of a C-rich core. For massive stars ( M initial > 8 M Sun ), the contracting He core proceeds smoothly

More information

Asymptotic Giant Branch stars

Asymptotic Giant Branch stars Asymptotic Giant Branch stars Falk Herwig Los Alamos National Laboratory Theoretical Astrophysics Group LA Neutron Science Center Falk Herwig, May 8, 2006, 1 Introduction: AGB evolution NGC 6826 (Balick

More information

An Overview of Stellar Evolution

An Overview of Stellar Evolution Stellar Objects: An Overview of Stellar Evolution 1 An Overview of Stellar Evolution 1 the Main Sequence Zero-age Main Sequence stars (ZAMS) are those stars who arrived at the MS recently. Practically,

More information

In the Beginning. After about three minutes the temperature had cooled even further, so that neutrons were able to combine with 1 H to form 2 H;

In the Beginning. After about three minutes the temperature had cooled even further, so that neutrons were able to combine with 1 H to form 2 H; In the Beginning Obviously, before we can have any geochemistry we need some elements to react with one another. The most commonly held scientific view for the origin of the universe is the "Big Bang"

More information

Principles of Astrophysics and Cosmology

Principles of Astrophysics and Cosmology Principles of Astrophysics and Cosmology Welcome Back to PHYS 3368 Friedrich Wilhelm Bessel July 22, 1784 March 17, 1846 Announcements - Reading Assignments: Chapter 4.1-4.3. - Problem Set 6 is due Wednesday,

More information

PoS(NIC XI)013. Nucleosynthesis and chemical evolution of intermediate-mass stars: results from planetary nebulae

PoS(NIC XI)013. Nucleosynthesis and chemical evolution of intermediate-mass stars: results from planetary nebulae Nucleosynthesis and chemical evolution of intermediate-mass stars: results from planetary nebulae E-mail: maciel@astro.iag.usp.br Roberto D. D. Costa E-mail: roberto@astro.iag.usp.br Thais E. P. Idiart

More information

The life of a low-mass star. Astronomy 111

The life of a low-mass star. Astronomy 111 Lecture 16: The life of a low-mass star Astronomy 111 Main sequence membership For a star to be located on the Main Sequence in the H-R diagram: must fuse Hydrogen into Helium in its core. must be in a

More information

Nuclear astrophysics of the s- and r-process

Nuclear astrophysics of the s- and r-process Nuclear astrophysics of the s- and r-process René Reifarth Goethe University Frankfurt Ecole Joliot Curie School on Neutrons and Nuclei Frejus, France, Sep-28 Oct-3 2014 Nucleosynthesis tales from the

More information

Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams:

Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams: Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams: 1. The evolution of a number of stars all formed at the same time

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

The Deaths of Stars 1

The Deaths of Stars 1 The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two Stellar Evolution: The Deaths of Stars Chapter Twenty-Two Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars.

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars. Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars. Stellar evolution during the main-sequence life-time, and during the post-main-sequence

More information

(2) low-mass stars: ideal-gas law, Kramer s opacity law, i.e. T THE STRUCTURE OF MAIN-SEQUENCE STARS (ZG: 16.2; CO 10.6, 13.

(2) low-mass stars: ideal-gas law, Kramer s opacity law, i.e. T THE STRUCTURE OF MAIN-SEQUENCE STARS (ZG: 16.2; CO 10.6, 13. 6.1 THE STUCTUE OF MAIN-SEQUENCE STAS (ZG: 16.2; CO 10.6, 13.1) main-sequence phase: hydrogen core burning phase zero-age main sequence (ZAMS): homogeneous composition Scaling relations for main-sequence

More information

The Stars. Chapter 14

The Stars. Chapter 14 The Stars Chapter 14 Great Idea: The Sun and other stars use nuclear fusion reactions to convert mass into energy. Eventually, when a star s nuclear fuel is depleted, the star must burn out. Chapter Outline

More information

Late Stages of Stellar Evolution. Late Stages of Stellar Evolution

Late Stages of Stellar Evolution. Late Stages of Stellar Evolution Late Stages of Stellar Evolution The star enters the Asymptotic Giant Branch with an active helium shell burning and an almost dormant hydrogen shell Again the stars size and luminosity increase, leading

More information

Contributions of supernovae type II & Ib/c to the galactic chemical evolution

Contributions of supernovae type II & Ib/c to the galactic chemical evolution Contributions of supernovae type II & Ib/c to the galactic chemical evolution arxiv:1401.1202v1 [astro-ph.ga] 4 Jan 2014 Sandeep Sahijpal October 1, 2018 Department of Physics, Panjab University, Chandigarh,

More information

Lecture 8: Stellar evolution II: Massive stars

Lecture 8: Stellar evolution II: Massive stars Lecture 8: Stellar evolution II: Massive stars Senior Astrophysics 2018-03-27 Senior Astrophysics Lecture 8: Stellar evolution II: Massive stars 2018-03-27 1 / 29 Outline 1 Stellar models 2 Convection

More information

17.3 Life as a High-Mass Star

17.3 Life as a High-Mass Star 17.3 Life as a High-Mass Star Our goals for learning: What are the life stages of a high-mass star? How do high-mass stars make the elements necessary for life? How does a high-mass star die? What are

More information

Stellar Midlife. A. Main Sequence Lifetimes. (1b) Lifetime of Sun. Stellar Evolution Part II. A. Main Sequence Lifetimes. B. Giants and Supergiants

Stellar Midlife. A. Main Sequence Lifetimes. (1b) Lifetime of Sun. Stellar Evolution Part II. A. Main Sequence Lifetimes. B. Giants and Supergiants Stellar Evolution Part II 1 Stellar Midlife 2 Stellar Midlife A. Main Sequence Lifetimes B. Giants and Supergiants C. Variables (Cepheids) Dr. Bill Pezzaglia Updated Oct 9, 2006 A. Main Sequence Lifetimes

More information

Life on the main sequence is characterized by the stable burning of hydrogen to helium under conditions of hydrostatic

Life on the main sequence is characterized by the stable burning of hydrogen to helium under conditions of hydrostatic Chapter 9 Red Giant Evolution Life on the main sequence is characterized by the stable burning of hydrogen to helium under conditions of hydrostatic equilibrium. While the star is on the main sequence

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS3010W1 SEMESTER 2 EXAMINATION 2014-2015 STELLAR EVOLUTION: MODEL ANSWERS Duration: 120 MINS (2 hours) This paper contains 8 questions. Answer all questions in Section A and

More information

HR Diagram, Star Clusters, and Stellar Evolution

HR Diagram, Star Clusters, and Stellar Evolution Ay 1 Lecture 9 M7 ESO HR Diagram, Star Clusters, and Stellar Evolution 9.1 The HR Diagram Stellar Spectral Types Temperature L T Y The Hertzsprung-Russel (HR) Diagram It is a plot of stellar luminosity

More information

S-process nucleosynthesis in AGB models with the FST prescription for convection

S-process nucleosynthesis in AGB models with the FST prescription for convection Mem. S.A.It. Vol. 87, 237 c SAIt 2016 Memorie della S-process nucleosynthesis in AGB models with the FST prescription for convection A. Yagüe 1,2,3, D.A. García-Hernández 2,3, P. Ventura 1, and M. Lugaro

More information

Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro Lecture 25 1

Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro Lecture 25 1 Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro 110-01 Lecture 25 1 12.3 Life as a High-Mass Star Learning Goals What are the life stages of a

More information

Announcements. L! m 3.5 BRIGHT FAINT. Mass Luminosity Relation: Why? Homework#3 will be handed out at the end of this lecture.

Announcements. L! m 3.5 BRIGHT FAINT. Mass Luminosity Relation: Why? Homework#3 will be handed out at the end of this lecture. Announcements BRIGHT Homework#3 will be handed out at the end of this lecture. Due October 14 (next Thursday) Review of Mid-term exam will be handed out Tuesday. Mid-term exam will be variants (if not

More information

How to Build a Habitable Planet Summary. Chapter 1 The Setting

How to Build a Habitable Planet Summary. Chapter 1 The Setting How to Build a Habitable Planet Summary Chapter 1 The Setting The universe as we know it began about 15 billion years ago with an explosion that is called the big bang. There is no record of any prior

More information

Chapter 12 Stellar Evolution

Chapter 12 Stellar Evolution Chapter 12 Stellar Evolution Guidepost Stars form from the interstellar medium and reach stability fusing hydrogen in their cores. This chapter is about the long, stable middle age of stars on the main

More information

ASTRONOMY 220C ADVANCED STAGES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS. Spring, This is a one quarter course dealing chiefly with:

ASTRONOMY 220C ADVANCED STAGES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS. Spring, This is a one quarter course dealing chiefly with: This is a one quarter course dealing chiefly with: ASTRONOMY 220C ADVANCED STAGES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS Spring, 2015 http://www.ucolick.org/~woosley a) Nuclear astrophysics and the relevant

More information

Cat's Eye Nebula, APOD 4 Sep 02, Corradi & Goncalves. Falk Herwig:»Nuclear Astrophysics with Neutron Facilities«MSU - 14 Feb 05

Cat's Eye Nebula, APOD 4 Sep 02, Corradi & Goncalves. Falk Herwig:»Nuclear Astrophysics with Neutron Facilities«MSU - 14 Feb 05 Cat's Eye Nebula, APOD 4 Sep 02, Corradi & Goncalves Nuclear Astrophysics with Neutron Facilities Falk Herwig Los Alamos National Laboratory, New Mexico, USA Theoretical Astrophysics and Los Alamos Neutron

More information

Stellar Evolution of low and intermediate mass stars

Stellar Evolution of low and intermediate mass stars PRECISION SPECTROSCOPY 2016 Stellar Evolution and Nucleosynthesis Stellar Evolution of low and intermediate mass stars Alejandra Romero Universidade Federal do Rio Grande do Sul Porto Alegre, Setember

More information

Gas and dust pollution. from AGB stars.

Gas and dust pollution. from AGB stars. Osservatorio Astronomico di Roma Gas and dust pollution from AGB stars. Marcella Di Criscienzo INAF-Osservatorio Astronomico di Roma Collaborators: P. Ventura, F. Dell Agli, F. D Antona, A. Karakas, A.

More information

Life and Death of a Star. Chapters 20 and 21

Life and Death of a Star. Chapters 20 and 21 Life and Death of a Star Chapters 20 and 21 90 % of a stars life Most stars spend most of their lives on the main sequence. A star like the Sun, for example, after spending a few tens of millions of years

More information

Stellar Models ASTR 2110 Sarazin

Stellar Models ASTR 2110 Sarazin Stellar Models ASTR 2110 Sarazin Jansky Lecture Tuesday, October 24 7 pm Room 101, Nau Hall Bernie Fanaroff Observing the Universe From Africa Trip to Conference Away on conference in the Netherlands

More information

Stars IV Stellar Evolution

Stars IV Stellar Evolution Stars IV Stellar Evolution Attendance Quiz Are you here today? Here! (a) yes (b) no (c) my views are evolving on the subject Today s Topics Stellar Evolution An alien visits Earth for a day A star s mass

More information

Nucleosynthesis of Low and Intermediate-mass Stars

Nucleosynthesis of Low and Intermediate-mass Stars Nucleosynthesis of Low and Intermediate-mass Stars Amanda I. Karakas Research School of Astronomy & Astrophysics, Mount Stromlo Observatory, Weston Creek ACT 2611, Australia akarakas@mso.anu.edu.au Summary.

More information

Reading and Announcements. Read Chapter 14.1, 14.2 Homework #6 due Tuesday, March 26 Exam #2, Thursday, March 28

Reading and Announcements. Read Chapter 14.1, 14.2 Homework #6 due Tuesday, March 26 Exam #2, Thursday, March 28 Reading and Announcements Read Chapter 14.1, 14.2 Homework #6 due Tuesday, March 26 Exam #2, Thursday, March 28 The life of the Sun The Sun started as a cloud of gas. Gravity caused the cloud to collapse.

More information

Astronomy II (ASTR1020) Exam 3 Test No. 3D

Astronomy II (ASTR1020) Exam 3 Test No. 3D Astronomy II (ASTR1020) Exam 3 Test No. 3D 23 October 2001 The answers of this multiple choice exam are to be indicated on the Scantron with a No. 2 pencil. Don t forget to write your name and the Test

More information

Observations of s-process elements in stars. The Amazing Life of Stars: Celebrating ISTO A. Tornambè. Cefalú Sept 4-8, 2017

Observations of s-process elements in stars. The Amazing Life of Stars: Celebrating ISTO A. Tornambè. Cefalú Sept 4-8, 2017 Observations of s-process elements in stars C. Abia The Amazing Life of Stars: Celebrating ISTO A. Tornambè. Cefalú Sept 4-8, 2017 Outline: 1. The s-process 2. Observational constraints from stars - intrinsic

More information

Stellar Evolution ASTR 2110 Sarazin. HR Diagram vs. Mass

Stellar Evolution ASTR 2110 Sarazin. HR Diagram vs. Mass Stellar Evolution ASTR 2110 Sarazin HR Diagram vs. Mass Trip to Conference Away on conference in the Netherlands next week. Molly Finn, TA, will be our guest lecturer Stellar Evolution ASTR 2110 Sarazin

More information

S381 The Energetic Universe. Block 2 Nucleosynthesis and Stellar Remnants. Paul Ruffle

S381 The Energetic Universe. Block 2 Nucleosynthesis and Stellar Remnants. Paul Ruffle Sponsored by the Chemistry and Physics Societies of the Open University S381 The Energetic Universe Block 2 Nucleosynthesis and Stellar Remnants Paul Ruffle Visiting Research Fellow Astrophysics Research

More information

Stellar Astronomy Sample Questions for Exam 4

Stellar Astronomy Sample Questions for Exam 4 Stellar Astronomy Sample Questions for Exam 4 Chapter 15 1. Emission nebulas emit light because a) they absorb high energy radiation (mostly UV) from nearby bright hot stars and re-emit it in visible wavelengths.

More information

The CNO Bi-Cycle. Note that the net sum of these reactions is

The CNO Bi-Cycle. Note that the net sum of these reactions is The CNO Bi-Cycle A second way of processing 1 H into 4 He is through a series of nuclear reactions involving the different species of Carbon, Nitrogen, and Oxygen. The principle reactions are as follows:

More information

Astronomy 404 October 9, 2013

Astronomy 404 October 9, 2013 Nuclear reaction rate: Astronomy 404 October 9, 2013 from the tunneling increases with increasing E from the velocity distrib. decreases with increasing E The Gamow peak occurs at energy Energy generation

More information

CNO(I) Cycle in Steady Flow

CNO(I) Cycle in Steady Flow Types of Equilibria Steady Flow of Reactions Chemical Equilibrium of Reactions Complete Chemical Equilibrium (NSE) Clusters of Chemical Equilbrium (QSE) QSE Clusters linked by Steady Flow CNO(I) Cycle

More information

Stellar processes, nucleosynthesis OUTLINE

Stellar processes, nucleosynthesis OUTLINE Stellar processes, nucleosynthesis OUTLINE Reading this week: White 313-326 and 421-464 Today 1. Stellar processes 2. Nucleosynthesis Powerpoint credit: Using significant parts of a WHOI ppt 1 Question

More information

arxiv:astro-ph/ v1 10 Dec 2004

arxiv:astro-ph/ v1 10 Dec 2004 Astronomy & Astrophysics manuscript no. aa November 22, 218 (DOI: will be inserted by hand later) Fluorine in extremely hot post-agb stars: evidence for nucleosynthesis K. Werner 1, T. Rauch 1,2 and J.W.

More information

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Lecture Outline. HW#7 due Friday by 5 pm! (available Tuesday)

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Lecture Outline. HW#7 due Friday by 5 pm! (available Tuesday) Stars, Galaxies & the Universe Announcements HW#7 due Friday by 5 pm! (available Tuesday) Midterm Grades (points) posted today in ICON Exam #2 next week (Wednesday) Review sheet and study guide posted

More information

Paul Broberg Ast 4001 Dec. 10, 2007

Paul Broberg Ast 4001 Dec. 10, 2007 Paul Broberg Ast 4001 Dec. 10, 2007 What are W-R stars? How do we characterize them? What is the life of these stars like? Early stages Evolution Death What can we learn from them? Spectra Dust 1867: Charles

More information

Lecture 7: Stellar evolution I: Low-mass stars

Lecture 7: Stellar evolution I: Low-mass stars Lecture 7: Stellar evolution I: Low-mass stars Senior Astrophysics 2018-03-21 Senior Astrophysics Lecture 7: Stellar evolution I: Low-mass stars 2018-03-21 1 / 37 Outline 1 Scaling relations 2 Stellar

More information

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 21 Stellar Explosions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A surface explosion on a white dwarf, caused

More information

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 13 Synthesis of heavier elements introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The triple α Reaction When hydrogen fusion ends, the core of a star collapses and the temperature can reach

More information