Beta Pictoris : Disk, comets, planet

Size: px
Start display at page:

Download "Beta Pictoris : Disk, comets, planet"

Transcription

1 Beta Pictoris : Disk, comets, planet Hervé Beust Institut de Planétologie et d Astrophysique de Grenoble (IPAG) 1

2 Outline of the talk 1. The star 2. The dust disk Clues for the presence of planets 3. The gas disk Falling Evaporating Bodies 4. Pictoris b Orbital fitting 5. Conclusions 2

3 Pictoris : the star An A5V type main-sequence star Magnitude m=3.86 Mass ~1.75 M, Luminosity = 8.7 L Distance = 19.4 pc (Hipparcos) (van Leeuwen et al. 2007) Effective Temperature T eff = 8050 K Radius ~ 1.7 R ; vsin i = 130 km/s Age ~ Myr ( Pic moving group) (Zuckerman et al. 2001; Ortega et al. 2004) Most recent determination : 21 4 Myr (Binks & Jeffries 2014) (Lithium depletion in Pic moving group) Used to be estimated up to 200 Myr in the past! 3

4 Pictoris : the dust disk The prototype of debris disks viewed edge-on in scattered light Under investigation since 1984 Smith & Terrile 1984 Mouillet et al

5 Characteristics of the dust disk Extending over hundreds of AUs The imaged dust is not primordial (Radiation pressure/ collisional erosion; Thebault et al. 2003) Need for an internal reservoir Disk of colliding planetesimals Many asymmetries between both branchs + warp inner part / outer part Indication of gravitational perturbations Dual power law radial profile with break at ~120 AU (Heap et al. 2000) Model : Disk of planetesimals up to 120 AU + radiation pressure (Augereau et al. 2001) Deconvolution Many rings? (Wahhaj et al. 2003) 5

6 Dust particles orbits Dust particles are produced by planetesimals on ~circular orbits (black). Due the radiation pressure, they move on another, wider orbit (green) Dust particles can be transported very far away, ejected if > 0.5. This fully explains the radial profile of Pic s disk : The 120 AU break corresponds to the edge of the planetesimal belt Asymmetries in the parent bodies distribution (due to planets ) are transported outwards this way. a ' apoastron F F a (1 1 rad grav ) 2 Q ' 1 a 2 Lecavelier et al. (1996) Augereau et al. (2001) 6

7 values depends on the grain size. For large grains, r -1 For A type stars like Pic, all grains below a threshold size are ejected. Due to erosion, smaller grains are continuously produced and ejected. Consequence : Wavy size distribution Need for a reservoir to replenish the disk. Thébault et al. (2003) 1 r 7

8 Pictoris before Pic b: Clues for the presence of planets The various asymmetries. The rings? The inner warp : could be caused by an inclined planet (Mouillet et al. 1999; Augereau et al. 2001) The «transit» = A photometric event in November 1981 Transit of the Hill sphere of a Jovian planet at ~10 AU? (Lecavelier et al. 1996) The evaporating star-grazers (FEBs) 8

9 Gas in the β Pictoris disk Circumstellar gas is detected in absorption in the spectrum of the star (thanks to edge-on orientation) : C, Na, Mg, etc (Roberge et al. 2006), H I, H 2 (Freudling et al. 1995; Lecavelier et al. 2001), O (Brandeker et al. 2016) Most ionized species in Keplerian motion, despite strong radiation pressure The abundance of Carbon can render the whole gas self-braking (Fernandez et al. 2006; Brandeker 2011) Different species at different latitudes in the outer disk (Na I in the midplane, Ca II above (Brandeker et al. 2004) Model : The gas is not primordial (as the dust). The gas disk must be continuously replenished from a inner reservoir, by evaporating planetesimals (Lagrange et al. 1998), or by grain-grain collisions or photodesorption (Kral et al. 2015) 9

10 Gas in the β Pictoris disk : variations Apart from stable components, transient additional, Doppler-shifted components are frequently observed. They vary on a very short time scale (days hours) 10

11 Characteristics of the transient events Detected in many spectral lines, but not all ( Ca II, Mg II, Al III ) : only moderately ionized species Most of the time reshifted (tens to hundreds of km/s), but some blueshifted features The higher the velocity, the shorter the variation time-scale Comparison between features in doublet lines saturated components that do not reach the zero level The absorbing clouds do not mask the whole stellar surface ~Regularly observed for ~30 years : they are frequent but their bulk frequency is erratic The components observed seem to be correlated (in Ca II) over a timescale of 2-3 weeks (Beust & Tobin 2004) 11

12 The FEBs (Falling Evaporating Bodies ) scenario (Beust et al. 1990, 1995, 1998 ) Each of these events is generated by an evaporating body (comet, planetesimal) that crosses the line of sight. These objets are star-grazing planetesimals (comets) (<0.5 AU). At this short distance the dust sublimates metallic ions in the coma. This model naturally explains : The infall velocities : projection of the velocity onto the line of sight close to the star The time variability : time to cross the line of sight The limited size of the clouds = size of the coma The chemical issue : not all species are concerned 12

13 Physics involved in the FEBs scenario The ions are subject to the radiation pressure and to a drift force by the other species If the gas composition is carbonaceous enough, il can be self-braking (Fernandez et al. 2006) The different kinds of variable features (high velocity, low velocity ) are well reproduced if we let the periastron distance vary. The longitude of periastrons are not randomly distributed (predominance of redshifted features) Several hundreds of FEBs per year Possibly several families of FEBs (Kiefer et al. 2014) Question : why so many star-grazers? What is their dynamical origin? 13

14 FEB dynamics : How do you generate star-grazers from a disk? A requirement : planetary perturbations need for planets! Direct scattering of planetesimals : possible but weakly efficient and short lived Kozai resonance on initially inclined orbits : efficient but no preferred orientation (rotational invariance) Mean-motion resonances with a Jovian planet : preferred model Bodies trapped in some inner mean-motion resonances with a Jovian planet (4:1,3:1) see their eccentricity grow up to ~1 FEBs! One requirement : The planet needs to have a moderate (>0.05) eccentricity. The orientation of the FEBs orbits is constrained explains the blue/redshift statitics. A similar phenomenon gave birth to the Kirkwood gaps in the Solar asteroid belt 14

15 Duration of the phenomenon Best planet to match the FEB statistics : ~ a few Jupiter 10 AU (Beust & Morbidelli 2000; Thébault & Beust 2001). But the resonances clear out quickly (< 1 Myr) Need for refilling to sustain the process Collisions between planetesimals are a good candidate to refill the resonances and make it last several Myrs (Thébault & Beust 2001) 15

16 A giant planet (~10 M J, 8-10 AU) detected in NACO images of 2003 (Lagrange et al. 2009) Redetected on the other side of the star in 2009, and, regularly followed since that time (Lagrange et al. 2010) Questions : What are the characteristics and the orbit of this planet? Does it match previous predictions? β Pictoris b 16

17 Physical characteristics of Pic b Mass ~10 Jupiter mass? ( for Hot start models) (Bonnefoy et al. 2014) Spectrum ~ L1 dwarf T eff = K; log g < 4.7 dex log (L/L ) = Rapid rotation : v spin 25 km/s (Snellen et al. 2014) Formation? Core accretion may be problematic (Bonnefoy et al. 2014) 17

18 Fitting Pic b s orbit Many astrometric data, from various instruments (NACO, SPHERE, GPI, MAGAO ) Our approach : fitting NACO + SPHERE data only, to avoid systematics Convention : XOY plane = sky plane; OZ direction : towards Earth Degeneracy : With just astrometric data, identical solutions but with (, ) and ( +, + ) cannot be distinguished. Use radial velocity point by Snellen et al. (2014) to lift degeneracy The rotation sense of the planet is the same as the disk (ascending node = South-West) Data set : 1 point points RV point 17/12/2013 Greatest elongation ~late 2012, planet receding quickly now. Different methods: Least squares (Levenberg-Marquardt) to derive one best fit orbit Statistical methods (MCMC, LSMC) to derive the probabilistic distribution of the orbital elements : Preferred, because the orbit is not evenly sampled! 18

19 Latest fit results (August 2016) Consistent with other independent determinations (Millar- Blanchaer al. 2015) 19

20 Semi-major axis and eccentricity Well constrained semi-major axis Moderate eccentricity but still compatible with e=0 Two branches of solutions 20

21 Inclination and Longitude of node Well constrained inclination : nealy edge-on orbit, but sligthly prograde Well constrained PA of the disk 21

22 Argument of periastron Peak at 0 20, but all values possible Solutions with e = 0 undefined 22

23 The next transit? A sky view Data points Cloud of predicted positions in

24 The next transit? A sky view : zoom (2017.7) Approximate size of Pic b s Hill sphere ~ 40 mas 24

25 The next transit : When? Peak in ~ year ahead from now 25

26 Dynamical constraint of Pic s mass? Use HARPS spectra (many) to constrain the radial velocity evolution of the star Then do a MCMC orbital fit with the astrometric data, and with the planet mass as a free parameter Result (Bonnefoy et al. 2014) : m 20 M Jup (>96% probability) Very hard to be more accurate : Mass-prior dependent (low S/B RV signal) 26

27 Is Pic b the planet predicted previously? 1. The warp? Check inclination of the orbit / Main (outer) dust disk and warped disk Closer to the warped disk than to the outer disk In agreement with predictions by Mouillet et al. (1997) and Augereau et al. (2001) Pic b could have created the warp. 27

28 Is Pic b the planet predicted previously? 2. The transit of 1981? Check past transit predictions in our posterior distribution Not perfect match, but there was a transit around 1980, and another one in the late 90 s Pic b could have generated the 1981 event... Next transit Date of the 1981 event 28

29 Is Pic b the planet predicted previously? 2. The transit of 1981? Let us try to take the Nov. 9, 1981 event as an additional astrometric point and re-fit Result : Better constraint on eccentricity, but 2 distinct families of solutions (high and low eccentricity) Explanation : In the low eccentricity regime, there was a transit in ~2000 But different predictions for the 2017 transit Free fitting cleary favours the low eccentricity scenario, but the high eccentricity solutions better fit the radial velocity point 29

30 Is Pic b the planet predicted previously? 3. The FEBs? The FEB model requires a moderate eccentricity (e>0.05) and = ( = longitude of periastron / line of sight = = 70 ) (Beust & Morbidelli 1996, 2000; Thébault & Beust 2001) Due to the predominance of redshifted events But analysis based on the 4:1 resonance. Different resonances (4:1, 3:1..) could generate the families (Kiefer et al. 2014) Pic b could trigger the FEB phenomenon (Millar-Blanchaer et al. 2015) 30

31 Conclusions and questions Pictoris : Still a nice example of debris disk! Pictoris : A fantastic laboratory to study dynamics, interactions between disk and planets, physics of a young planetary system. One of the best analogues to the young solar system known today FEBs Early asteroid belt? Outer disk Kuiper belt / Oort cloud? Pic b Jupiter? Pic b : A rare example of imaged exoplanet with detected orbital motion Pic b : Full knowledge of its orbit is of prime importance to test dynamical models Orbital plane : Probe position with respect to dust disks Eccentricity and Periastron : Probes FEB model & the 1981 transit hypothesis Be ready for 2017 «transit» and to redetect the planet on the other side! Did somebody observe the transit? Are there photometric measurements? Other radial velocity points would be appreciated! Other planets in the system? Inner to Pic b : According to FEB model, terrestrial planets only Outer to Pic b : Nothing more massive than ~Saturn according to images (Dawson 2014); but blobs (Wahhaj 2003) suggest the presence of other planets 31

32 Pictoris : Dust dynamics The dust particles are subject to gravity + radiation pressure + collisions/erosion + Poynting-Robertson drag Stellar radiation pressure : For any particle, F grav r 1 2 and F rad r 1 2 F F rad grav constant GM (1 * r 3 r ) r Under the action of radiation pressure, each particle follows a pure Keplerian orbit, but feeling an effective central mass M * (1- ) 32

Jessica Donaldson (Carnegie DTM) Aki Roberge (NASA GSFC)

Jessica Donaldson (Carnegie DTM) Aki Roberge (NASA GSFC) Jessica Donaldson (Carnegie DTM) Aki Roberge (NASA GSFC) Gas evolution in disks 10 100 M Jupiter few M Lunar (dust) Total Mass 10 100 M Jupiter? Gas Mass Star Time (Myr) formation 1 5 10 ~ 1 Gyr Planetary

More information

Detectability of extrasolar debris. Mark Wyatt Institute of Astronomy, University of Cambridge

Detectability of extrasolar debris. Mark Wyatt Institute of Astronomy, University of Cambridge Detectability of extrasolar debris Mark Wyatt Institute of Astronomy, University of Cambridge Why image extrasolar debris? Emission spectrum shows dust thermal emission, used to infer radius of parent

More information

Who was here? How can you tell? This is called indirect evidence!

Who was here? How can you tell? This is called indirect evidence! 1 Who was here? How can you tell? This is called indirect evidence! 2 How does a planetary system form? The one we can study in the most detail is our solar system. If we want to know whether the solar

More information

Debris Disks and the Evolution of Planetary Systems. Christine Chen September 1, 2009

Debris Disks and the Evolution of Planetary Systems. Christine Chen September 1, 2009 Debris Disks and the Evolution of Planetary Systems Christine Chen September 1, 2009 Why Study Circumstellar Disks? How common is the architecture of our solar system (terrestrial planets, asteroid belt,

More information

Linking NEAs to their main-belt source regions

Linking NEAs to their main-belt source regions Near-Earth (NEAs) Department of Astronomy, University of Belgrade Stardust ITN: Opening Training School 21st November 2013, Glasgow, Scotland Near-Earth (NEAs) Table of contents 1 Main phases during the

More information

Planetary system dynamics Part III Mathematics / Part III Astrophysics

Planetary system dynamics Part III Mathematics / Part III Astrophysics Planetary system dynamics Part III Mathematics / Part III Astrophysics Lecturer: Prof. Mark Wyatt (Dr. Amy Bonsor on 9,11 Oct) Schedule: Michaelmas 2017 Mon, Wed, Fri at 10am MR11, 24 lectures, start Fri

More information

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

More information

CIRCUMSTELLAR DISKS AND OUTER PLANET FORMATION

CIRCUMSTELLAR DISKS AND OUTER PLANET FORMATION CIRCUMSTELLAR DISKS AND OUTER PLANET FORMATION A. LECAVELIER DES ETANGS Institut d Astrophysique de Paris 98 Bld Arago, F-75014 Paris, France Abstract. The dust disk around β Pictoris must be produced

More information

Debris disk structure arising from planetary perturbations

Debris disk structure arising from planetary perturbations Debris disk structure arising from planetary perturbations Mark Wyatt Institute of Astronomy, Cambridge Debris disk structure arising from planetary perturbations Disk dynamical theory and the observables

More information

Falling Evaporating Bodies as a Clue to Outline the Structure of the β Pictoris Young Planetary System

Falling Evaporating Bodies as a Clue to Outline the Structure of the β Pictoris Young Planetary System Icarus 143, 170 188 (2000) doi:10.1006/icar.1999.6238, available online at http://www.idealibrary.com on Falling Evaporating Bodies as a Clue to Outline the Structure of the β Pictoris Young Planetary

More information

How inner planetary systems relate to inner and outer debris belts. Mark Wyatt Institute of Astronomy, University of Cambridge

How inner planetary systems relate to inner and outer debris belts. Mark Wyatt Institute of Astronomy, University of Cambridge How inner planetary systems relate to inner and outer debris belts Mark Wyatt Institute of Astronomy, University of Cambridge The Solar System s outer and inner debris belts Outer debris: Kuiper belt Inner

More information

Debris Disks and the Formation and Evolution of Planetary Systems. Christine Chen October 14, 2010

Debris Disks and the Formation and Evolution of Planetary Systems. Christine Chen October 14, 2010 Debris Disks and the Formation and Evolution of Planetary Systems Christine Chen October 14, 2010 1 Outline Dust Debris in our Solar System The Discovery of Dust Debris Around Other Stars The Connection

More information

The Collisional Evolution of Small Bodies in the Solar System

The Collisional Evolution of Small Bodies in the Solar System The Collisional Evolution of Small Bodies in the Solar System David P. O'Brien* Planetary Science Institute Tucson, AZ Invited Review CD '07 Alicante, Spain * with Don Davis, Scott Kenyon and Benjamin

More information

On the direct imaging of Exoplanets. Sebastian Perez Stellar Coffee - December 2008

On the direct imaging of Exoplanets. Sebastian Perez Stellar Coffee - December 2008 On the direct imaging of Exoplanets Sebastian Perez Stellar Coffee - December 2008 Outline Exoplanets overview Direct Imaging: - Observing strategy - Angular differential imaging HR8799 Fomalhaut beta

More information

Observations of exozodiacal disks. Jean-Charles Augereau LAOG, Grenoble, France. ISSI team: Exozodiacal dust diks and Darwin. Cambridge, August 2009

Observations of exozodiacal disks. Jean-Charles Augereau LAOG, Grenoble, France. ISSI team: Exozodiacal dust diks and Darwin. Cambridge, August 2009 + Olivier Absil Emmanuel Di Folco Hervé Beust Rémy Reche Alexander Krivov Philippe Thébault Torsten Loehne Vincent Coudé du Foresto Bertrand Menesson Pierre Kervella ISSI team: Exozodiacal dust diks and

More information

arxiv: v1 [astro-ph.ep] 27 Nov 2015

arxiv: v1 [astro-ph.ep] 27 Nov 2015 KIC 8462852: Transit of a Large Comet Family Eva H. L. Bodman, Alice Quillen Department of Physics and Astronomy, University of Rochester arxiv:1511.08821v1 [astro-ph.ep] 27 Nov 2015 Rochester, NY 14627,

More information

Debris discs, exoasteroids and exocomets. Mark Wyatt Institute of Astronomy, University of Cambridge

Debris discs, exoasteroids and exocomets. Mark Wyatt Institute of Astronomy, University of Cambridge Debris discs, exoasteroids and exocomets Mark Wyatt Institute of Astronomy, University of Cambridge The Solar System s outer and inner debris belts Outer debris: Kuiper belt Inner debris: Asteroid belt

More information

2018 TIARA Summer School Origins of the Solar System. Observations and Modelling of Debris Disks. J.P. Marshall (ASIAA) Wednesday 18 th July 2018

2018 TIARA Summer School Origins of the Solar System. Observations and Modelling of Debris Disks. J.P. Marshall (ASIAA) Wednesday 18 th July 2018 2018 TIARA Summer School Origins of the Solar System Observations and Modelling of Debris Disks J.P. Marshall (ASIAA) Wednesday 18 th July 2018 [Hogerheijde 1998] Debris disks Tenuous belts of icy and

More information

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow EXOPLANET LECTURE PLANET FORMATION Dr. Judit Szulagyi - ETH Fellow (judits@ethz.ch) I. YOUNG STELLAR OBJECTS AND THEIR DISKS (YSOs) Star Formation Young stars born in 10 4 10 6 M Sun Giant Molecular Clouds.

More information

A Giant Planet Imaged in the Disk of the Young Star β Pictoris

A Giant Planet Imaged in the Disk of the Young Star β Pictoris A Giant Planet Imaged in the Disk of the Young Star β Pictoris A.-M. Lagrange, 1 * M. Bonnefoy, 1 G. Chauvin, 1 D. Apai, 2 D. Ehrenreich, 1 A. Boccaletti, 3 D. Gratadour, 3 D. Rouan, 3 D. Mouillet, 1 S.

More information

Kuiper Belt Dynamics and Interactions

Kuiper Belt Dynamics and Interactions Kuiper Belt Dynamics and Interactions Minor Planet Center Ruth Murray-Clay Harvard-Smithsonian Center for Astrophysics Kuiper belt µm ejected by radiation pressure larger grains migrate in via PR drag

More information

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets.

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets. Exoplanets. II What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets + 3787 candidates (http://exoplanets.org) Detected by radial velocity/astrometry: 621

More information

The Fomalhaut Debris Disk

The Fomalhaut Debris Disk The Fomalhaut Debris Disk IRAS 12 micron http://ssc.spitzer.caltech.edu/documents/compendium/foma lhaut/ Fomalhaut is a bright A3 V star 7.7 pc away IRAS discovered an IR excess indicating a circumstellar

More information

Mars Growth Stunted by an Early Orbital Instability between the Giant Planets

Mars Growth Stunted by an Early Orbital Instability between the Giant Planets Mars Growth Stunted by an Early Orbital Instability between the Giant Planets M.S. Clement University of Oklahoma Advisor: Professor N.A. Kaib Collaborators: S.N. Raymond, K.J. Walsh 19 September 2017

More information

Wed. Aug. 30, 2017 Reading:

Wed. Aug. 30, 2017 Reading: Wed. Aug. 30, 2017 Reading: Reading for Fri.: Wood Ch. 1 (solar system overview) Reading for Wed. Wed. Wood Ch. 6 & 8 (Asteroids & Meteorites, Solar Nebula) Reading for Fri. Sept. 8. Rozel et al. (link

More information

Planetary System Stability and Evolution. N. Jeremy Kasdin Princeton University

Planetary System Stability and Evolution. N. Jeremy Kasdin Princeton University Planetary System Stability and Evolution N. Jeremy Kasdin Princeton University (Lots of help from Eric Ford, Florida and Robert Vanderbei, Princeton) KISS Exoplanet Workshop 10 November 2009 Motivation

More information

arxiv: v2 [astro-ph.ep] 26 Sep 2014

arxiv: v2 [astro-ph.ep] 26 Sep 2014 Astronomy & Astrophysics manuscript no. main c ESO 2018 October 20, 2018 Insights on the dynamical history of the Fomalhaut system Investigating the Fom c hypothesis V. Faramaz 1,2, H. Beust 1,2, J.-C.

More information

Ruth Murray-Clay University of California, Santa Barbara

Ruth Murray-Clay University of California, Santa Barbara A Diversity of Worlds: Toward a Theoretical Framework for the Structures of Planetary Systems Ruth Murray-Clay University of California, Santa Barbara Strange New Worlds. Slide credit: Scott Gaudi ~1500

More information

Exoplanets: a dynamic field

Exoplanets: a dynamic field Exoplanets: a dynamic field Alexander James Mustill Amy Bonsor, Melvyn B. Davies, Boris Gänsicke, Anders Johansen, Dimitri Veras, Eva Villaver The (transiting) exoplanet population Solar System Hot Jupiters:

More information

Chapter 15 The Formation of Planetary Systems

Chapter 15 The Formation of Planetary Systems Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Formation of the Solar System 15.3 Terrestrial and Jovian Planets 15.4 Interplanetary Debris 15.5 Solar

More information

Lecture 20: Planet formation II. Clues from Exoplanets

Lecture 20: Planet formation II. Clues from Exoplanets Lecture 20: Planet formation II. Clues from Exoplanets 1 Outline Definition of a planet Properties of exoplanets Formation models for exoplanets gravitational instability model core accretion scenario

More information

Pluto, the Kuiper Belt, and Trans- Neptunian Objects

Pluto, the Kuiper Belt, and Trans- Neptunian Objects Pluto, the Kuiper Belt, and Trans- Neptunian Objects 1 What about Pluto? Pluto used to be considered a planet Pluto is one of a large number of Trans-Neptunian Objects, not even the largest one! Discovery

More information

Formation of the Solar System Chapter 8

Formation of the Solar System Chapter 8 Formation of the Solar System Chapter 8 To understand the formation of the solar system one has to apply concepts such as: Conservation of angular momentum Conservation of energy The theory of the formation

More information

Chapter 15: The Origin of the Solar System

Chapter 15: The Origin of the Solar System Chapter 15: The Origin of the Solar System The Solar Nebula Hypothesis Basis of modern theory of planet formation: Planets form at the same time from the same cloud as the star. Planet formation sites

More information

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The Solar System 1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The distances to planets are known from Kepler s Laws (once calibrated with radar ranging to Venus) How are planet

More information

Astronomy 241: Review Questions #2 Distributed: November 7, 2013

Astronomy 241: Review Questions #2 Distributed: November 7, 2013 Astronomy 241: Review Questions #2 Distributed: November 7, 2013 Review the questions below, and be prepared to discuss them in class. For each question, list (a) the general topic, and (b) the key laws

More information

On the observability of resonant structures in planetesimal disks due to planetary migration. R. Reche, H. Beust, J.-C. Augereau, and O.

On the observability of resonant structures in planetesimal disks due to planetary migration. R. Reche, H. Beust, J.-C. Augereau, and O. A&A 480, 551 561 (2008) DOI: 10.1051/0004-6361:20077934 c ESO 2008 Astronomy & Astrophysics On the observability of resonant structures in planetesimal disks due to planetary migration R. Reche, H. Beust,

More information

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1 What is it like? When did it form? How did it form The Solar System Fall, 2005 Astronomy 110 1 Fall, 2005 Astronomy 110 2 The planets all orbit the sun in the same direction. The Sun spins in the same

More information

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 8th Edition Chaisson/McMillan Chapter 15 Exoplanets Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Solar System Regularities and Irregularities 15.3

More information

PLANETARY FORMATION THEORY EXPLORING EXOPLANETS

PLANETARY FORMATION THEORY EXPLORING EXOPLANETS PLANETARY FORMATION THEORY EXPLORING EXOPLANETS This is what we call planets around OTHER stars! PLANETARY FORMATION THEORY EXPLORING EXOPLANETS This is only as of June 2012. We ve found at least double

More information

Dynamical modeling of large scale asymmetries in the β Pictoris dust disk

Dynamical modeling of large scale asymmetries in the β Pictoris dust disk A&A 370, 447 455 (2001) DOI: 10.1051/0004-6361:20010199 c ESO 2001 Astronomy & Astrophysics Dynamical modeling of large scale asymmetries in the β Pictoris dust disk J. C. Augereau 1,R.P.Nelson 2, A. M.

More information

Vagabonds of the Solar System. Chapter 15

Vagabonds of the Solar System. Chapter 15 Vagabonds of the Solar System Chapter 15 ASTR 111 003 Fall 2007 Lecture 13 Nov. 26, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15)

More information

Dynamic Exoplanets. Alexander James Mustill

Dynamic Exoplanets. Alexander James Mustill Dynamic Exoplanets Alexander James Mustill Exoplanets: not (all) like the Solar System Exoplanets: not (all) like the Solar System Solar System Lissauer et al 14 Key questions to bear in mind What is role

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 4 The Solar System Lecture Presentation 4.0 What can be seen with the naked eye? Early astronomers knew about the Sun, Moon, stars, Mercury,

More information

1 Solar System Debris and Formation

1 Solar System Debris and Formation 1 Solar System Debris and Formation Chapters 14 and 15 of your textbook Exercises: Do all Review and Discussion and all Conceptual Self-Test 1.1 Solar System Debris Asteroids small rocky bodies Most under

More information

Data from: The Extrasolar Planet Encyclopaedia.

Data from: The Extrasolar Planet Encyclopaedia. Data from: The Extrasolar Planet Encyclopaedia http://exoplanet.eu/ 2009->10 Status of Exoplanet Searches Direct Detection: 5->9 planets detected Sensitive to large planets in large orbits around faint

More information

Formation of the Solar System. What We Know. What We Know

Formation of the Solar System. What We Know. What We Know Formation of the Solar System Many of the characteristics of the planets we discussed last week are a direct result of how the Solar System formed Until recently, theories for solar system formation were

More information

Debris dust tell us much about planetesimals and planets and sheds light to formation and evolution of planetary systems. KALAS et al.

Debris dust tell us much about planetesimals and planets and sheds light to formation and evolution of planetary systems. KALAS et al. Debris dust tell us much about planetesimals and planets and sheds light to formation and evolution of planetary systems KALAS et al. 2008 THE STAR Spectral type: F8 Distance : 17.4 pc Age : ~ 2 Gyr A

More information

Astronomy 405 Solar System and ISM

Astronomy 405 Solar System and ISM Astronomy 405 Solar System and ISM Lecture 17 Planetary System Formation and Evolution February 22, 2013 grav collapse opposed by turbulence, B field, thermal Cartoon of Star Formation isolated, quasi-static,

More information

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology II Key characteristics Chemical elements and planet size Radioactive dating Solar system formation Solar nebula

More information

9. Formation of the Solar System

9. Formation of the Solar System 9. Formation of the Solar System The evolution of the world may be compared to a display of fireworks that has just ended: some few red wisps, ashes, and smoke. Standing on a cool cinder, we see the slow

More information

Class 15 Formation of the Solar System

Class 15 Formation of the Solar System Class 16 Extra-solar planets The radial-velocity technique for finding extrasolar planets Other techniques for finding extrasolar planets Class 15 Formation of the Solar System What does a successful model

More information

Clicker Question: Clicker Question: Clicker Question:

Clicker Question: Clicker Question: Clicker Question: Test results Last day to drop without a grade is Feb 29 Grades posted in cabinet and online F D C B A In which direction would the Earth move if the Sun s gravitational force were suddenly removed from

More information

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Planet formation in protoplanetary disks Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Suggested literature "Protoplanetary Dust" (2010), eds. D. Apai & D. Lauretta, CUP "Protostars

More information

Tracing the origin of the Solar System. Michel Blanc OAMP, Marseille

Tracing the origin of the Solar System. Michel Blanc OAMP, Marseille Tracing the origin of the Solar System Michel Blanc OAMP, Marseille This talk was prepared with highly appreciated contributions from : Yann Alibert, Antonella Barucci, Willy Benz, Dominique Bockelée-Morvan,Scott

More information

Which of the following correctly describes the meaning of albedo?

Which of the following correctly describes the meaning of albedo? Which of the following correctly describes the meaning of albedo? A) The lower the albedo, the more light the surface reflects, and the less it absorbs. B) The higher the albedo, the more light the surface

More information

Planetary system dynamics Mathematics tripos part III / part III Astrophysics

Planetary system dynamics Mathematics tripos part III / part III Astrophysics Planetary system dynamics Mathematics tripos part III / part III Astrophysics Lecturer: Dr Mark Wyatt Schedule: Lent 2014 Mon Wed Fri 10am MR9, 24 lectures, start Fri 17 Jan, end Wed 12 Mar Problems: My

More information

Astronomy 405 Solar System and ISM

Astronomy 405 Solar System and ISM Astronomy 405 Solar System and ISM Lecture 18 Planetary System Formation and Evolution February 25, 2013 grav collapse opposed by turbulence, B field, thermal Cartoon of Star Formation isolated, quasi-static,

More information

Planets of β Pictoris revisited

Planets of β Pictoris revisited Astronomy & Astrophysics manuscript no. 6746frei June 15, 218 (DOI: will be inserted by hand later) Planets of β Pictoris revisited Florian Freistetter, Alexander V. Krivov, and Torsten Löhne Astrophysikalisches

More information

Accretion of Uranus and Neptune

Accretion of Uranus and Neptune Accretion of Uranus and Neptune by collisions among planetary embryos Jakubík M., Morbidelli A., Neslušan L., Brasser R. Astronomical Institute SAS, Tatranska Lomnica Observatoire de la Côte d Azur, Nice,

More information

Vagabonds of the Solar System

Vagabonds of the Solar System Vagabonds of the Solar System Guiding Questions 1. How and why were the asteroids first discovered? 2. Why didn t the asteroids coalesce to form a single planet? 3. What do asteroids look like? 4. How

More information

12/3/14. Guiding Questions. Vagabonds of the Solar System. A search for a planet between Mars and Jupiter led to the discovery of asteroids

12/3/14. Guiding Questions. Vagabonds of the Solar System. A search for a planet between Mars and Jupiter led to the discovery of asteroids Guiding Questions Vagabonds of the Solar System 1. How and why were the asteroids first discovered? 2. Why didn t the asteroids coalesce to form a single planet? 3. What do asteroids look like? 4. How

More information

Kozai-Lidov oscillations

Kozai-Lidov oscillations Kozai-Lidov oscillations Kozai (1962 - asteroids); Lidov (1962 - artificial satellites) arise most simply in restricted three-body problem (two massive bodies on a Kepler orbit + a test particle) e.g.,

More information

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets Importance of the study of extrasolar planets Exoplanets Introduction Planets and Astrobiology (2017-2018) G. Vladilo Technological and scientific spin-offs Exoplanet observations are driving huge technological

More information

Origin of the Solar System

Origin of the Solar System Origin of the Solar System and Solar System Debris 1 Debris comets meteoroids asteroids gas dust 2 Asteroids irregular, rocky hunks small in mass and size Ceres - largest, 1000 km in diameter (1/3 Moon)

More information

Origins of Stars and Planets in the VLT Era

Origins of Stars and Planets in the VLT Era Origins of Stars and Planets in the VLT Era Michael R. Meyer Institute for Astronomy, ETH-Zurich From Circumstellar Disks to Planets 5 November 2009, ESO/MPE Garching Planet Formation = Saving the Solids

More information

Architecture and demographics of planetary systems

Architecture and demographics of planetary systems Architecture and demographics of planetary systems Struve (1952) The demography of the planets that we detect is strongly affected by detection methods psychology of the observer Understanding planet demography

More information

Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1.

Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1. The Solar System (Ch. 6 in text) We will skip from Ch. 6 to Ch. 15, only a survey of the solar system, the discovery of extrasolar planets (in more detail than the textbook), and the formation of planetary

More information

Lecture notes 18: Double stars and the detection of planets

Lecture notes 18: Double stars and the detection of planets Lecture notes 18: Double stars and the detection of planets More than half of all stars are in double star or in multiple star systems. This fact gives important clues on how stars form, but can also has

More information

Chapter 19 The Origin of the Solar System

Chapter 19 The Origin of the Solar System Chapter 19 The Origin of the Solar System Early Hypotheses catastrophic hypotheses, e.g., passing star hypothesis: Star passing closely to the the sun tore material out of the sun, from which planets could

More information

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due Extrasolar Planets Today Dwarf Planets Extrasolar Planets Next week Review Tuesday Exam Thursday also, Homework 6 Due will count best 5 of 6 homeworks 2007 Pearson Education Inc., publishing as Pearson

More information

Jupiter Trojan Survey

Jupiter Trojan Survey Jupiter Trojan Survey with Hyper Suprime-Cam Tsuyoshi Terai (Subaru Telescope) Fumi Yoshida (NAOJ) Introduction : Jupiter Trojans Two asteroid swarms around the L4/L5 points of Jupiter s orbit L5 The spectra

More information

Other worlds. Innumerable suns exist;

Other worlds. Innumerable suns exist; Innumerable suns exist; Other worlds innumerable earths revolve around these suns in a manner similar to the way the seven planets revolve around our Sun. Living beings inhabit these worlds. Giordano Bruno

More information

Asteroids February 23

Asteroids February 23 Asteroids February 23 Test 2 Mon, Feb 28 Covers 6 questions from Test 1. Added to score of Test 1 Telescopes Solar system Format similar to Test 1 Missouri Club Fri 9:00 1415 Fri, last 10 minutes of class

More information

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements AST111, Lecture 1b Measurements of bodies in the solar system (overview continued) Orbital elements Planetary properties (continued): Measuring Mass The orbital period of a moon about a planet depends

More information

Nature and Origin of Planetary Systems f p "

Nature and Origin of Planetary Systems f p Nature and Origin of Planetary Systems f p " Our Solar System as Example" We know far more about our solar system than about any other" It does have (at least) one planet suitable for life" Start with

More information

Molecular gas in young debris disks

Molecular gas in young debris disks Molecular gas in young debris disks Attila Moór1, Péter Ábrahám1, Ágnes Kóspál1, Michel Curé2, Attila Juhász3 et al. 1 - Konkoly Observatory, Budapest, Hungary 2 Universidad Valparaíso, Chile 3 - Institute

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 4 - Group Homework Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Density is defined as A) mass times weight. B) mass per unit volume.

More information

DETAILED MODEL OF THE EXOZODIACAL DISK OF FOMALHAUT AND ITS ORIGIN

DETAILED MODEL OF THE EXOZODIACAL DISK OF FOMALHAUT AND ITS ORIGIN EXOZODI project http://ipag.osug.fr/~augereau/site/ ANR_EXOZODI.html IAU Symposium 299 EXPLORING THE FORMATION AND EVOLUTION OF PLANETARY SYSTEMS Victoria, Canada 2013, June 6 DETAILED MODEL OF THE EXOZODIACAL

More information

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects Transneptunian objects Minor bodies in the outer Solar System Planets and Astrobiology (2016-2017) G. Vladilo Around 1980 it was proposed that the hypothetical disk of small bodies beyond Neptune (called

More information

The Outer Zodiacal Light. Bill Reach Caltech (now) USRA/SOFIA (June 2010)

The Outer Zodiacal Light. Bill Reach Caltech (now) USRA/SOFIA (June 2010) The Outer Zodiacal Light Bill Reach Caltech (now) USRA/SOFIA (June 2010) Why Study the Smaller Bodies? Tracer of gravita

More information

Debris Disks: A Brief Observational History Thomas Oberst April 19, 2006 A671

Debris Disks: A Brief Observational History Thomas Oberst April 19, 2006 A671 Debris Disks: A Brief Observational History Thomas Oberst A671 Debris Disk; Artist s rendition (T. Pyle (SSC), JPL-Caltech, & NASA http://www.spitz er.caltech.edu/m edia/happenings /20051214/) Debris Disks

More information

An independent determination of Fomalhaut b s orbit and the dynamical effects on the outer dust belt

An independent determination of Fomalhaut b s orbit and the dynamical effects on the outer dust belt An independent determination of Fomalhaut b s orbit and the dynamical effects on the outer dust belt Hervé Beust, Jean-Charles Augereau, Amy Bonsor, J. Graham, Paul Kalas, J. Lebreton, Anne-Marie Lagrange,

More information

The effect of gas drag on dust dynamics

The effect of gas drag on dust dynamics A&A 437, 141 148 (2005) DOI: 10.1051/0004-6361:20042594 c ESO 2005 Astronomy & Astrophysics Upper limit on the gas density in the β Pictoris system The effect of gas drag on dust dynamics P. Thébault 1,2

More information

Extrasolar Planets: Molecules and Disks

Extrasolar Planets: Molecules and Disks Extrasolar Planets: Molecules and Disks The basic question: Is our solar system typical of what we should affect around other stars (inhabited or not), or is it an unusual freak? One approach is to look

More information

Giant Planet Formation

Giant Planet Formation Giant Planet Formation Overview Observations: Meteorites to Extrasolar Planets Our Solar System Dynamics Meteorites Geology Planetary composition & structure Other Stars Circumstellar disks Extrasolar

More information

Planet Formation: theory and observations. Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux

Planet Formation: theory and observations. Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux Planet Formation: theory and observations Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux Outline Stages of Planet Formation Solar System Formation Cores to disks (c2d) Observational

More information

From pebbles to planets

From pebbles to planets . (Lund University) with Michiel Lambrechts, Katrin Ros, Andrew Youdin, Yoram Lithwick From Atoms to Pebbles Herschel s View of Star and Planet Formation Grenoble, March 2012 1 / 11 Overview of topics

More information

Placing Our Solar System in Context: [A 12 step program to learn to accept disk evolution]

Placing Our Solar System in Context: [A 12 step program to learn to accept disk evolution] Placing Our Solar System in Context: [A 12 step program to learn to accept disk evolution] Michael R. Meyer Steward Observatory, The University of Arizona Dana Backman, SOFIA/SETI Institute Alycia Weinberger,

More information

Formation and Evolution of Planetary Systems

Formation and Evolution of Planetary Systems Formation and Evolution of Planetary Systems Meyer, Hillenbrand et al., Formation and Evolution of Planetary Systems (FEPS): First Results from a Spitzer Legacy Science Program ApJ S 154: 422 427 (2004).

More information

Other Planetary Systems (Chapter 13) Extrasolar Planets. Is our solar system the only collection of planets in the universe?

Other Planetary Systems (Chapter 13) Extrasolar Planets. Is our solar system the only collection of planets in the universe? Other Planetary Systems (Chapter 13) Extrasolar Planets Is our solar system the only collection of planets in the universe? Based on Chapter 13 No subsequent chapters depend on the material in this lecture

More information

Review III. ASTR 371, Fall Jovian Planets and Rings (Lecture Notes 9; Chap 12, 14)

Review III. ASTR 371, Fall Jovian Planets and Rings (Lecture Notes 9; Chap 12, 14) ASTR 371, Fall 2016 Review III 9. Jovian Planets and Rings (Lecture Notes 9; Chap 12, 14) 9.1-2 Introduction, Motion a. Carefully study the data for the Jovian planets. Must know the general properties

More information

A REGION VOID OF IRREGULAR SATELLITES AROUND JUPITER

A REGION VOID OF IRREGULAR SATELLITES AROUND JUPITER The Astronomical Journal, 136:909 918, 2008 September c 2008. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-6256/136/3/909 A REGION VOID OF IRREGULAR SATELLITES

More information

Outline. Question of Scale. Planets Dance. Homework #2 was due today at 11:50am! It s too late now.

Outline. Question of Scale. Planets Dance. Homework #2 was due today at 11:50am! It s too late now. Outline Homework #2 was due today at 11:50am! It s too late now. Planetarium observing is over. Switch Gears Solar System Introduction The Planets, the Asteroid belt, the Kupier objects, and the Oort cloud

More information

EVOLUTIONS OF SMALL BODIES IN OUR SOLAR SYSTEM

EVOLUTIONS OF SMALL BODIES IN OUR SOLAR SYSTEM EVOLUTIONS OF SMALL BODIES IN OUR SOLAR SYSTEM Dynamics and collisional processes Dr. Patrick MICHEL Côte d'azur Observatory Cassiopée Laboratory, CNRS Nice, France 1 Plan Chapter I: A few concepts on

More information

The Coriolis effect. Why does the cloud spin? The Solar Nebula. Origin of the Solar System. Gravitational Collapse

The Coriolis effect. Why does the cloud spin? The Solar Nebula. Origin of the Solar System. Gravitational Collapse Origin of the Solar System Our theory must explain the data 1. Large bodies in the Solar System have orderly motions. 2. There are two types of planets. small, rocky terrestrial planets large, hydrogen-rich

More information

Solar System evolution and the diversity of planetary systems

Solar System evolution and the diversity of planetary systems Solar System evolution and the diversity of planetary systems Alessandro Morbidelli (OCA, Nice) Work in collaboration with: R. Brasser, A. Crida, R. Gomes, H. Levison, F. Masset, D. O brien, S. Raymond,

More information

Planetarium observing is over. Nighttime observing starts next week.

Planetarium observing is over. Nighttime observing starts next week. Homework #2 was due today at 11:50am! It s too late now. Planetarium observing is over. Solar observing is over. Nighttime observing starts next week. Outline Switch Gears Solar System Introduction The

More information

Chapter 06 Let s Make a Solar System

Chapter 06 Let s Make a Solar System like? Big picture. Chapter 06 Let s Make a Solar System How did it come to be this way? Where did it come from? Will I stop sounding like the Talking Heads? The solar system exhibits clear patterns of

More information