BEOSAT (BRUNSWICK-EARTH-OBSERVATION-SATELLITE)

Size: px
Start display at page:

Download "BEOSAT (BRUNSWICK-EARTH-OBSERVATION-SATELLITE)"

Transcription

1 ABSTRACT BEOSAT (BRUNSWICK-EARTH-OBSERVATION-SATELLITE) Rolf Kluge Jörn Pfingstgräff ExperimentalRaumfahrt-InteressenGemeinschaft e.v., Germany BEOSAT is a microsatellite designed by students from the Technical University of Brunswick, Germany. The satellite has a weight of 45kg and an edge-to-edge length of 40cm. The project started with a satellite design workshop in summer 2003 which was organised by the ExperimentalRaumfahrt-InteressenGemeinschaft - ERIG - which means experimental-space-interest-group. By now this group is a registered association with nearly 40 members. The ERIG is completely organized by students but we also get support from the University of Brunswick, some institutes and industrial partners. Since we are all students our first aim of this project is to learn how to construct a satellite and how to handle the project organisation. But we are also interested in scientific issues. That is why our payloads are more then just a camera. One is µscia which is a micro-spectrometer for measuring tropospherical nitrogen dioxide with a high scale ground resolution of 10 by 10km². The other one is AIDA which stands for Advanced Impact Detector Assembly. This is an impact detector for space debris and meteoroids. Both instruments represent a new generation of technology in their particular areas. They are built by cooperational partners. µscia is a project of the Institute of Environmental Physics in Bremen. AIDA will be built by eta_max space GmbH in Brunswick. The satellite will fly a sunsynchrous orbit (10.00h) with a maximum altitude of 650km. The satellite bus is designed and built by the BEOSAT team. The bus consists of a combination of COTS and space hardware. The project's timeline schedules a possible launch readiness for late In July 2004 the project has successfully passed the Preliminary Requirements Review held by the DLR (German Aerospace Centre) and experts from German space companies and research institutes. By now we have finished our first full scaled mock-up and in summer 2004 there will be the Preliminary Design Review. BEOSAT BEOSAT stands for Brunswick-Earth-Observation-SATellite. It is a project of the ERIG which is an association of students from the Technical University of Brunswick. The ERIG was founded in 1999 by students who develop and launch experimental rockets. It is a registered association with nearly 40 members. Most of them are still students but there are also some graduates from the Technical University of Brunswick. There are students from many different fields of study. There are mechanical, electrical,

2 computer and industrial engineering students but there are also physicists and media scientists. In 2003 some of them had the idea to build a student satellite. The question was how to initiate such a project. There were a lot of difficulties. No one knew how a real satellite looks like neither how to handle such a complex project. So the first step was to find a lot of answers. They decided to organise a workshop of two weeks for about 40 students of our university. In the first week there were many lectures about all fields of satellite technology held by space experts from EADS Astrium, GFZ, ZARM, OHB System, the DLR and universities. During the second week we could define our aims together with the new students who joined the workshop. Thus this was the kick-off for BEOSAT, a microsatellite for earth observation. ORGANIZATION Beside MEPHISTO a two staged experimental rocket to reach 10km altitude and HYDRA an innovative hybrid motor, BEOSAT is the third big project of the ERIG. The ERIG is fully organized by students. There is no technical interference by university, but we get support by the Institute of Aerospace Systems (ILR) and the Institute for Computer and Communication Network Engineering (IDA). Furthermore we could find many supporting partners in German space related companies. The BEOSAT project group is divided into six subsystem groups: Payload, AOCS, Structure/ Thermal Systems, Electrical Systems, Systemengineering and Finance/ Marketing/ Organization. PAYLOAD As mentioned, BEOSAT carries two payloads. µscia is developed by the Institute of Environmental Physics (IUP) in Bremen. It consists of a microspectrometer and a telescope. It will reach a ground resolution of 10km by 10km. µscia will measure the concentration of nitrogen dioxide (NO 2 ) in the atmosphere. NO 2 is an indicator for air pollution. It is emitted by all kinds of burning processes as in cars, aircrafts, households and factories. NO 2 causes acid rain and supports the production of troposhperical ozone. µscia will only measure nadir-orientated so we get information about the entire concentration and no height-dependable information. The question is what is the improvement? There are existing systems like SCIAMACHY on the satellite ENVISAT which measures with a ground resolution of 60km by 30km. BEOSAT will have a ground resolution of 10km by 10km, which is an improvement by a factor of 18. All data that µscia will collect shall be posted on web, so that everybody can take a look of his local air pollution. AIDA is an impact detector for space debris and meteoroids. There are two concepts of assembling AIDA on BEOSAT. AIDA is built by eta_max space GmbH in Brunswick which is the main contractor for ESA's MASTER model. Our dates can be used to compare them with MASTER and depending on the results it can be used for an update for our orbit. So what types of assembly are possible? The AIDA concept consists of a base plate with thermal sensors. In front of the base plate there are two laser curtains or two thin grids.

3 If a particle hits the sensor, it first goes through the two curtains. When the particle hits a curtain a flash is occurring. These flashes are measured by optical cameras which give a time signal and storage the location of the flash. The same happens at the second curtain. So we get information about the particle's direction and velocity. Then the particle hits the base plate and all his kinetic energy is converted into heat energy. Considering E=1/2mv² we can get a good estimation about the particle's mass with measuring the temperature. If the sensor is assembled with the grids they will measure the ionisation energy of the particle when it hits the base plate. With this information and the thermal energy that you can measure on the base plate the sensor can calculate the velocity and the mass of the particle. It does not matter which version will flight on BEOSAT, the satellite will detect the space debris and meteoroid's flux and the velocity of the particles with a higher resolution than every other sensor does it at the moment. AIDA will have a fully assembled mass of 4kg and it requires 4W of power. The sensor will be working all over the orbit. MISSION BEOSAT is intended to fly a 650km sunsynchrous orbit (10.00h). Regarding being only a secondary payload this is our best purposed orbit. The design must be that robust that a wide range of orbits might be possible. A launcher has not yet been identified. There had been contacts with DNEPR and ArianeSpace. The main driver for choosing the launcher is the launch costs. Since this is a student satellite project we will have to find a sponsor. During the eclipse, BEOSAT is flying nadir-pointed. When the satellite is leaving the eclipse the solarpanels will be sun-pointed as long as there is no measurement campaign. That is why BEOSAT is three-axis stabilized. Furthermore µscia is the main design driver for BEOSAT s attitude control system. µscia needs a high pointing accuracy and stability. For µscia's operational mode a highly accurate sun sensor is needed. SUBSYSTEMS Attitude Control System (ACS) Besides the high accurate sun sensor the attitude control system (ACS) is quite standard. BEOSAT will use six coarse-earth-sun-sensors (CESS), a three-axis magnetometer, three gyros and a GPS receiver. As actuators there are three reaction wheels and magneto-torquers. Because BEOSAT will not use a cold gas system there will not be the possibility of an orbit control. A micro processor will control all ACS work. The controller is only working for ACS and it is cold redundant. On-Board Data Handling (OBDH) The main computer - a FPGA - is the heart of the On-Board-Data-Handling-System. All computers on BEOSAT are identical and use the same software. So it is ensured that

4 one computer can take over the other's jobs, too. For data storage 1GB of Flash will be used. Communication The communication system consists of an S-Band system. There will be a high- and a low-rate for up- and downlink. It will have a maximum data rate of 0,15MBit/s. The high-rate system uses a helix antenna. If everything is working well this system is used for the communication of the payload and the housekeeping data. The low-rate communication is a back-up system which will be used in terms of malfunctions. As groundstation it is foreseen to use a 3m parabol antenna which receives the high-rate data and which is placed at an institute of the Technical University of Brunswick. The low-rate link uses a yagi antenna which is also situated at an institute in Brunswick. Electrical Power System (EPS) For generating electric power BEOSAT uses high-efficient solar cells. They are placed on a body-mounted and on one deployable panel. They deliver up to 125W, due to the satellite s orientation. For power storage it is foreseen to use Lithium-Ion batteries with a capacity of 9Ah. The working voltage of the electrical bus will be 28V. Thermal A very sophisticated design for thermal system is needed because µscia has a very small bandwidth of operational temperature. µscia will be thermal decoupled from the satellite's bus. That is why the thermal system is divided into two parts; one for the bus and one for µscia. The bus system is intended to be passive. µscia needs a Peltier element for active cooling and maybe a heating element. µscia will be placed on the cold site of the satellite so that the instrument box is directly connected to his own radiator. Furthermore the box with the CCD-Chip will be isolated with multi-layer insulation (MLI) and eventually thermally isolated mounted on the panel. The passive system of the satellite itself is comparable to standard systems. The satellite will be insulated with MLI and gets its own radiator. Structure The structural concept of BEOSAT is called FIPS, which stands for Function- Integrated-Primary-Structure. That means that the whole structure of the satellite is used to absorb the strains of the launch as well as all the parts will be fixed directly on this structure. It consists of a massive aluminium base plate where four corner stiffeners are mounted. The bars are holding the panels on which all instruments are placed. The panels are set up with honeycomb and carbon fibre plates. All instruments are assembled directly on

5 the panels with inserts. The deployable solar panel is mounted at the satellite's back and is released by pyros and arrests in a fixed position. PROJECT PHASES BEOSAT is a pure student project. At the moment the students work mostly in their spare time. But there is also the possibility for the students to do BEOSAT related projects for their studies. There are two main challenges. Like in the most student projects these challenges are money and continuity. Furthermore such a complex project needs a lot of time for its realisation. To build up partnerships and sponsoring activities we have the group finances/ marketing/ organization. To ensure a continuous work and to guarantee a sufficient team size every year a BEOSAT satellite design workshop takes place. The project timeline is orientated on the ECSS project phases. The project has passed the Preliminary Requirements Review (PRR) in June and July The PRR has been organized together with the DLR. Therefore we could win 14 experts from the DLR, space companies and research institutes. They have reviewed the documentation and confirmed the feasibility of our concepts. Phase B started in August 2004 and is intended to be finished with the Preliminary Design Review (PDR) in July For design, assembly, integration and tests (Phase C/D) there are three years of work planned so that we can launch the satellite at the end of By now the first full scaled mock-up is finished. The next steps are the STM (structurethermal-model) which shall qualify the thermal and structural design in the second half of 2005 and the first functional models of the OBDH and communications systems. CONCLUSION BEOSAT is a project which is completely organised by students. Even the satellite will be constructed and built by us. Our primary aim is to learn more about space technology and that is what we do, every week a little bit more. Besides the technology we get in contact with project management, international conferences and many industrial partners. If the project continues like it does at the moment the satellite will reach its launch readiness at the end of So in about 4 years many people can also profit from BEOSAT when we will get the results of the first measuring campaign.

BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN. Jose Sergio Almeida INPE (Brazil)

BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN. Jose Sergio Almeida INPE (Brazil) BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN Jose Sergio Almeida INPE (Brazil) 1 st International Academy of Astronautics Latin American Symposium on Small

More information

Team X Study Summary for ASMCS Theia. Jet Propulsion Laboratory, California Institute of Technology. with contributions from the Theia Team

Team X Study Summary for ASMCS Theia. Jet Propulsion Laboratory, California Institute of Technology. with contributions from the Theia Team Team X Study Summary for ASMCS Theia Jet Propulsion Laboratory, California Institute of Technology with contributions from the Theia Team P. Douglas Lisman, NASA Jet Propulsion Laboratory David Spergel,

More information

Attitude Determination and Control System Design for STU-2A Cubesat and In-Orbit Results

Attitude Determination and Control System Design for STU-2A Cubesat and In-Orbit Results 13 th Annual Summer CubeSat Developer s Workshop August 6-7, 2016, Logan, Utah Attitude Determination and Control System Design for STU-2A Cubesat and In-Orbit Results Presented by Shufan Wu Guowen Sun,

More information

MISSION ENGINEERING SPACECRAFT DESIGN

MISSION ENGINEERING SPACECRAFT DESIGN MISSION ENGINEERING & SPACECRAFT DESIGN Alpbach 2007 - D.J.P. Moura - CNES MISSION ENGINEERING (1) OVERALL MISSION ENGINEERING IS A COMPLEX TASK SINCE AT THE BEGINNING THE PROBLEM IS GENERALLY BADLY EXPRESSED

More information

The European Student Moon Orbiter (ESMO) A Small Mission for Education, Outreach, and Science

The European Student Moon Orbiter (ESMO) A Small Mission for Education, Outreach, and Science (ESMO) A Small Mission for Education, Outreach, and Science Roger Walker, Matthew Cross Education Projects Unit, ESA Education Office ESTEC, Noordwijk, The Netherlands LEAG-ILEWG-SRR Meeting Cape Canaveral,

More information

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT INCA Ionospheric Neutron Content Analyzer New Mexico State University University NanoSat-8 CubeSat Workshop Presentation August 2, 2014; Logan, UT Presentation Outline Mission Overview Mission Relevance

More information

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT INCA Ionospheric Neutron Content Analyzer New Mexico State University University NanoSat-8 CubeSat Workshop Presentation August 2, 2014; Logan, UT Mission Overview Mission Relevance ConOps INCA Payload

More information

THERMAL CONTROL DESIGN FOR A MICROSATELLITE. Kaipo Kent Department of Electrical Engineering University of Hawai i at Mānoa Honolulu, HI 96822

THERMAL CONTROL DESIGN FOR A MICROSATELLITE. Kaipo Kent Department of Electrical Engineering University of Hawai i at Mānoa Honolulu, HI 96822 THERMAL CONTROL DESIGN FOR A MICROSATELLITE Kaipo Kent Department of Electrical Engineering University of Hawai i at Mānoa Honolulu, HI 96822 ABSTRACT Conventional satellites are extremely large, highly

More information

Berlin Space Technologies The Leading German New Space Company

Berlin Space Technologies The Leading German New Space Company The Leading German New Space Company Matthias Buhl, Björn Danziger and Tom Segert Berlin Space Technologies GmbH Who we are Berlin Space Technologies is: Providing system solutions based on small satellites

More information

Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission

Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission Dr. Simon Grocott Dr. Robert E Zee Dr. Jaymie Matthews Dynacon Inc UTIAS SFL UBC 13 August 2003 Outline MOST (Microvariability and

More information

Six Days at the Edge of Space: 10 Years of HASP Balloon Flight Operations

Six Days at the Edge of Space: 10 Years of HASP Balloon Flight Operations Six Days at the Edge of Space: 10 Years of HASP Balloon Flight Operations T. Gregory Guzik, Louisiana Space Grant Consortium Department of Physics & Astronomy Louisiana State University v030316 1 Primary

More information

System engineering approach toward the problem of required level of in-orbit autonomousoperation of a LEO microsatellite mission

System engineering approach toward the problem of required level of in-orbit autonomousoperation of a LEO microsatellite mission System engineering approach toward the problem of required level of in-orbit autonomousoperation of a LEO microsatellite mission H.Bonyan Amirkabir University of Technology (AUT) H.Bonyan@dena.aut.ac.ir

More information

System and Concurrent Engineering for the e.deorbit Mission Assessment Studies Robin Biesbroek Jakob Hüsing Andrew Wolahan

System and Concurrent Engineering for the e.deorbit Mission Assessment Studies Robin Biesbroek Jakob Hüsing Andrew Wolahan System and Concurrent Engineering for the e.deorbit Mission Assessment Studies Robin Biesbroek Jakob Hüsing Andrew Wolahan Why Active Debris Removal? 17000 catalogued objects Less than 1000 active 600-800

More information

The 2007 CubeSat Developers' Workshop SwissCube Project

The 2007 CubeSat Developers' Workshop SwissCube Project SwissCube Project (http://swisscube.epfl.ch) The 2007 CubeSat Developers' Workshop SwissCube Project Guillaume Roethlisberger Mechanical System Engineer Space Center EPFL guillaume.roethlisberger@epfl.ch

More information

ASPECT Spectral Imager CubeSat Mission to Didymos

ASPECT Spectral Imager CubeSat Mission to Didymos ASPECT Spectral Imager CubeSat Mission to Didymos Kestilä A. 1),Näsilä A. 2), Kohout T. 3),Tikka T. 1),Granvik M. 3) 1. Aalto University, Finland. 2. Technical Research Center of Finland, Finland 3. Helsinki

More information

Leonid Meteor Observer in LEO: A Proposal for a University Microsatellite for the 2001 Leonids

Leonid Meteor Observer in LEO: A Proposal for a University Microsatellite for the 2001 Leonids Leonid Meteor Observer in LEO: A Proposal for a University Microsatellite for the 2001 Leonids Kazuya Yoshida* Hajime Yano** *Tohoku University **Institute of Space and Astronautical Science (ISAS) JAPAN

More information

DARE Mission and Spacecraft Overview

DARE Mission and Spacecraft Overview DARE Mission and Spacecraft Overview October 6, 2010 Lisa Hardaway, PhD Mike Weiss, Scott Mitchell, Susan Borutzki, John Iacometti, Grant Helling The information contained herein is the private property

More information

THE PICSAT PROJECT. Mathias Nowak, PhD student LESIA/Observatoire de Paris

THE PICSAT PROJECT. Mathias Nowak, PhD student LESIA/Observatoire de Paris THE PICSAT PROJECT Mathias Nowak, PhD student LESIA/Observatoire de Paris mathias.nowak@obspm.fr THE PICSAT PROJECT - A 3-unit CubeSat, ~4 kg, ~6 W - Dedidacted to the observation of Beta Pictoris - LESIA

More information

ATTITUDE CONTROL FOR GRACE THE FIRST LOW-FLYING SATELLITE FORMATION

ATTITUDE CONTROL FOR GRACE THE FIRST LOW-FLYING SATELLITE FORMATION ATTITUDE CONTROL FOR GRACE THE FIRST LOW-FLYING SATELLITE FORMATION J. Herman (1), D. Presti (1,2), A. Codazzi (1), C. Belle (3) (1) German SpaceOperations Centre; DLR-GSOC, 82234 Wessling Germany, E-mail:

More information

Venus Express: The Spacecraft

Venus Express: The Spacecraft Venus Express: The Spacecraft Venus Express Spacecraft Alistair J. Winton, Ared Schnorhk, Con McCarthy, Michael Witting, Philippe Sivac, Hans Eggel, Joseph Pereira, Marco Verna Venus Express Project Team,

More information

A CubeSat Mission for Exoplanet Transit Detection and Astroseismology

A CubeSat Mission for Exoplanet Transit Detection and Astroseismology A CubeSat Mission for Exoplanet Transit Detection and Astroseismology Jeremy Bailey (UNSW, Physics) Steve Tsitas (UNSW, ACSER) Daniel Bayliss (RSAA, ANU) Tim Bedding (Univ. Sydney) ESO Very Large Telescope

More information

Germany s Option for a Moon Satellite

Germany s Option for a Moon Satellite Germany s Option for a Moon Satellite 38th COSPAR B01-0016-10 Quantius, D. (1), Päsler, H. (2), Gülzow, P. (2), Braukhane, A. (1), Vollhardt, A. (2), Bauer, W. (1), Romberg, O. (1), Scheibe, K. (1), Hoffmann,

More information

Net Capture Mechanism for Debris Removal Demonstration Mission

Net Capture Mechanism for Debris Removal Demonstration Mission Net Capture Mechanism for Debris Removal Demonstration Mission Robert Axthelm (1), Barbara Klotz (2), Dr. Ingo Retat (3), Uwe Schlossstein (4), Wolfgang Tritsch (5), Susanne Vahsen (6) Airbus DS, Airbus

More information

November 3, 2014 Eric P. Smith JWST Program Office

November 3, 2014 Eric P. Smith JWST Program Office November 3, 014 Eric P. Smith JWST Program Office 1 SINCE LAST CAA MEETING... Completed of 3 recommended GAO schedule risk analyses for this year. Mutually agreed to drop 3 rd. Will perform cost-risk study

More information

Spacecraft Bus / Platform

Spacecraft Bus / Platform Spacecraft Bus / Platform Propulsion Thrusters ADCS: Attitude Determination and Control Subsystem Shield CDH: Command and Data Handling Subsystem Payload Communication Thermal Power Structure and Mechanisms

More information

Thermal Design and Analysis of the BroadBand Radiometer. Oliver Poyntz-Wright (Rutherford Appleton Laboratory, United Kingdom)

Thermal Design and Analysis of the BroadBand Radiometer. Oliver Poyntz-Wright (Rutherford Appleton Laboratory, United Kingdom) 255 Appendix T Thermal Design and Analysis of the BroadBand Radiometer Oliver Poyntz-Wright (Rutherford Appleton Laboratory, United Kingdom) 256 Thermal Design and Analysis of the BroadBand Radiometer

More information

Launches and On-Orbit Performance

Launches and On-Orbit Performance Launches and On-Orbit Performance An Update on Nanosatellite Missions at the UTIAS Space Flight Laboratory Daniel D. Kekez,, Robert E. Zee, Freddy M. Pranajaya Space Flight Laboratory University of Toronto

More information

A DETAILED IMPACT RISK ASSESSMENT OF POSSIBLE PROTECTION ENHANCEMENTS TO TWO LEO SPACECRAFT

A DETAILED IMPACT RISK ASSESSMENT OF POSSIBLE PROTECTION ENHANCEMENTS TO TWO LEO SPACECRAFT A DETAILED IMPACT RISK ASSESSMENT OF POSSIBLE PROTECTION ENHANCEMENTS TO TWO LEO SPACECRAFT H. Stokes (1), C. Cougnet (2), M. David (3), J. Gelhaus (4), M. Röthlingshöfer (5) (1) PHS Space Ltd, 8 Dixon

More information

BROOMFIELD SCHOOL GCSE Physics Long Answer Exam Booklet

BROOMFIELD SCHOOL GCSE Physics Long Answer Exam Booklet BROOMFIELD SCHOOL GCSE Physics Long Answer Exam Booklet Name: Class: Teacher: Jan 2013 P1 Higher Jan 2013 P1 Higher Jan 2013 P2 Higher Jan 2013 P2 Higher June 2012 P1 Higher June 2012 P1 Higher June

More information

DEOS AUTOMATION AND ROBOTICS PAYLOAD

DEOS AUTOMATION AND ROBOTICS PAYLOAD w e. c r e a t e. s p a c e. Kayser-Threde GmbH Space Industrial Applications DEOS AUTOMATION AND ROBOTICS PAYLOAD 11th Symposium on Advanced Space Technologies in Robotics and Automation ESA/ESTEC, Noordwijk,

More information

The E-SAIL programme. 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin LuxSpace s.à.r.

The E-SAIL programme. 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin LuxSpace s.à.r. The E-SAIL programme 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin LuxSpace s.à.r.l An OHB company Contents LuxSpace Background Consortium Spacecraft Specific issues

More information

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands The Quantum Sensor Challenge Designing a System for a Space Mission Astrid Heske European Space Agency The Netherlands Rencontres de Moriond - Gravitation, La Thuile, 2017 Quantum Sensors in Lab Experiments

More information

The department of computer science and the chair of Aerospace

The department of computer science and the chair of Aerospace International Summer School 18-29 July 2016 in Würzburg (Germany) for Advanced Students Julius-Maximilians- UNIVERSITÄT WÜRZBURG Information Brochure The department of computer science and the chair of

More information

IR sounder small satellite for polar orbit weather measurements

IR sounder small satellite for polar orbit weather measurements IR sounder small satellite for polar orbit weather measurements Sara Lampen, Sonny Yi, Jared Lang, Caleb Lampen, Adam Vore, David Warren, Eric Herman The Aerospace Corporation John J. Pereira National

More information

The department of computer science and the chair of Aerospace

The department of computer science and the chair of Aerospace International Summer School 20-31 July 2015 in Würzburg (Germany) for Advanced Students Julius-Maximilians- UNIVERSITÄT WÜRZBURG Information Brochure The department of computer science and the chair of

More information

Picometre metrology. The Gaia mission will create an ultra-precise three-dimensional map of about one billion stars

Picometre metrology. The Gaia mission will create an ultra-precise three-dimensional map of about one billion stars Picometre metrology in space The Gaia mission will create an ultra-precise three-dimensional map of about one billion stars in our Galaxy. Part of ESA s Cosmic Vision program, the Gaia spacecraft is being

More information

FORMOSAT-3 Satellite Thermal Control Design and Analysis *

FORMOSAT-3 Satellite Thermal Control Design and Analysis * Journal of Aeronautics, Astronautics and Aviation, Series A, Vol.39, No.4, pp.287-292 (27) 287 Technical Note FORMOSAT-3 Satellite Thermal Control Design and Analysis * Ming-Shong Chang **, Chia-Ray Chen,

More information

Integrated Test Facility for Nanosat Assessment and Verification

Integrated Test Facility for Nanosat Assessment and Verification Integrated Test Facility for Nanosat Assessment and Verification Steve Wassom, Quinn Young, Bryan Bingham, Rees Fullmer, Mitch Whiteley, Robert Burt, Mike Watson, Tom Ortiz, Joe Richards, Sam Wilcox Utah

More information

PROBA 1. F. Teston ESA/ESTEC D/TEC-EL

PROBA 1. F. Teston ESA/ESTEC D/TEC-EL PROBA 1 F. Teston ESA/ESTEC D/TEC-EL Frederic.Teston@esa.int PROBA 1 launch PROBA 1 has been launched on 21 October 2001 Orbital parameters: Altitude: 681-561 km Near polar (inclination of 97.9 ) Sun-synchronous

More information

Appendix G. Solar Orbiter SPICE Thermal Design, Analysis and Testing. Samuel Tustain (RAL Space, United Kingdom)

Appendix G. Solar Orbiter SPICE Thermal Design, Analysis and Testing. Samuel Tustain (RAL Space, United Kingdom) 137 Appendix G Solar Orbiter SPICE Thermal Design, Analysis and Testing Samuel Tustain (RAL Space, United Kingdom) 138 Solar Orbiter SPICE Thermal Design, Analysis and Testing Abstract 1 The Spectral Imaging

More information

TROPOMI. Sentinel 5 Precursor instrument for air quality and climate observations. R. Voors Dutch Space. ICSO, 11 October 2012

TROPOMI. Sentinel 5 Precursor instrument for air quality and climate observations. R. Voors Dutch Space. ICSO, 11 October 2012 TROPOMI Sentinel 5 Precursor instrument for air quality and climate observations R. Voors Dutch Space ICSO, 11 October 2012 Sentinel 5 precursor and the TROPOMI payload Climate and Air quality Precursor

More information

Experience of passive thermal control of long-term near- Earth small satellite mission

Experience of passive thermal control of long-term near- Earth small satellite mission Experience of passive thermal control of long-term near- Earth small satellite mission Dr. Franz Lura, Dr. Bernd Biering, Institute of space systems, Bremen, Robert-Hooke-Str. 7 28359, Germany. Phone:

More information

BRINGING YOUR EXPERIMENT INTO SPACE

BRINGING YOUR EXPERIMENT INTO SPACE BRINGING YOUR EXPERIMENT INTO SPACE Science Service Division SSC - Swedish Space Corporation Space exploration with ESA: opportunities within the ESA programme E3P Stockholm, 13 November 2018 SWEDISH SPACE

More information

Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis, V. Antakis, G.

Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis, V. Antakis, G. GLEME: GLOBAL LIDAR EXPLORATION OF THE MESOSPHERE Project Technical Officer: E. Armandillo Study Participants: T.E. Sarris, E.R. Talaat, A. Papayannis, P. Dietrich, M. Daly, X. Chu, J. Penson, A. Vouldis,

More information

Propellantless deorbiting of space debris by bare electrodynamic tethers

Propellantless deorbiting of space debris by bare electrodynamic tethers Propellantless deorbiting of space debris by bare electrodynamic tethers Juan R. Sanmartín Universidad Politécnica de Madrid Presentation to the 51 th Session of the Scientific and Technical Subcommittee

More information

Mechanical and Thermal Design of XMM

Mechanical and Thermal Design of XMM r bulletin 100 december 1999 Mechanical and Thermal Design of XMM K. van Katwijk, T. van der Laan & D. Stramaccioni XMM Project, ESA Directorate for Scientific Programmes, ESTEC, Noordwijk, The Netherlands

More information

Status of the European Student Moon Orbiter (ESMO) Project:

Status of the European Student Moon Orbiter (ESMO) Project: Status of the European Student Moon Orbiter (ESMO) Project: Roger Walker, Project Manager Education Projects Unit, ESA Education Office, ESTEC 1 What is ESMO? Fourth mission in the ESA Education Satellite

More information

Lunar Satellite Attitude Determination System

Lunar Satellite Attitude Determination System Lunar Satellite Attitude Determination System SENIOR DESIGN PROPOSAL PRESENTATION TEAM EPOCH KUPOLUYI, TOLULOPE (LEAD DEVELOPER) SONOIKI, OLUWAYEMISI (LEAD RESEARCHER) WARREN, DANAH (PROJECT MANAGER) NOVEMBER

More information

What s Up in Space? Dean W McCall, Ed.D.

What s Up in Space? Dean W McCall, Ed.D. What s Up in Space? Dean W McCall, Ed.D. In no particular order Brief aerospace CV Systems Engineering Space mission types Examples Gotchas Terminology & Slang Please ask questions McCall Background Hughes

More information

STOCHASTIC APPROACH TO SPACECRAFT THERMAL CONTROL SUBSYSTEM

STOCHASTIC APPROACH TO SPACECRAFT THERMAL CONTROL SUBSYSTEM STOCHASTIC APPROACH TO SPACECRAFT THERMAL CONTROL SUBSYSTEM October 2001 1 Why? Scatter on physical parameters Thermo-optical properties Contact conductances Handling process Density Scatter on environment

More information

FIREBIRD and SSEL Space Weather Missions

FIREBIRD and SSEL Space Weather Missions Space Science and Engineering Laboratory FIREBIRD and SSEL Space Weather Missions Ehson Mosleh Systems Engineer Space Science and Engineering Laboratory Montana State University CubeSat Developers Workshop

More information

EQUIPMENT INTERFACE LOAD CHARACTERIZATION IN ACOUSTICS

EQUIPMENT INTERFACE LOAD CHARACTERIZATION IN ACOUSTICS 1 EQUIPMENT INTERFACE LOAD CHARACTERIZATION IN ACOUSTICS Nicolas Ludovic LARUE (1), Jean Marie LOME (2), Alice PRADINES (3) (1) Mechanical analysis and test engineer, EADS Astrium - 31 avenue des Cosmonautes,

More information

The Copernicus Sentinel-5 Mission: Daily Global Data for Air Quality, Climate and Stratospheric Ozone Applications

The Copernicus Sentinel-5 Mission: Daily Global Data for Air Quality, Climate and Stratospheric Ozone Applications SENTINEL-5 The Copernicus Sentinel-5 Mission: Daily Global Data for Air Quality, Climate and Stratospheric Ozone Applications Yasjka Meijer RHEA for ESA, Noordwijk, NL 15/04/2016 Co-Authors: Jörg Langen,

More information

483 Lecture. Space Mission Requirements. February11, Definition Examples Dos/ Don ts Traceability

483 Lecture. Space Mission Requirements. February11, Definition Examples Dos/ Don ts Traceability 483 Lecture Space Mission February11, 2012 Photo Credit:: http://www.spacewallpapers.info/cool-space-wallpaper What s a Requirement? ification? Requirement A concept independent statement of a mix of needs,

More information

RESERVE THALES ALENIA SPACE CHANGE RECORDS ISSUE DATE DESCRIPTION OF CHANGES AUTHOR

RESERVE THALES ALENIA SPACE CHANGE RECORDS ISSUE DATE DESCRIPTION OF CHANGES AUTHOR ISSUE : 1 Page : 2/35 CHANGE RECORDS ISSUE DATE DESCRIPTION OF CHANGES AUTHOR 1 03/10/07 Initial issue (MTG-TAF-SA-RS-39) J. VIEILLOT 1 20/09/10 Updated version for kick off : L.OUCHET New reference (MTG-TAF-SA-SS-0039)

More information

Your Partner in Environment Monitoring

Your Partner in Environment Monitoring Your Partner in Environment Monitoring Radiation Environment in Space The ionizing radiation in space represents one of the most severe environmental loads to space hardware and can cause a large number

More information

Andrea Sainati, Anupam Parihar, Stephen Kwan Seklam 31 A Very Low Altitude Constellation For Earth Observation

Andrea Sainati, Anupam Parihar, Stephen Kwan Seklam 31 A Very Low Altitude Constellation For Earth Observation Andrea Sainati, Anupam Parihar, Stephen Kwan Seklam 31 A Very Low Altitude Constellation For Earth Observation Andrea Sainati, Anupam Parihar, Stephen Kwan Seklam MSc students, Department of Aerospace

More information

The AEOLUS Mission - In Orbit Commissioning and Verification

The AEOLUS Mission - In Orbit Commissioning and Verification The AEOLUS Mission - In Orbit Commissioning and Verification ADM-Aeolus CAL/VAL Workshop, ESRIN P McGoldrick, J Brewster, J Marshall, F Fabre Airbus Defence and Space, UK and France 12 th February 2015

More information

SciBox, a Proven Automated Planning and Commanding System

SciBox, a Proven Automated Planning and Commanding System SciBox, a Proven Automated Planning and Commanding System Teck Choo, Edward Russell, Michael Kim February 25, 2014 2014 by The Johns Hopkins University/Applied Physics Laboratory. Published by The Aerospace

More information

Space mission environments: sources for loading and structural requirements

Space mission environments: sources for loading and structural requirements Space structures Space mission environments: sources for loading and structural requirements Prof. P. Gaudenzi Università di Roma La Sapienza, Rome Italy paolo.gaudenzi@uniroma1.it 1 THE STRUCTURAL SYSTEM

More information

Polish Student Activities in Space Research and Education

Polish Student Activities in Space Research and Education Polish Student Activities in Space Research and Education Warsaw University of Technology: Student Astronautical Group Student Space Engineering Scientific Group Radiolocation and Digital Signal Processing

More information

The first telescopes at the lunar outpost will be observing the Sun. Ed DeLuca CfA Heliophysics Subcommittee

The first telescopes at the lunar outpost will be observing the Sun. Ed DeLuca CfA Heliophysics Subcommittee The first telescopes at the lunar outpost will be observing the Sun Ed DeLuca CfA Heliophysics Subcommittee Overview The need for an operational solar telescope In situ space weather forecasting / nowcasting

More information

Sub-millimeter size debris monitoring system with IDEA OSG 1

Sub-millimeter size debris monitoring system with IDEA OSG 1 Sub-millimeter size debris monitoring system with IDEA OSG 1 Masahiko Uetsuhara, Mitsunobu Okada, Yasunori Yamazaki, Astroscale Pte. Ltd. Toshiya Hanada Kyushu University ABSTRACT The 20-kg class microsatellite

More information

SOLAR FURNACE. By Heiko Ritter JOURNEY TO THE INNER

SOLAR FURNACE. By Heiko Ritter JOURNEY TO THE INNER SOLAR FURNACE 88 Seite 1 By Heiko Ritter JOURNEY TO THE INNER THERMAL TESTS FOR Seite 2 SOLAR SYSTEM B E P I C O L O M B O T he European Space Agency, ESA, is currently developing a mission to the planet

More information

Full Electric Mission to Moon (SMART-1) and Technologies: Electric propulsion, rendez-vous, formation flying

Full Electric Mission to Moon (SMART-1) and Technologies: Electric propulsion, rendez-vous, formation flying The Space Congress Proceedings 2016 (44th) The Journey: Further Exploration for Universal Opportunities May 25th, 10:45 AM Full Electric Mission to Moon (SMART-1) and Technologies: Electric propulsion,

More information

Attitude Control on the Pico Satellite Solar Cell Testbed-2

Attitude Control on the Pico Satellite Solar Cell Testbed-2 SSC12-II-1 Attitude Control on the Pico Satellite Solar Cell Testbed-2 Siegfried W. Janson, Brian S. Hardy, Andrew Y. Chin, Daniel L. Rumsey, Daniel A. Ehrlich, and David A. Hinkley The Aerospace Corporation

More information

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology 3 rd Mission Idea Contest UNISEC Global The Idea We want to take image for the moon phases as seen from Earth Why? Introduction 1.6 billion,23.4%

More information

Gateway to Space Spring 2006 Design Document

Gateway to Space Spring 2006 Design Document Colorado Space Grant Consortium Gateway to Space Spring 2006 Design Document The Big Kahunas Solar Hog Written by: Wes Furuya Scott Tatum Vince Williams Noah Moore Mike Loptien March 02, 2006 Revision

More information

ExoplanetSat: A Nanosatellite Space Telescope for Detecting Transiting Exoplanets

ExoplanetSat: A Nanosatellite Space Telescope for Detecting Transiting Exoplanets 1 2 ExoplanetSat: A Nanosatellite Space Telescope for Detecting Transiting Exoplanets Matthew W. Smith 1 (m_smith@mit.edu), Sara Seager 1, Christopher M. Pong 1, Sungyung Lim 2, Matthew W. Knutson 1, Timothy

More information

2.12 Venus Express. Introduction. Mission overview. Scientific goals

2.12 Venus Express. Introduction. Mission overview. Scientific goals 2.12 Venus Express Venus Express was launched from Baikonur Cosmodrome on 9 November 2005. A Soyuz-Fregat rocket put the 1200 kg spacecraft almost perfectly on the ideal trajectory towards Earth s twin

More information

DRAFT. Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter 431-ICD Date: September 15, 2005

DRAFT. Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter 431-ICD Date: September 15, 2005 DRAFT Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter Lunar Reconnaissance Orbiter to Comic Ray Telescope for the Effects of Radiation Mechanical Interface Control Document Date: September

More information

On-Orbit Performance of KOMPSAT-2 AOCS Korea Aerospace Research Institute Seung-Wu Rhee, Ph. D.

On-Orbit Performance of KOMPSAT-2 AOCS Korea Aerospace Research Institute Seung-Wu Rhee, Ph. D. SSC07-VII-9 On-Orbit Performance of AOCS 2007. 8. Korea Aerospace Research Institute Seung-Wu Rhee, Ph. D. 1 Program - is Low Earth Orbit Satellite - Mission : Cartographic Mission of Korean Peninsula

More information

Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016

Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016 Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016 About DSI A space technology and resources company Vision to enable the human space development by harvesting asteroid materials

More information

Lunar Reconnaissance Orbiter Project. Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Mechanical Interface Control Document

Lunar Reconnaissance Orbiter Project. Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Mechanical Interface Control Document Revision B DraftA Effective Date: July 17, 2006 Expiration Date: July 17, 2011 Lunar Reconnaissance Orbiter Project Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Mechanical Interface

More information

Learning Lab Seeing the World through Satellites Eyes

Learning Lab Seeing the World through Satellites Eyes Learning Lab Seeing the World through Satellites Eyes ESSENTIAL QUESTION What is a satellite? Lesson Overview: Engage students will share their prior knowledge about satellites and explore what satellites

More information

PROCESS CONTROL BASIS FOR A COST-EFFECTIVE SELECTIVE SOLDERING PROCESS

PROCESS CONTROL BASIS FOR A COST-EFFECTIVE SELECTIVE SOLDERING PROCESS PROCESS CONTROL BASIS FOR A COST-EFFECTIVE SELECTIVE SOLDERING PROCESS Christian Ott Kreuzwertheim, Germany christian.ott@seho.de Heike Schlessmann heike.schlessmann@seho.de Reiner Zoch reiner.zoch@seho.de

More information

Technical Verification Satellite STARS for Tethered Space Robot

Technical Verification Satellite STARS for Tethered Space Robot Technical Verification Satellite STARS for Tethered Space Robot Masahiro Nohmi, Takeshi Yamamoto, and Akira Andatsu Kagawa University nohmi@eng.kagawa-u.ac.jp, s05g528@stmail.eng.kagawa-u.ac.jp, s06g452@stmail.eng.kagawa-u.ac.jp

More information

TRUTHS-Lite: A Microsatellite Based Climate Benchmark Mission

TRUTHS-Lite: A Microsatellite Based Climate Benchmark Mission IAA-B10-0404 TRUTHS-Lite: A Microsatellite Based Climate Benchmark Mission Craig Underwood 1, Nigel Fox 2, Javier Gorroño 2 1 Surrey Space Centre, University of Surrey, Guildford, Surrey, GU2 7XH, UK 2

More information

StellarXplorers IV Qualifying Round 2 (QR2) Quiz Answer Key

StellarXplorers IV Qualifying Round 2 (QR2) Quiz Answer Key 1. Which of these Electromagnetic radiation bands has the longest wavelength (λ)? [Section 12.1] a. X-Ray b. Visible Light c. Infrared d. Radio 2. How is energy in Electromagnetic (EM) radiation related

More information

Cold Gas Thruster Qualification for FORMOSAT 5

Cold Gas Thruster Qualification for FORMOSAT 5 Cold Gas Thruster Qualification for FORMOSAT 5 By Hans-Peter HARMANN 1), Tammo ROMBACH 2) and Heiko DARTSCH 1) 1) AST Advanced Space Technologies GmbH, Stuhr, Germany 2) SpaceTech GmbH, Immenstaad, Germany

More information

Creating Large Space Platforms From Small Satellites

Creating Large Space Platforms From Small Satellites SSC99-VI-6 Creating Large Space Platforms From Small Satellites Andrew W. Lewin Principal Systems Engineer Orbital Sciences Corporation Dulles, VA 20166 (703) 406-5000 lewin.andy@orbital.com Abstract.

More information

BepiColombo. Project and MPO Status. Comprehensive Explora1on of Planet Mercury

BepiColombo. Project and MPO Status. Comprehensive Explora1on of Planet Mercury BepiColombo Project and MPO Status Comprehensive Explora1on of Planet Mercury Joe Zender BepiColombo Deputy PS, ESA/ESTEC BepiColombo Previously: Ø Proba2 Science Coordinator, until 12/2013 Ø ProbaV, Project

More information

The post launch assessment review confirmed the following previous assertions about the mission status:

The post launch assessment review confirmed the following previous assertions about the mission status: 1 GRACE Newsletter No. 2 August 15, 2003 Topics: http://www.csr.utexas/grace/ http://www.gfz-potsdam.de/grace 1. Editorial 2. Major events in Mission Operations since last Newsletter 3. Current status

More information

March 4, 2013 Eric P. Smith JWST Program Office

March 4, 2013 Eric P. Smith JWST Program Office March 4, 2013 Eric P. Smith JWST Program Office 1 SIMPLIFIED SCHEDULE OTE = Optical Telescope Element OTIS = Optical Telescope + ISIM k months of project funded critical path (mission pacing) schedule

More information

LISA Pathfinder measuring pico-meters and femto-newtons in space

LISA Pathfinder measuring pico-meters and femto-newtons in space LISA Pathfinder measuring pico-meters and femto-newtons in space M Hewitson for the LPF team Barcelona, February 15th 2012 Observing from Space 2 Observing from Space 2 Observing from Space Push down to

More information

Integral in Orbit* The Integral satellite was launched on 17 October 2002, at

Integral in Orbit* The Integral satellite was launched on 17 October 2002, at * The Integral satellite was launched on 17 October 2002, at 4:41 Universal Time, from Baikonur aboard a Proton rocket. The flawless launch marked the culmination of more than a decade of work for the

More information

Proba-3 mission and the ASPIICS coronagraph

Proba-3 mission and the ASPIICS coronagraph Proba-3 mission and the ASPIICS coronagraph Marek Stęślicki 1 and the Proba-3 SWT 1 Space Research Centre Polish Academy of Sciences General objectives The Proba-3 project aims: To develop and demonstrate

More information

Todays Topics 3/19/2018. Light and Telescope. PHYS 1403 Introduction to Astronomy. CCD Camera Makes Digital Images. Astronomical Detectors

Todays Topics 3/19/2018. Light and Telescope. PHYS 1403 Introduction to Astronomy. CCD Camera Makes Digital Images. Astronomical Detectors PHYS 1403 Introduction to Astronomy Light and Telescope Chapter 6 Todays Topics Astronomical Detectors Radio Telescopes Why we need space telescopes? Hubble Space Telescopes Future Space Telescopes Astronomy

More information

Purpose Mercury Na Atmosphere And Tail Venus (Dayside) Circulation Temperature Chemistry Venus (Nightside) Lightning Airglow Mars Dust Storm Chemistry

Purpose Mercury Na Atmosphere And Tail Venus (Dayside) Circulation Temperature Chemistry Venus (Nightside) Lightning Airglow Mars Dust Storm Chemistry P2 157 The Circumpolar Stratospheric Telescope FUJIN for Observations of Planets Prof. Makoto TAGUCHI and Atsunori MAEDA (Rikkyo University) Dr. Yasuhiro SHOJI (ISAS/JAXA) Prof. Yukihiro TAKAHASHI,Masataka

More information

SpW Application from JAXA

SpW Application from JAXA SpW Application from JAXA 18/May/2006 SpaceWire Working Group Meeting 6 Tetsuo YOSHIMITSU (ISAS/JAXA) The MINERVA rover primary investigator & A man involved in SpaceWire Masaharu NOMACHI (Osaka University)

More information

ILWS Related Activities in Germany (Update) Prague, June 11-12, 2008

ILWS Related Activities in Germany (Update) Prague, June 11-12, 2008 ILWS Related Activities in Germany (Update) Prague, June 11-12, 2008 ILWS, DLR, Dr. Frings Overview Update is based on previous ILWS Presentations Focus on recent developments and achievements SOL-ACES

More information

ROBUSTA cubesat. Radiation On Bipolar University Satellite Test Application. Student project. Partnership : Montpellier University + CNES

ROBUSTA cubesat. Radiation On Bipolar University Satellite Test Application. Student project. Partnership : Montpellier University + CNES ROBUSTA cubesat Radiation On Bipolar University Satellite Test Application Student project Partnership : Montpellier University + CNES 1 What is Robusta Robusta s goal Robusta s actors Robusta s location

More information

THE BUGS EXPERIMENT: OVERVIEW AND IN-FLIGHT RESULTS

THE BUGS EXPERIMENT: OVERVIEW AND IN-FLIGHT RESULTS THE BUGS EXPERIMENT: OVERVIEW AND IN-FLIGHT RESULTS Maria Libera Battagliere (1), Gianpaolo Candini (2), Jacopo Piattoni (2), Emanuele Paolini (1), Fabio Santoni (1), Fabrizio Piergentili (2) (1) Scuola

More information

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010 Orbit Design Marcelo Suárez Orbit Design Requirements The following Science Requirements provided drivers for Orbit Design: Global Coverage: the entire extent (100%) of the ice-free ocean surface to at

More information

Laser de-spin maneuver for an active debris removal mission - a realistic scenario for Envisat

Laser de-spin maneuver for an active debris removal mission - a realistic scenario for Envisat Laser de-spin maneuver for an active debris removal mission - a realistic scenario for Envisat Daniel Kucharski Space Environment Research Centre, Mt Stromlo Observatory, Weston Creek ACT, 2611, AUSTRALIA

More information

Tracking board design for the SHAGARE stratospheric balloon project. Supervisor : René Beuchat Student : Joël Vallone

Tracking board design for the SHAGARE stratospheric balloon project. Supervisor : René Beuchat Student : Joël Vallone Tracking board design for the SHAGARE stratospheric balloon project Supervisor : René Beuchat Student : Joël Vallone Motivation Send & track a gamma-ray sensor in the stratosphere with a meteorological

More information

my_epp External Payload Platform

my_epp External Payload Platform my_epp External Payload Platform A new Cubesat testbed and payload hosting platform on the International Space Station with reliable fast-track and low-cost mission scenario Dr. P. C. Steimle*, K. Kuehnel**,

More information

Individual Adapter Solutions for Multi-Spacecraft Launches on Rockot

Individual Adapter Solutions for Multi-Spacecraft Launches on Rockot SSC14-IV-9 Individual Adapter Solutions for Multi-Spacecraft Launches on Rockot York Viertel, Peter Freeborn, Markus Poetsch, Anna Zorina Eurockot Launch Services GmbH Flughafenalle 26, 28199 Bremen, Germany

More information

Satellite communications and the environment of space

Satellite communications and the environment of space Satellite communications and the environment of space The first artificial satellite was launched in 1957. Now, satellites explore the solar system, search for planets orbiting distant stars and chase

More information

Space Environment & Technology Space Policy and Law Course 2018

Space Environment & Technology Space Policy and Law Course 2018 Space Environment & Technology Space Policy and Law Course 2018 Professor Alan Smith Mullard Space Science Laboratory University College London 15 October 2018 Orbits and Space The Space Environment The

More information