LANDOLT-BORNSTEIN. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik Neue Serie Gesamtherausgabe: K.- H. Hellwege

Size: px
Start display at page:

Download "LANDOLT-BORNSTEIN. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik Neue Serie Gesamtherausgabe: K.- H. Hellwege"

Transcription

1 LANDOLT-BORNSTEIN Zahlenwerte und Funktionen aus Naturwissenschaften und Technik Neue Serie Gesamtherausgabe: K.- H. Hellwege Gruppe VI: Astronomie Astrophysik und Weltraumforschung Band 2 Astronomie und Astrophysik Weiterführung und Ergänzung von Band 1 Teilband a Methoden Konstanten Sonnensystem W. I. Axford A. Behr A. Bruzek C. J. Durrant H. Enslin H. Fechtig W. Fricke F. Gondolatsch H. Grün О. Hachenberg W.-H. Ip E. K. Jessberger T. Kirsten Ch. Leinert D. Lemke H. Palme W. Pilipp J. Rahe G. Schmahl M. Scholer J. Schubart J. Solf R. Staubert H. E. Suess J. Trümper G. Weigelt R. M. West R. Wolf H. D. Zeh Herausgeber: K. Schaifers und H. H.Voigt Springer-Verlag Berlin Heidelberg New York 1981

2 1 Astronomical instruments 1.1 Optical telescopes (R. WOLF) Introduction Optics Mounting Drive and control Building and dome Future developments List of large optical telescopes erected after References for General references for Solar telescopes (C. J. DURRANT) 13 References for Photoelectric photometry (A. BEHR) Symbols and definitions Acronyms and nomenclature Photoelectric radiation detectors Measuring techniques High speed photometry Detectors for two-dimensional (imaging) photometry The measured radiant flux Accuracy of measurements References for Photographic emulsions (R. M. WEST) Introduction Definitions Emulsions in use in astronomy - hypersensitization Exposure and calibration Processing Storage Measurements Copying Outlock References for Spectrometers and spectrographs (J. SOLF) Definitions Grating spectrometers Fabry-Perot spectrometers Fourier transform spectrometers References for Optical high resolution methods (G. WEIGELT/G. SCHMAHL) Michelson's stellar interferometry and related techniques Intensity interferometry of Hanbury Brown and Twiss Labeyrie's speckle interferometry and related techniques References for

3 XI 1.7 X-ray and y-ray instruments (R. STAUBERT/J. TRÜMPER) X-ray instruments Non-focusing instruments Non-focusing/non-imaging/non-dispersive instruments Non-focusing/imaging instruments Spectrometers and Polarimeters Focusing X-ray telescopes X-ray mirror systems X-ray imaging detectors Focal plane spectrometers y-ray instruments X- and y-ray satellites References for Infrared techniques (D. LEMKE) Infrared detectors Detector types Detector parameters Low background detectors Atmospheric transmission and emission Infrared telescopes Chopper Optics of the IR telescope Telescope platforms Infrared photometry, Photometric bands Absolute calibration Limiting magnitudes Filters Infrared spectroscopy Circular variable filter CVF Prism, grating Fourier spectrometer Fabry-Perot Heterodyne spectroscopy Infrared polarimetry Spatial resolution instrumentation References for Radio astronomical receiver systems (O. HACHENBERG) Radiometers (receivers) 50 References for The radio telescopes Radio telescopes for m wavelengths 51 References for Radio telescopes for lower dm and cm ranges Radio telescopes for mm wavelengths 57 References for and Very-long-baseline interferometer 61 References for Positions and time determination, astronomical constants 2.1 Determination of astronomical latitude and longitude (H. ENSLIN) Introduction Polar motion Definition and observation of astronomical latitude and longitude 63

4 XII Contents Definition and realization of the terrestrial reference system Origin of the coordinates of the pole Origin of longitudes Errors in latitude and longitude or time Coordinates of observatories Polar coordinates Time determination (H. ENSLIN) Notations used in Systems of time measurement Sidereal, solar, and universal time Definitions of sidereal and solar time, relations between their units Universal time (UT) Standard times Equation of time Julian date, modified Julian date; Greenwich sidereal date Ephemeris time (ET) Definition of epoch and unit, and determination of ephemeris time Lengths of the year Lengths of the month Atomic time Definition of the second of the International System of Units (SI) International atomic time (TAI) Coordinated universal time (UTC) Dynamical time for ephemerides (TD) Time signals Long term fluctuations of the earth's rotation speed References for 2.1 and The system of astronomical constants (W. FRICKLE) Introduction Units The IAU (1976) system of astronomical constants Notes References for The solar system 3.1 The sun The quiet sun Solar global parameters (C J. DURRANT) 82 References for Solar interior (C. J. DURRANT) Standard models Non-standard models Solar neutrinos Global oscillations Convection zone Solar rotation General magnetic field References for Solar energy spectrum (C J. DURRANT) Absolute energy distribution Relative energy distribution Limb polarization References for Solar photosphere and chromosphere (C. J. DURRANT) Models 96

5 NLTE studies Morphology of the solar photosphere and chromosphere References for Solar transition region and quiet corona (C. J. DURRANT) Models Physical parameters Diagnostics Morphology References for Radio emission of the quiet sun (O. HACHENBERG) Flux density of the quiet sun 105 References for The brightness distribution across the solar disk 107 References for Ill 1.2 Solar activity Active regions (A. BRUZEK) Features of active regions Active region development Spotgroups Activity indices, global data (daily values) References for year solar cycle (A. BRUZEK) 113 References for Sunspots (A. BRUZEK) General characteristics Magnetic field Spot umbra Spot penumbra Sunspot energy References for Faculae and plages (A. BRUZEK) Continuum Facula models Chromospheric plage References for Prominences and ejecta (A. BRUZEK) General characteristics Prominence spectrum Physical characteristics of quiescient prominences Ejections Interface prominence - corona References for Coronal active region (A. BRUZEK) Visible EUV line coronal enhancement X-ray corona Total radiation loss References for Flares (A. BRUZEK) General Flare spectrum Flare physics Flare particle emission References for Radio emission of the disturbed sun (O. HACHENBERG) The basic component of solar radio emission The slowly varying component References for and

6 Noise storms References for Solar radio bursts Microwave bursts Fast-drift bursts (Type III bursts) Slow-drift bursts (Type II bursts) Continuum bursts (Type IV bursts) References for The planets and their satellites Mechanical data of the planets and satellites The planets; orbital elements and related properties (F. GONDOLATSCH) 129 References for Dimensions and mechanical properties, rotation of the planets (F. GONDOLATSCH) 132 References for Satellites and ring systems of the planets (F. GONDOLATSCH) Orbital elements, diameters, masses of the satellites Ring systems of the planets Jupiter, Saturn, Uranus References for Earth data (F. GONDOLATSCH) Figure, mass, gravity Rotation of the earth, precession Orbital motion of the earth References for The moon (F. GONDOLATSCH) Distance, size, gravity, librations Orbital motion References for The orbital relations (W.-H.IP/W. I. AXFORD) The planets The satellites The planetary rings ' References for Physics of the planets and satellites (W.-H.IP/W. I. AXFORD) Introduction Internal compositions and structures The terrestrial planets The outer planets The satellites The planetary rings References for Surface properties The terrestrial planets The satellites References for Temperatures of the planets and satellites 168 References for Atmospheres Mercury Venus Mars The outer planets The moon The Galilean satellites Titan References for Magnetic fields The planets 178

7 The moon The satellites of Jupiter References for Appendix to Jupiter Saturn References for Small bodies in the solar system The asteroids (minor planets) (J. SCHUBART) Representative orbits Statistics of orbits Sizes and physical characteristics References for Meteors and meteorites (E. K. JESSBERGER) Definitions Meteors Significance of meteor study Orbits Classification References for Meteorites Definition Significance of meteorite study Orbits Classification and chemical composition Mineralogy and petrology Organic matter Rare gases Isotopic anomalies Origin of meteorites Meteorites on earth References for Comets (J. RAHE) Mechanical data Photometric observations; polarimetry Spectroscopic observations Nucleus Coma Tails The nature of cometary dust Laboratory studies and space experiments relevant to comets (References only) References for Interplanetary dust and zodiacal light (H. FECHTIG/C. LEINERT/E. GRÜN) Introduction Methods of measurements Direct methods Zodiacal light photometry Direct measurements of interplanetary dust Observations of the zodiacal light Definitions Intensity and polarization in the visible ( nm) Spectrum and colour Thermal emission Radial gradient of intensity Symmetry plane of zodiacal light Temporal variations 237

8 Interpretation of zodiacal light observations Spatial distribution Size distribution Scattering and absorption Models Dynamics of interplanetary dust Sources Forces Sinks References for Interplanetary particles and magnetic field Interplanetary gas of non-solar origin (neutral hydrogen and neutral helium) (W. PILIPP). 244 References for Interplanetary plasma and magnetic field (solar wind) (W. PILIPP) Introduction 245 References for In-situ observations 246 References for Ground-based observations 250 References for Energetic particles in interplanetary space (M. SCHOLER) Modulation of galactic cosmic rays 251 References for Anomalous component of low energy cosmic rays 252 References for Interplanetary propagation of solar cosmic rays 254 References for Coronal propagation and injection 255 References for Solar flare particle composition and charge state 255 References for Corotating energetic particle events 256 References for Abundances of the elements in the solar system (H. PALME/H. E. SUESS/H. D. ZEH) Introduction 257 References for Terrestrial and lunar surface rocks and meteorites 257 References for Table References for Table Relative atomic abundances N of the elements in a type 1 carbonaceous chondrite and in the solar photosphere 262 References for Table Primordial abundances in the solar system 265 References for Chronology of the solar system (T. KIRSTEN) Introduction Dating techniques Types of "ages" Time periods References for Age of the solar system 275 References for Duration of solar system formation 278 References for

9 XVII Planetary evolution Meteorites and their parent bodies 280 References for Lunar evolution 282 References for Geochronology 283 References for Summary and link to the ages of the elements 284 References for

CONTENTS. vii. in this web service Cambridge University Press. Preface Acknowledgements. xiii xvi

CONTENTS. vii.  in this web service Cambridge University Press. Preface Acknowledgements. xiii xvi CONTENTS Preface Acknowledgements xiii xvi 1 Earth and sky 1 1.1 Planet Earth 1 1.2 The Earth s magnetosphere 6 1.3 Aurorae 8 1.4 Visually observing aurorae 10 1.5 Other methods of observing aurorae 16

More information

Chapter 23. Our Solar System

Chapter 23. Our Solar System Chapter 23 Our Solar System Our Solar System 1 Historical Astronomy Wandering Stars Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths

More information

Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths of the normal stars.

Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths of the normal stars. Chapter 23 Our Solar System Our Solar System Historical Astronomy Wandering Stars Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths of

More information

Lesson 3 THE SOLAR SYSTEM

Lesson 3 THE SOLAR SYSTEM Lesson 3 THE SOLAR SYSTEM THE NATURE OF THE SUN At the center of our solar system is the Sun which is a typical medium sized star. Composed mainly of Hydrogen (73% by mass), 23% helium and the rest is

More information

Review III. ASTR 371, Fall Jovian Planets and Rings (Lecture Notes 9; Chap 12, 14)

Review III. ASTR 371, Fall Jovian Planets and Rings (Lecture Notes 9; Chap 12, 14) ASTR 371, Fall 2016 Review III 9. Jovian Planets and Rings (Lecture Notes 9; Chap 12, 14) 9.1-2 Introduction, Motion a. Carefully study the data for the Jovian planets. Must know the general properties

More information

ES - Astronomy Part 2 Post-Test

ES - Astronomy Part 2 Post-Test ES - Astronomy Part 2 Post-Test True/False Indicate whether the statement is true or false. 1. Compared to the human eye, telescopes can collect light over longer periods of time. 2. The inner planets

More information

The Interior Structure of the Sun

The Interior Structure of the Sun The Interior Structure of the Sun Data for one of many model calculations of the Sun center Temperature 1.57 10 7 K Pressure 2.34 10 16 N m -2 Density 1.53 10 5 kg m -3 Hydrogen 0.3397 Helium 0.6405 The

More information

Introduction The Role of Astronomy p. 3 Astronomical Objects of Research p. 4 The Scale of the Universe p. 7 Spherical Astronomy Spherical

Introduction The Role of Astronomy p. 3 Astronomical Objects of Research p. 4 The Scale of the Universe p. 7 Spherical Astronomy Spherical Introduction The Role of Astronomy p. 3 Astronomical Objects of Research p. 4 The Scale of the Universe p. 7 Spherical Astronomy Spherical Trigonometry p. 9 The Earth p. 12 The Celestial Sphere p. 14 The

More information

ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy

ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy Chariho Regional School District - Science Curriculum September, 2016 ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy OVERVIEW Summary Students will be introduced to the overarching concept of astronomy.

More information

Chapter 23. Light, Astronomical Observations, and the Sun

Chapter 23. Light, Astronomical Observations, and the Sun Chapter 23 Light, Astronomical Observations, and the Sun The study of light Electromagnetic radiation Visible light is only one small part of an array of energy Electromagnetic radiation includes Gamma

More information

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects Transneptunian objects Minor bodies in the outer Solar System Planets and Astrobiology (2016-2017) G. Vladilo Around 1980 it was proposed that the hypothetical disk of small bodies beyond Neptune (called

More information

The Sun ASTR /17/2014

The Sun ASTR /17/2014 The Sun ASTR 101 11/17/2014 1 Radius: 700,000 km (110 R ) Mass: 2.0 10 30 kg (330,000 M ) Density: 1400 kg/m 3 Rotation: Differential, about 25 days at equator, 30 days at poles. Surface temperature: 5800

More information

The Sun s Dynamic Atmosphere

The Sun s Dynamic Atmosphere Lecture 16 The Sun s Dynamic Atmosphere Jiong Qiu, MSU Physics Department Guiding Questions 1. What is the temperature and density structure of the Sun s atmosphere? Does the atmosphere cool off farther

More information

THE PLANETARY SCIENTIST'S COMPANION

THE PLANETARY SCIENTIST'S COMPANION THE PLANETARY SCIENTIST'S COMPANION Katharina Lodders Bruce Fegley, Jr. New York Oxford Oxford University Press 1998 Contents 1 Technical data Table 1.1 The Greek alphabet 1 Table 1.2 Prefixes used with

More information

Chapter 16 Astronomy Study Guide. VOCABULARY WORDS TO KNOW geocentric system meteorite meteoroid

Chapter 16 Astronomy Study Guide. VOCABULARY WORDS TO KNOW geocentric system meteorite meteoroid NAME: Period: asteroid asteroid belt comet ellipse force Galilean moons gas giants Chapter 16 Astronomy Study Guide VOCABULARY WORDS TO KNOW geocentric system meteorite gravity meteoroid greenhouse effect

More information

The Solar System. Sun. Rotates and revolves around the Milky Way galaxy at such a slow pace that we do not notice any effects.

The Solar System. Sun. Rotates and revolves around the Milky Way galaxy at such a slow pace that we do not notice any effects. The Solar System Sun Center of the solar system About 150,000,000 km from the Earth An averaged sized, yellow star Spherical in shape due to gravity Made of about ¾ hydrogen and ¼ helium, both of which

More information

The Sun. - this is the visible surface of the Sun. The gases here are very still hot, but much cooler than inside about 6,000 C.

The Sun. - this is the visible surface of the Sun. The gases here are very still hot, but much cooler than inside about 6,000 C. Name: The Sun The Sun is an average sized. Earth, Mars, Jupiter and Uranus are. A star is the only object in space that makes its own. This includes and. The sun is about million miles from Earth. This

More information

Astronomy Today. Eighth edition. Eric Chaisson Steve McMillan

Astronomy Today. Eighth edition. Eric Chaisson Steve McMillan Global edition Astronomy Today Eighth edition Eric Chaisson Steve McMillan The Distance Scale ~1 Gpc Velocity L Distance Hubble s law Supernovae ~200 Mpc Time Tully-Fisher ~25 Mpc ~10,000 pc Time Variable

More information

Announcements. - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11

Announcements. - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11 Announcements - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11 Review for Test #2 Oct 11 Topics: The Solar System and its Formation The Earth and our Moon

More information

The point in an orbit around the Sun at which an object is at its greatest distance from the Sun (Opposite of perihelion).

The point in an orbit around the Sun at which an object is at its greatest distance from the Sun (Opposite of perihelion). ASTRONOMY TERMS Albedo Aphelion Apogee A measure of the reflectivity of an object and is expressed as the ratio of the amount of light reflected by an object to that of the amount of light incident upon

More information

Earth Science 11 Learning Guide Unit Complete the following table with information about the sun:

Earth Science 11 Learning Guide Unit Complete the following table with information about the sun: Earth Science 11 Learning Guide Unit 2 Name: 2-1 The sun 1. Complete the following table with information about the sun: a. Mass compare to the Earth: b. Temperature of the gases: c. The light and heat

More information

The Magnetic Sun. CESAR s Booklet

The Magnetic Sun. CESAR s Booklet The Magnetic Sun CESAR s Booklet 1 Introduction to planetary magnetospheres and the interplanetary medium Most of the planets in our Solar system are enclosed by huge magnetic structures, named magnetospheres

More information

Meteorites. A Variety of Meteorite Types. Ages and Compositions of Meteorites. Meteorite Classification

Meteorites. A Variety of Meteorite Types. Ages and Compositions of Meteorites. Meteorite Classification Meteorites A meteor that survives its fall through the atmosphere is called a meteorite Hundreds fall on the Earth every year Meteorites do not come from comets First documented case in modern times was

More information

International Olympiad on Astronomy and Astrophysics (IOAA)

International Olympiad on Astronomy and Astrophysics (IOAA) Syllabus of International Olympiad on Astronomy and Astrophysics (IOAA) General Notes 1. Extensive contents in basic astronomical concepts are required in theoretical and practical problems. 2. Basic concepts

More information

The Solar System. Chapter Test A. Multiple Choice. Write the letter of the correct answer on the line at the left.

The Solar System. Chapter Test A. Multiple Choice. Write the letter of the correct answer on the line at the left. The Solar System Chapter Test A Multiple Choice Write the letter of the correct answer on the line at the left. 1. 2. 3. 4. 5. The fact that each planet s orbit is an ellipse was discovered by a. Copernicus.

More information

y [Mm] y [arcsec] brightness temperature at λ = 1.0 mm [103 K] x [arcsec]

y [Mm] y [arcsec] brightness temperature at λ = 1.0 mm [103 K] x [arcsec] ... Solar photosphere and chromosphere Continuum surface intensity (λ. Å) δirms= 5. % y [Mm] y [Mm] x [Mm] x [Mm] y [arcsec] μ =. μ =. μ =. μ =. μ =. brightness temperature at λ =. mm [ K] Fig.. Left:

More information

The Principles of Astronomical Telescope Design

The Principles of Astronomical Telescope Design The Principles of Astronomical Telescope Design Jingquan Cheng National Radio Astronomy Observatory Charlottesville, Virginia,.USA " 4y Springer Fundamentals of Optical Telescopes 1 1.1 A Brief History

More information

Foundations of Astrophysics

Foundations of Astrophysics Foundations of Astrophysics Barbara Ryden The Ohio State University Bradley M. Peterson The Ohio State University Preface xi 1 Early Astronomy 1 1.1 The Celestial Sphere 1 1.2 Coordinate Systems on a Sphere

More information

The Sun. Never look directly at the Sun, especially NOT through an unfiltered telescope!!

The Sun. Never look directly at the Sun, especially NOT through an unfiltered telescope!! The Sun Introduction We will meet in class for a brief discussion and review of background material. We will then go outside for approximately 1 hour of telescope observing. The telescopes will already

More information

Fundamental Astronomy

Fundamental Astronomy H. Karttunen P. Kroger H. Oja M.Poutanen K.J. Donner (Eds.) Fundamental Astronomy Fifth Edition With 449 Illustrations Including 34 Colour Plates and 75 Exercises with Solutions < J Springer VII 1. Introduction

More information

What do we see on the face of the Sun? Lecture 3: The solar atmosphere

What do we see on the face of the Sun? Lecture 3: The solar atmosphere What do we see on the face of the Sun? Lecture 3: The solar atmosphere The Sun s atmosphere Solar atmosphere is generally subdivided into multiple layers. From bottom to top: photosphere, chromosphere,

More information

1. thought the earth was at the center of the solar system and the planets move on small circles that move on bigger circles

1. thought the earth was at the center of the solar system and the planets move on small circles that move on bigger circles Earth Science Chapter 20: Observing the Solar System Match the observations or discoveries with the correct scientist. Answers may be used more than once. Answers that cannot be read will be counted as

More information

x Contents Segmented Mirror Telescopes Metal and Lightweight Mirrors Mirror Polishing

x Contents Segmented Mirror Telescopes Metal and Lightweight Mirrors Mirror Polishing Contents 1 Fundamentals of Optical Telescopes... 1 1.1 A Brief History of Optical Telescopes.................... 1 1.2 General Astronomical Requirements..................... 6 1.2.1 Angular Resolution.............................

More information

1 A= one Angstrom = 1 10 cm

1 A= one Angstrom = 1 10 cm Our Star : The Sun )Chapter 10) The sun is hot fireball of gas. We observe its outer surface called the photosphere: We determine the temperature of the photosphere by measuring its spectrum: The peak

More information

Stellar Astronomy Sample Questions for Exam 3

Stellar Astronomy Sample Questions for Exam 3 Stellar Astronomy Sample Questions for Exam 3 Chapter 7 1. A protostar is formed by a) the rapid expansion of gas from an exploding star. b) the gravitational collapse of a rotating interstellar cloud.

More information

1. Cosmology is the study of. a. The sun is the center of the Universe. b. The Earth is the center of the Universe

1. Cosmology is the study of. a. The sun is the center of the Universe. b. The Earth is the center of the Universe Section 1: The Universe 1. Cosmology is the study of. 2. Identify the type of cosmology a. The sun is the center of the Universe b. The Earth is the center of the Universe 3. The two most abundant gases

More information

HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian

HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian Key Points of Chapter 13 HNRS 227 Fall 2006 Chapter 13 The Solar System presented by Prof. Geller 24 October 2006 Planets Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune Dwarf Planets Pluto,

More information

Chapter 3 The Solar System

Chapter 3 The Solar System Name: Date: Period: Chapter 3 The Solar System Section 1 Observing the Solar System (pp. 72-77) Key Concepts What are the geocentric and heliocentric systems? How did Copernicus, Galileo, and Kepler contribute

More information

Effective August 2007 All indicators in Standard / 14

Effective August 2007 All indicators in Standard / 14 8-4.1 Summarize the characteristics and movements of objects in the solar system (including planets, moons, asteroids, comets, and meteors). Taxonomy level: 2.4-B Understand Conceptual Knowledge Previous/Future

More information

Solar System Formation/The Sun

Solar System Formation/The Sun Solar System Formation/The Sun Objective 4 Examine the orbital paths of planets and other astronomical bodies (comets and asteroids). Examine the theories of geocentric and heliocentric models and Kepler

More information

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He Our sole source of light and heat in the solar system A common star: a glowing ball of plasma held together by its own gravity and powered by nuclear fusion at its center. Nuclear fusion: Combining of

More information

Alexey Kuznetsov. Armagh Observatory

Alexey Kuznetsov. Armagh Observatory Alexey Kuznetsov Armagh Observatory Outline of the talk Solar radio emission History Instruments and methods Results of observations Radio emission of planets Overview / history / instruments Radio emission

More information

Interferometry of Solar System Objects

Interferometry of Solar System Objects Interferometry of Solar System Objects Bryan Butler National Radio Astronomy Observatory Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 24 Studying the Sun 24.1 The Study of Light Electromagnetic Radiation Electromagnetic radiation includes gamma rays, X-rays, ultraviolet light, visible

More information

The Sun. The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x g = 330,000 M Earth = 1 M Sun

The Sun. The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x g = 330,000 M Earth = 1 M Sun The Sun The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x 10 33 g = 330,000 M Earth = 1 M Sun Radius of Sun = 7 x 10 5 km = 109 R Earth = 1 R Sun Luminosity of Sun =

More information

What is the Solar System?

What is the Solar System? What is the Solar System? Our Solar System is one of many planetary systems. It consists of: The Sun Eight planets with their natural satellites Five dwarf planets Billions of asteroids, comets and meteors

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

IX. Dwarf Planets A. A planet is defined to be an object that is large enough to coalesce into a sphere and to have cleared its orbit of other

IX. Dwarf Planets A. A planet is defined to be an object that is large enough to coalesce into a sphere and to have cleared its orbit of other 7/1 VII. VIII. Uranus A. Gas Giant 1. Rings but not visible 2. HUGE axial tilt 97! 3. Mostly hydrogen and helium 4. Medium rotation rate 5. Cold 55 K at the cloud tops B. Physical characteristics 1. Mass:

More information

Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System

Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System Ch 23.1 The Solar System Terrestrial planets- Small Rocky

More information

Astro 1010 Planetary Astronomy Sample Questions for Exam 3

Astro 1010 Planetary Astronomy Sample Questions for Exam 3 Astro 1010 Planetary Astronomy Sample Questions for Exam 3 Chapter 6 1. Which of the following statements is false? a) Refraction is the bending of light when it passes from one medium to another. b) Mirrors

More information

4 A(n) is a small, rocky object that orbits the sun; many of these objects are located in a band between the orbits of Mars and Jupiter.

4 A(n) is a small, rocky object that orbits the sun; many of these objects are located in a band between the orbits of Mars and Jupiter. Name Vocabulary Fill in the blank with the term that best completes the sentence., 6.11B 1 is the process in which energy is released as the nuclei of small atoms combine to form a larger nucleus., 6.11B

More information

ASTRONOMY AND ASTROPHYSICS ABSTRACTS. Volume 21 Literature 1978, Part 1

ASTRONOMY AND ASTROPHYSICS ABSTRACTS. Volume 21 Literature 1978, Part 1 ASTRONOMY AND ASTROPHYSICS ABSTRACTS A Publication of the Astronomisches Rechen-Institut Heidelberg Member of the Abstracting Board of the International Council of Scientific Unions Volume 21 Literature

More information

Starting from closest to the Sun, name the orbiting planets in order.

Starting from closest to the Sun, name the orbiting planets in order. Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist

More information

Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2

Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2 Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2 Instructor: L. M. Khandro 1. Relatively speaking, objects with high temperatures emit their peak radiation in short wavelengths

More information

THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES

THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES DAVID F. GRAY University of Western Ontario, London, Ontario, Canada CAMBRIDGE UNIVERSITY PRESS Contents Preface to the first edition Preface to the

More information

CHAPTER 6. The Solar System

CHAPTER 6. The Solar System CHAPTER 6 The Solar System 6.1 An Inventory of the Solar System The Greeks knew about 5 planets other than Earth They also knew about two other objects that were not planets or stars: meteors and comets

More information

Astronomy Study Guide Answer Key

Astronomy Study Guide Answer Key Astronomy Study Guide Answer Key Section 1: The Universe 1. Cosmology is the study of how the universe is arranged. 2. Identify the type of cosmology a. The sun is the center of the Universe Heliocentric

More information

Paper Reference. Tuesday 14 June 2005 Morning Time: 2 hours

Paper Reference. Tuesday 14 June 2005 Morning Time: 2 hours Centre No. Candidate No. Paper Reference(s) 1627/01 Edexcel GCSE Astronomy Paper 01 Tuesday 14 June 2005 Morning Time: 2 hours Materials required for examination Nil Items included with question papers

More information

FCAT Review Space Science

FCAT Review Space Science FCAT Review Space Science The Law of Universal Gravitation The law of universal gravitation states that ALL matter in the universe attracts each other. Gravity is greatly impacted by both mass and distance

More information

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits 7. Our Solar System Terrestrial & Jovian planets Seven large satellites [moons] Chemical composition of the planets Asteroids & comets The Terrestrial & Jovian Planets Four small terrestrial planets Like

More information

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1 Solar Magnetic Fields 1 11 Jun 07 UA/NSO Summer School 1 If the sun didn't have a magnetic field, then it would be as boring a star as most astronomers think it is. -- Robert Leighton 11 Jun 07 UA/NSO

More information

solar system outer planets Planets located beyond the asteroid belt; these are known as the gas giants. CELESTIAL BODIES

solar system outer planets Planets located beyond the asteroid belt; these are known as the gas giants. CELESTIAL BODIES solar system Region of our galaxy under the influence of the ; includes eight planets and their natural satellites as well as one dwarf planet, two plutoids, asteroids and comets. outer planets Planets

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Homework Ch 7, 8, 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Our most detailed knowledge of Uranus and Neptune comes from 1) A) the

More information

Contents. Part I Developing Your Skills

Contents. Part I Developing Your Skills Contents Part I Developing Your Skills 1 Accessing and Developing Your Observing Skills... 3 1.1 Stargazer or Amateur Astronomer?... 3 1.2 Perceptions and Expectations... 7 1.3 Assessing Your Skills and

More information

Solar System Objects. Bryan Butler National Radio Astronomy Observatory

Solar System Objects. Bryan Butler National Radio Astronomy Observatory Solar System Objects Bryan Butler National Radio Astronomy Observatory Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

More information

ASTRONOMY METHODS. A Physical Approach to Astronomical Observations CAMBRIDGE UNIVERSITY PRESS. HALE BRADT Massachusetts Institute of Technology

ASTRONOMY METHODS. A Physical Approach to Astronomical Observations CAMBRIDGE UNIVERSITY PRESS. HALE BRADT Massachusetts Institute of Technology ASTRONOMY METHODS A Physical Approach to Astronomical Observations HALE BRADT Massachusetts Institute of Technology CAMBRIDGE UNIVERSITY PRESS List of figures page xiv List of tables xviii Preface xix

More information

2. The distance between the Sun and the next closest star, Proxima Centuari, is MOST accurately measured in

2. The distance between the Sun and the next closest star, Proxima Centuari, is MOST accurately measured in Name: Date: 1. Some scientists study the revolution of the Moon very closely and have recently suggested that the Moon is gradually moving away from Earth. Which statement below would be a prediction of

More information

Coriolis Effect - the apparent curved paths of projectiles, winds, and ocean currents

Coriolis Effect - the apparent curved paths of projectiles, winds, and ocean currents Regents Earth Science Unit 5: Astronomy Models of the Universe Earliest models of the universe were based on the idea that the Sun, Moon, and planets all orbit the Earth models needed to explain how the

More information

The Sun sends the Earth:

The Sun sends the Earth: The Sun sends the Earth: Solar Radiation - peak wavelength.visible light - Travels at the speed of light..takes 8 minutes to reach Earth Solar Wind, Solar flares, and Coronal Mass Ejections of Plasma (ionized

More information

The Sun Our Star. Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun

The Sun Our Star. Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun The Sun Our Star Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun General Properties Not a large star, but larger than most Spectral type G2 It

More information

SOLAR SYSTEM NOTES. Scientists believe its at least 4.6 billion years old!!! 10/26/2017 ENERGY TRANSFERS RADIATION FROM THE SUN

SOLAR SYSTEM NOTES. Scientists believe its at least 4.6 billion years old!!! 10/26/2017 ENERGY TRANSFERS RADIATION FROM THE SUN SOLAR SYSTEM NOTES Our Solar System is composed of: 1. The Sun 2. The Planets 3. Asteroids 4. Comets 5. Meteors 6. Natural & Artificial satellites Remember: How old is our Solar System? Scientists believe

More information

Outline. Astronomy: The Big Picture. Earth Sun comparison. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned.

Outline. Astronomy: The Big Picture. Earth Sun comparison. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned. Next homework due Oct 24 th. I will not be here on Wednesday, but Paul Ricker will present the lecture! My Tuesday

More information

Our Solar System. Dr. G. M. Ballabh THE SOLAR FAMILY. Many many satellites of the planets. Many Comets and asteroids

Our Solar System. Dr. G. M. Ballabh THE SOLAR FAMILY. Many many satellites of the planets. Many Comets and asteroids Our Solar System Dr. G. M. Ballabh The Sun THE SOLAR FAMILY Nine Planets? Many many satellites of the planets Many Comets and asteroids In short anything that goes about Sun is its member The Rig-Veda

More information

Astronomy Chapter 12 Review

Astronomy Chapter 12 Review Astronomy Chapter 12 Review Approximately how massive is the Sun as compared to the Earth? A. 100 times B. 300 times C. 3000 times D. 300,000 times E. One million times Approximately how massive is the

More information

1. Solar Atmosphere Surface Features and Magnetic Fields

1. Solar Atmosphere Surface Features and Magnetic Fields 1. Solar Atmosphere Surface Features and Magnetic Fields Sunspots, Granulation, Filaments and Prominences, Coronal Loops 2. Solar Cycle: Observations The Sun: applying black-body radiation laws Radius

More information

Telescopes and the Atmosphere

Telescopes and the Atmosphere Telescopes and the Atmosphere Our goals for learning How does Earth s atmosphere affect ground-based observations? Why do we put telescopes into space? How does Earth s atmosphere affect ground-based observations?

More information

Earth and Space Science Quarter 4. Sun-Earth-Moon System (Duration 2 Weeks)

Earth and Space Science Quarter 4. Sun-Earth-Moon System (Duration 2 Weeks) HIGLEY UNIFIED SCHOOL DISTRICT INSTRUCTIONAL ALIGNMENT Earth and Space Science Quarter 4 Sun-Earth-Moon System (Duration 2 Weeks) Big Idea: Essential Questions: 1. Describe the lunar surface 2. Explain

More information

Physics 343 Lecture # 5: Sun, Stars, and Planets; Bayesian analysis

Physics 343 Lecture # 5: Sun, Stars, and Planets; Bayesian analysis Physics 343 Lecture # 5: Sun, Stars, and Planets; Bayesian analysis Schedule for the next week Office hours: Thu 5:00 6:20pm = Deshpande; Fri 10:20 11:40 = Baker + on call Sections A, C = Baker; Sections

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 23 Touring Our Solar System 23.1 The Solar System The Planets: An Overview The terrestrial planets are planets that are small and rocky Mercury, Venus,

More information

Universe Now. 12. Revision and highlights

Universe Now. 12. Revision and highlights Universe Now 12. Revision and highlights Practical issues about the exam The exam is on Monday 6.5. (12.00-16.00), lecture hall B121 (Exactum). Paper will be provided. You have 4 hours to finish the exam,

More information

Universe Celestial Object Galaxy Solar System

Universe Celestial Object Galaxy Solar System ASTRONOMY Universe- Includes all known matter (everything). Celestial Object Any object outside or above Earth s atmosphere. Galaxy- A large group (billions) of stars (held together by gravity). Our galaxy

More information

CHAPTER 11. We continue to Learn a lot about the Solar System by using Space Exploration

CHAPTER 11. We continue to Learn a lot about the Solar System by using Space Exploration CHAPTER 11 We continue to Learn a lot about the Solar System by using Space Exploration Section 11.1 The Sun page 390 -Average sized star -Millions of km away -300,000 more massive then Earth, 99% of all

More information

Comparative Planetology I: Our Solar System. Chapter Seven

Comparative Planetology I: Our Solar System. Chapter Seven Comparative Planetology I: Our Solar System Chapter Seven ASTR 111 003 Fall 2006 Lecture 07 Oct. 16, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17)

More information

4. THE SOLAR SYSTEM 1.1. THE SUN. Exercises

4. THE SOLAR SYSTEM 1.1. THE SUN. Exercises 4. THE SOLAR SYSTEM 1.1. THE SUN The sun is the star located in the center of the solar system. The sun is a yellow star, since its superficial temperature is about 5.500 C (although, the temperature can

More information

Solar System revised.notebook October 12, 2016 Solar Nebula Theory

Solar System revised.notebook October 12, 2016 Solar Nebula Theory Solar System revised.notebook The Solar System Solar Nebula Theory Solar Nebula was a rotating disk of dust and gas w/ a dense center dense center eventually becomes the sun start to condense b/c of gravity

More information

Comparative Planetology I: Our Solar System

Comparative Planetology I: Our Solar System Comparative Planetology I: Our Solar System Guiding Questions 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon? 3. How do astronomers

More information

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky The Sun as Our Star Last class we talked about how the Sun compares to other stars in the sky Today's lecture will concentrate on the different layers of the Sun's interior and its atmosphere We will also

More information

The Solar System CHAPTER 6. Vocabulary. star an object in space that makes its own light and heat. moon an object that circles around a planet

The Solar System CHAPTER 6. Vocabulary. star an object in space that makes its own light and heat. moon an object that circles around a planet CHAPTER 6 The Solar System Vocabulary star an object in space that makes its own light and heat moon an object that circles around a planet Sun astronomical unit the distance between Earth and the Sun

More information

8.2 The Sun pg Stars emit electromagnetic radiation, which travels at the speed of light.

8.2 The Sun pg Stars emit electromagnetic radiation, which travels at the speed of light. 8.2 The Sun pg. 309 Key Concepts: 1. Careful observation of the night sky can offer clues about the motion of celestial objects. 2. Celestial objects in the Solar System have unique properties. 3. Some

More information

SOLAR SYSTEM NOTES. Surface of the Sun appears granulated: 10/2/2015 ENERGY TRANSFERS RADIATION FROM THE SUN

SOLAR SYSTEM NOTES. Surface of the Sun appears granulated: 10/2/2015 ENERGY TRANSFERS RADIATION FROM THE SUN SOLAR SYSTEM NOTES 10.7.15 ENERGY TRANSFERS Radiation - a process in which energy travels through vacuum (without a medium) Conduction a process in which energy travels through a medium Convection - The

More information

Paper Reference. Monday 9 June 2008 Morning Time: 2 hours

Paper Reference. Monday 9 June 2008 Morning Time: 2 hours Centre No. Candidate No. Paper Reference(s) 1627/01 Edexcel GCSE Astronomy Paper 01 Monday 9 June 2008 Morning Time: 2 hours Materials required for examination Calculator Items included with question papers

More information

Our Star: The Sun. Layers that make up the Sun. Understand the Solar cycle. Understand the process by which energy is generated by the Sun.

Our Star: The Sun. Layers that make up the Sun. Understand the Solar cycle. Understand the process by which energy is generated by the Sun. Goals: Our Star: The Sun Layers that make up the Sun. Understand the Solar cycle. Understand the process by which energy is generated by the Sun. Components of the Sun Solar Interior: Core: where energy

More information

PTYS/ASTR 206. The Sun 3/1/07

PTYS/ASTR 206. The Sun 3/1/07 The Announcements Reading Assignment Review and finish reading Chapter 18 Optional reading March 2006 Scientific American: article by Gene Parker titled Shielding Space Travelers http://en.wikipedia.org/wiki/solar_variability

More information

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Instructor: L. M. Khandro 10/19/06 Please Note: the following test derives from a course and text that covers the entire topic of

More information

Physics 343 Lecture # 5: Sun, stars, and planets; (more) statistics

Physics 343 Lecture # 5: Sun, stars, and planets; (more) statistics Physics 343 Lecture # 5: Sun, stars, and planets; (more) statistics Schedule for the next week Office hours: Thu 5:00 6:00pm = Rivera; Fri 3:20 4:40 = Baker + on call Sections A, C, F, G = Baker; Sections

More information

Solar Noon The point at which the Sun is highest in the sky (and when shadows are shortest).

Solar Noon The point at which the Sun is highest in the sky (and when shadows are shortest). Solar Noon The point at which the Sun is highest in the sky (and when shadows are shortest). Rotation The movement of one object as it turns or spins around a central point or axis. Revolution The movement

More information

(Astro)Physics 343 Lecture # 5: Sun, Stars, and Planets; Fourier Transforms

(Astro)Physics 343 Lecture # 5: Sun, Stars, and Planets; Fourier Transforms (Astro)Physics 343 Lecture # 5: Sun, Stars, and Planets; Fourier Transforms Schedule for the next week Office hours: Mon 5:00 6:20pm = Baker; Thu 3:20 4:40 = Lindner + Sections A, B, F = Baker; Sections

More information

X Rays must be viewed from space used for detecting exotic objects such as neutron stars and black holes also observing the Sun.

X Rays must be viewed from space used for detecting exotic objects such as neutron stars and black holes also observing the Sun. 6/25 How do we get information from the telescope? 1. Galileo drew pictures. 2. With the invention of photography, we began taking pictures of the view in the telescope. With telescopes that would rotate

More information

Solar System Test Review

Solar System Test Review Solar System Test Review There are several planets in the solar system. What do all of these planets have in common? A.They all orbit the Sun. B. They are all close to the Moon. C.They are all called Earth.

More information