Lab 9: Polarization Phy208 Spring 2008

Size: px
Start display at page:

Download "Lab 9: Polarization Phy208 Spring 2008"

Transcription

1 Lab 9: Polarization Ph208 Spring 2008 Name Section This sheet is the lab document our TA will use to score our lab. It is to be turned in at the end of lab. To receive full credit ou must use complete sentences and eplain our reasoning clearl. What s this lab about? In this lab ou investigate effects arising when using polarized light. There are four parts to the lab: PART A Use a polarizer to eplore common eamples of polarized light PART B Use a polariscope to understand how polarized light waves can be superposed or broken into components. PART C Create and investigate circular polarization. PART D Use the ideas of circular polarization to see how polarized light interacts with biological sugar molecules. Wh are we doing this? Understanding polarized light is important applications such as microscop, as well as in understanding the properties of electromagnetic waves.. What should I be thinking about before I start this lab? Suppose an electromagnetic wave is propagating through our area at the speed of light. If ou could take a snapshot, ou could freeze the electric and magnetic fields at a particular instant in time so that ou could look at them. At each point in space around ou, and at each instant in time, ou would see electric and magnetic fields with these properties: i) E r and B r are alwas perpendicular to each other, and also to the wave propagation direction (such that E r " B r is in the propagation direction) ii) The magnitudes E r " E and B r " B are related as B( o, o,z o,t o ) = ( 1/c)E( o, o,z o,t o ). iii) r E and r B both oscillate in time with a frequenc f = v /" (v is the propagation speed) iv) In takes a time T=1/f (the period) for the fields to complete one complete ccle at a fied point in space, and a distance λ (the wavelength) to complete one complete ccle at a fied time.

2 A. Making and detecting polarized electromagnetic waves In a linearl polarized electromagnetic wave, the electric field varies in time and space, but it alwas lies in a plane of polarization. Since the associated magnetic field is alwas perpendicular to this, we can describe the polarization completel b describing the orientation of the electric field. Light doesn t often look like this unless it is speciall prepared. It is usuall a superposition of all possible polarizations, which we call unpolarized light. A linear polarizer can be used to investigate the polarization state. It completel transmits linearl polarized light aligned with its transmission ais, and completel absorbs light linearl polarized perpendicular to its transmission ais. 1. Polarization b reflection. Light is partiall polarized whenever it is reflected. You can check this b using the linear polarizer from the polarization kit on the lab table. The transmission ais is marked b raised lines on the black plastic disc that holds the polarizing material. i) First look through the polarizer directl at the black gooseneck lab table lamp. Is this light polarized? How did ou tell? ii) Now aim the gooseneck lamp at about a 30 to 45 angle (from the horizontal) at the lab bench, and look through the polarizer at the reflection of the bulb. Is this light polarized? In what direction is the plane of polarization? iii) Polaroid sunglasses operate on the same principle as our kit polarizer. In what direction is the transmission ais of Polaroid sunglasses? Eplain. iv) Use our polarizer to look at our cell-phone displa or a computer LCD monitor. Describe the light emitted b these. 2

3 The polariscope Your polariscope has two polarizers (even though one is called an analzer!): The bottom one sits directl over the (unpolarized) incandescent bulb, and is fied in place. In a twopolarizer sstem, it is usuall called the polarizer, since it produces linear polarized light from an unpolarized source. The top one can rotate. It is usuall in-line with the bottom polarizer, but can also be swung to the side. In a twopolarizer sstem, it is usuall called the analzer, since it analzes whether a sample placed above the bottom polarizer has altered the polarization. Analzer Polarizer Unpolaized light 1. Turn on our polariscope and look down into the top polarizer. Describe the intensit variations while rotating the top polarizer through Find the transmission ais of the bottom polarizer with the small polarizer (mounted in a black plastic ring) from our bo. This one has its transmission ais marked with two ridges in the plastic. Eplain our procedure and use a piece of masking tape to mark it on the rim of the polariscope. Find the transmission ais of the top polarizer and mark it also. 3. What angle is between the transmission aes of the two polarizers when there is: Maimum transmission? What about no transmission? 3

4 B. Transmission through a polarizer: In the previous section, ou found that a linear polarizer will transmit a light wave whose electric field vector is parallel to the transmission ais, and blocks (absorbs) one with electric field vector perpendicular to that direction. For angles not 0º or 90º with respect to the transmission ais the polarizer transmits the component of the E-field along the transmission ais and absorbs the rest.. 1. Below are the electric fields of two linearl-polarized electromagnetic waves shown at various times throughout their period T. One is polarized along the -ais and the other along the -ais. Add these components together in each drawing and draw the electric field vector of the combined electromagnetic wave. -component -component t=0 t=t/6 t=2t/6 t=3t/6 t=4t/6 t=5t/6 What angle does the plane of polarization make with the -ais? t=6t/6 4

5 2. Now suppose a wave with electric field amplitude E o is linearl polarized at an angle of 30 with respect to the transmission ais of the analzer. What are the amplitudes of the components parallel and perpendicular to the transmission ais? 3. Write down the amplitude of the E-field of the wave transmitted b the analzer. What is the polarization angle of this transmitted wave with respect to the analzer s transmission ais? 4. What is the ratio of the amplitude of the E-field of the EM wave transmitted b the analzer to the amplitude of the E-field of the incident EM wave? 5. What is the ratio of the intensit after the analzer to the intensit before the analzer? 6. Put our pencils down, and set the analzer on our polariscope so that no light is transmitted. Now insert the small round polarizer from our kit between them and rotate it. Wh does light now get through at some angles? 5

6 C. Circular Polarization: An important tpe of polarization occurs when the horizontal component is time-delaed, b one quarter of a period (a 90 phase shift). That is, the horizontal component starts later in time as illustrated b the 3D diagram below. Let both amplitudes be E o t o t1 t2 t3 t4 1. The graphs below show the linearl-polarized - and -the components at various times. The -component starts later in time. Draw the vector sum on each ais. t 5 t=0 t=t/8 t=2t/8 t=3t/8 t=4t/8 t=5t/8 t=6t/6 t=7t/8 t=t 6

7 2. Describe the time-dependence of the total E-field (direction and magnitude). Does the magnitude oscillate? Does the direction change? When the horizontal component starts ¼ period earlier (-90 phase shift) rather than later, the electric field vector rotates in the opposite direction. These two polarization states are right and left circular. Making circularl polarized light. As ou showed above, ou can make circularl polarized light b combining two linearl polarized waves, with their plane of polarizations at right angles, and with a relative dela of ¼ wavelength. There is a ver eas wa to do this. Certain materials are opticall anisotropic, meaning that light waves polarized along different directions travel at different speeds. This means that the slower one is time-delaed relative to the faster one. You have two of these in our plastic bo. The fast ais is marked b a scratch in the brass holder. The thickness of the plate is such that the time dela is ¼ of the wave period, and the corresponding phase-dela is ¼ wavelength. These are called ¼ wave plates. 3. The thickness of our quartz ¼ wave plate is mm. Suppose that it gives eactl ¼ wavelength dela between the fast and slow aes for 540 nm wavelength light. What is the difference in the speed of light along the fast and slow aes? Fast ais Slow ais 7

8 Analzing circular polarization: Set the ¼ wave plate on the lower polarizer of the polariscope. Align the wave plate so that the linearl polarized light enters with its plane of polarization halfwa between the fast and slow aes of the ¼ wave plate. Now - and -components of the linearl polarized light have equal amplitude, and are aligned with the fast and slow aes of the ¼ wave plate. Fast ais Transmission ais ¼ wave plate Slow ais 4. Eplain wh this should produce circularlpolarized light. Linear polarizer 5. Now rotate the top polarizer. The intensit of the light transmitted through the wave plate remains almost constant as ou rotate the analzer (top polarizer) [ou ma need to slightl adjust the wave-plate angle]. Eplain wh this happens. 8

9 6. Now superimpose these two right and left circular polarizations. Suppose at t o both have their E-fields pointing along the -ais (i.e. the are in phase with each other). Add them graphicall as ou did the two linear polarizations. t o t 1 t 2 t 3 t 4 t 5 Describe the polarization of the sum of these two circularl polarized waves. 7. If the don t start out in phase, then the sum is still linearl polarized, but at a different angle. Below, the left-handed light is delaed (" left # " right )=90 (1/4 period) relative to the right-handed light. t o t 1 t 2 t 3 t 4 t 5 Describe the polarization of the sum of these two circularl polarized waves. Eplain how ou can see that the phase dela and the polarization angle are related as " pol = # left $ # right ( ) /2. 9

10 D. Chiral molecules and polarized light We discuss circular polarization because man molecules interact differentl with left-handed and than right-handed light due to their molecular chiralit, or handedness. Amino acids (shown at right in both chiralities) and sugars are chiral. Your bod uses and produces onl D-sugars (right-handed) and onl L- amino acids (left-handed). In a (right-handed) biological sugar solution, right and left circularl polarized light propagate at different speeds. The best wa to compare the speeds of right and left circular polarization is to send them through at the same time. As ou saw in C6 and C7, superimposing right and left circular polarization gives back linear polarization. Here ou use our polariscope to look at linearl polarized light propagating through Karo srup. If ou don t know what Karo srup is, call our mother and ask her. She probabl hasn t heard from ou in a while, and would enjo talking with ou. We use Karo because it is a ver concentrated chiral solution of right-handed molecules (sugars) onl. This handedness causes the plane of polarization of linearl polarized light to rotate as it goes through the srup. More srup leads to more rotation. Get a set of four jars of Karo srup (three small and one large, with different heights of srup). Be careful not to tip them as the srup will cling to the side and take time to run back down into the jar. 1. Place the large jar (lid off, open end up) on the polarizer and rotate the analzer while looking through the polarizers and srup. You should see colors in the srup. In what order do the colors appear as ou rotate the analzer clockwise? 2. Since the rotation appears to be different for different colors (wavelengths), place a color filter (colored transparenc) under the srup so ou are onl looking at one color (see spectral transmission below). TRANSMISSION ( % ) Roscolu #122, Green Diffusion WAVELENGTH ( nm ) TRANSMISSION ( % ) Roscolu #124, Red Cc Silk WAVELENGTH ( nm ) 10

11 Rotate the analzer so the light outside the jar but through the filter is etinguished. Then rotate the analzer until the light through the srup is etinguished. The difference of these angles is the angle b which the Karo has rotated the light. What direction (clockwise or counter clockwise, looking from the top) is the plane of polarization rotated? How did ou tell? (Hint: a little bit of Karo rotates the polarization a little bit, and a lot rotates it more). Record the polarization rotation for the red and green filters. Filter color: Relative rotation (deg): 3. Do this for the other jars and record all our data below. Sugar depth Green angle Red angle 4. Plot the data for the two colors on the aes below. Use a reasonable scale on the aes and put each color on the graph. Polarization Rotation Sugar Depth 11

12 Right circularl polarized and left circularl polarized light propagate at different speeds in a chiral solution because the interact differentl with the right-handed sugars. Since the travel at different speeds, the arrive at the top of the Karo at different times. This results in a time dela of one component relative to the other after passing through the solution, and a corresponding phase shift. 5. Suppose that the right-handed component moves at the speed of the lefthanded component (take v left =310 8 m/s). Then the left-handed component arrives at the top of the srup a short time "t before the left-handed component. What is "t after traversing 10 cm of Karo? 6. This time difference corresponds to a phase difference between the right- and lefthanded components, determined b what fraction it is of the oscillation period T. Write a relation between the phase shift φ, the time difference Δt, and the frequenc of the wave f =1/T. 7. The peak wavelength of red light ou used above is 670 nm. What is the phase shift for the time dela calculated in 5? 12

13 8. Using " pol = (# left $ # right ) /2 from C7, what polarization rotation is this? 9. Combining the ideas of 6-8, write the polarization rotation θ in terms of the wavelength and time dela. 10. Eplain whether this describes the sequence of colors ou observed in D1, assuming that the time dela does not depend on wavelength. 11. From our data for red and green polarization rotation, determine the actual speed difference for right- and left-handed light in the Karo srup. 13

Lab 10: Polarization Phy248 Spring 2009

Lab 10: Polarization Phy248 Spring 2009 Lab 10: Polarization Ph248 Spring 2009 Name Section This sheet is the lab document our TA will use to score our lab. It is to be turned in at the end of lab. To receive full credit ou must use complete

More information

Lab 8: L-6, Polarization Lab Worksheet

Lab 8: L-6, Polarization Lab Worksheet Lab 8: L-6, Polarization Lab Worksheet Name This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit you must use complete sentences

More information

E The oscillating E-field defines the polarization of the wave. B

E The oscillating E-field defines the polarization of the wave. B This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit you must use complete sentences and explain your reasoning. A. Describing

More information

Experiment 5 Polarization and Modulation of Light

Experiment 5 Polarization and Modulation of Light 1. Objective Experiment 5 Polarization and Modulation of Light Understanding the definition of polarized and un-polarized light. Understanding polarizer and analzer definition, Maluse s law. Retarding

More information

Lab #13: Polarization

Lab #13: Polarization Lab #13: Polarization Introduction In this experiment we will investigate various properties associated with polarized light. We will study both its generation and application. Real world applications

More information

6 Properties of polarized light - polarimetry

6 Properties of polarized light - polarimetry 6 Properties of polarized light - polarimetr Supervisors : J.Geandrot, O.Frantz This practical work aims to stud some phenomena caused b the transversalit of light : dichroism, birefingence, rotating power.

More information

Lab 5 Forces Part 1. Physics 211 Lab. You will be using Newton s 2 nd Law to help you examine the nature of these forces.

Lab 5 Forces Part 1. Physics 211 Lab. You will be using Newton s 2 nd Law to help you examine the nature of these forces. b Lab 5 Forces Part 1 Phsics 211 Lab Introduction This is the first week of a two part lab that deals with forces and related concepts. A force is a push or a pull on an object that can be caused b a variet

More information

Phys 322 Lecture 21. Chapter 8 Polarization

Phys 322 Lecture 21. Chapter 8 Polarization Phs 3 Lecture 1 Chapter 8 Polarization Plane of polarization Transverse M wave B Plane of polarization - plane defined b vector and k: Plane of polarization z: z t ˆi z, t ˆi coskz t, z Linearl (plane)

More information

Polarized sunglasses. Polarization

Polarized sunglasses. Polarization Polarized sunglasses 3 4 : is a propert of the wave of light that can oscillate with certain orientation; the wave ehibits polarization which has onl one possible polarization, namel the direction in which

More information

Lab 5 Forces Part 1. Physics 225 Lab. You will be using Newton s 2 nd Law to help you examine the nature of these forces.

Lab 5 Forces Part 1. Physics 225 Lab. You will be using Newton s 2 nd Law to help you examine the nature of these forces. b Lab 5 orces Part 1 Introduction his is the first week of a two part lab that deals with forces and related concepts. A force is a push or a pull on an object that can be caused b a variet of reasons.

More information

Topic 4: Waves 4.3 Wave characteristics

Topic 4: Waves 4.3 Wave characteristics Guidance: Students will be expected to calculate the resultant of two waves or pulses both graphically and algebraically Methods of polarization will be restricted to the use of polarizing filters and

More information

LESSON #24 - POWER FUNCTIONS COMMON CORE ALGEBRA II

LESSON #24 - POWER FUNCTIONS COMMON CORE ALGEBRA II 1 LESSON #4 - POWER FUNCTIONS COMMON CORE ALGEBRA II Before we start to analze polnomials of degree higher than two (quadratics), we first will look at ver simple functions known as power functions. The

More information

15. Polarization. Linear, circular, and elliptical polarization. Mathematics of polarization. Uniaxial crystals. Birefringence.

15. Polarization. Linear, circular, and elliptical polarization. Mathematics of polarization. Uniaxial crystals. Birefringence. 15. Polarization Linear, circular, and elliptical polarization Mathematics of polarization Uniaial crstals Birefringence Polarizers Notation: polarization near an interface Parallel ("p") polarization

More information

Physics 313: Laboratory 8 - Polarization of Light Electric Fields

Physics 313: Laboratory 8 - Polarization of Light Electric Fields Physics 313: Laboratory 8 - Polarization of Light Electric Fields Introduction: The electric fields that compose light have a magnitude, phase, and direction. The oscillating phase of the field and the

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 6: Polarization Original: Professor McLeod SUMMARY: In this lab you will become familiar with the basics of polarization and learn to use common optical elements

More information

The Force Table Introduction: Theory:

The Force Table Introduction: Theory: 1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is

More information

14. Matrix treatment of polarization

14. Matrix treatment of polarization 14. Matri treatment of polarization This lecture Polarized Light : linear, circular, elliptical Jones Vectors for Polarized Light Jones Matrices for Polarizers, Phase Retarders, Rotators (Linear) Polarization

More information

Eigenvectors and Eigenvalues 1

Eigenvectors and Eigenvalues 1 Ma 2015 page 1 Eigenvectors and Eigenvalues 1 In this handout, we will eplore eigenvectors and eigenvalues. We will begin with an eploration, then provide some direct eplanation and worked eamples, and

More information

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane 3.5 Plane Stress This section is concerned with a special two-dimensional state of stress called plane stress. It is important for two reasons: () it arises in real components (particularl in thin components

More information

Polarization of Light and Birefringence of Materials

Polarization of Light and Birefringence of Materials Polarization of Light and Birefringence of Materials Ajit Balagopal (Team Members Karunanand Ogirala, Hui Shen) ECE 614- PHOTONIC INFORMATION PROCESSING LABORATORY Abstract-- In this project, we study

More information

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II LESSON #4 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART COMMON CORE ALGEBRA II You will recall from unit 1 that in order to find the inverse of a function, ou must switch and and solve for. Also,

More information

PHY 192 Optical Activity 1

PHY 192 Optical Activity 1 PHY 192 Optical Activity 1 Optical Activity Introduction The electric (E) and magnetic (B) vectors in a traveling electromagnetic wave (such as light for example) oscillate in directions perpendicular

More information

PHY 192 Optical Activity Spring

PHY 192 Optical Activity Spring PHY 192 Optical Activity Spring 2017 1 Optical Activity Introduction The electric (E) and magnetic (B) vectors in a traveling electromagnetic wave (such as light for example) oscillate in directions perpendicular

More information

Linear Equations and Arithmetic Sequences

Linear Equations and Arithmetic Sequences CONDENSED LESSON.1 Linear Equations and Arithmetic Sequences In this lesson, ou Write eplicit formulas for arithmetic sequences Write linear equations in intercept form You learned about recursive formulas

More information

Waves, Polarization, and Coherence

Waves, Polarization, and Coherence 05-0-4 Waves, Polarization, and Coherence Lecture 6 Biophotonics Jae Gwan Kim jaekim@gist.ac.kr, X 0 School of nformation and Communication ngineering Gwangju nstitute of Sciences and Technolog Outline

More information

Chapter 14 Matrix Treatment of Polarization

Chapter 14 Matrix Treatment of Polarization Chapter 4 Matri Treatment of Polarization Lecture Notes for Modern Optics based on Pedrotti & Pedrotti & Pedrotti Instructor: Naer Eradat Spring 29 5//29 Matri Treatment of Polarization Polarization Polarization

More information

Methods for Advanced Mathematics (C3) Coursework Numerical Methods

Methods for Advanced Mathematics (C3) Coursework Numerical Methods Woodhouse College 0 Page Introduction... 3 Terminolog... 3 Activit... 4 Wh use numerical methods?... Change of sign... Activit... 6 Interval Bisection... 7 Decimal Search... 8 Coursework Requirements on

More information

LESSON #28 - POWER FUNCTIONS COMMON CORE ALGEBRA II

LESSON #28 - POWER FUNCTIONS COMMON CORE ALGEBRA II 1 LESSON #8 - POWER FUNCTIONS COMMON CORE ALGEBRA II Before we start to analze polnomials of degree higher than two (quadratics), we first will look at ver simple functions known as power functions. The

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

Derivatives 2: The Derivative at a Point

Derivatives 2: The Derivative at a Point Derivatives 2: The Derivative at a Point 69 Derivatives 2: The Derivative at a Point Model 1: Review of Velocit In the previous activit we eplored position functions (distance versus time) and learned

More information

Polarized optical wave in optical fiber communication system

Polarized optical wave in optical fiber communication system IOSR Journal of Applied Phsics (IOSR-JAP) e-issn: 2278-4861.Volume 9, Issue 5 Ver. IV (Sep. - Oct. 2017), PP 09-14 www.iosrjournals.org Polarized optical wave in optical fiber communication sstem Dinesh

More information

3.7 InveRSe FUnCTIOnS

3.7 InveRSe FUnCTIOnS CHAPTER functions learning ObjeCTIveS In this section, ou will: Verif inverse functions. Determine the domain and range of an inverse function, and restrict the domain of a function to make it one-to-one.

More information

4. Circular Dichroism - Spectroscopy

4. Circular Dichroism - Spectroscopy 4. Circular Dichroism - Spectroscopy The optical rotatory dispersion (ORD) and the circular dichroism (CD) are special variations of absorption spectroscopy in the UV and VIS region of the spectrum. The

More information

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

3.2 Understanding Relations and Functions-NOTES

3.2 Understanding Relations and Functions-NOTES Name Class Date. Understanding Relations and Functions-NOTES Essential Question: How do ou represent relations and functions? Eplore A1.1.A decide whether relations represented verball, tabularl, graphicall,

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations The Cartesian Coordinate Sstem- Pictures of Equations Concepts: The Cartesian Coordinate Sstem Graphs of Equations in Two Variables -intercepts and -intercepts Distance in Two Dimensions and the Pthagorean

More information

16. More About Polarization

16. More About Polarization 16. More About Polarization Polarization control Wave plates Circular polarizers Reflection & polarization Scattering & polarization Birefringent materials have more than one refractive index A special

More information

For questions 5-8, solve each inequality and graph the solution set. You must show work for full credit. (2 pts each)

For questions 5-8, solve each inequality and graph the solution set. You must show work for full credit. (2 pts each) Alg Midterm Review Practice Level 1 C 1. Find the opposite and the reciprocal of 0. a. 0, 1 b. 0, 1 0 0 c. 0, 1 0 d. 0, 1 0 For questions -, insert , or = to make the sentence true. (1pt each) A. 5

More information

Ground Rules. PC1221 Fundamentals of Physics I. Coordinate Systems. Cartesian Coordinate System. Lectures 5 and 6 Vectors.

Ground Rules. PC1221 Fundamentals of Physics I. Coordinate Systems. Cartesian Coordinate System. Lectures 5 and 6 Vectors. PC1221 Fundamentals of Phsics I Lectures 5 and 6 Vectors Dr Ta Seng Chuan 1 Ground ules Switch off our handphone and pager Switch off our laptop computer and keep it No talking while lecture is going on

More information

Algebra II Notes Unit Six: Polynomials Syllabus Objectives: 6.2 The student will simplify polynomial expressions.

Algebra II Notes Unit Six: Polynomials Syllabus Objectives: 6.2 The student will simplify polynomial expressions. Algebra II Notes Unit Si: Polnomials Sllabus Objectives: 6. The student will simplif polnomial epressions. Review: Properties of Eponents (Allow students to come up with these on their own.) Let a and

More information

Figure 20.3 Molecular Models Representing an Enantiomeric Pair in a Chiral Molecule

Figure 20.3 Molecular Models Representing an Enantiomeric Pair in a Chiral Molecule Topic 20 Additional igher Level 2. ptical Isomerism ptical isomerism occurs in molecules which have at least one carbon atom which is bonded to four different atoms or groups. A carbon bonded to four different

More information

LESSON #11 - FORMS OF A LINE COMMON CORE ALGEBRA II

LESSON #11 - FORMS OF A LINE COMMON CORE ALGEBRA II LESSON # - FORMS OF A LINE COMMON CORE ALGEBRA II Linear functions come in a variet of forms. The two shown below have been introduced in Common Core Algebra I and Common Core Geometr. TWO COMMON FORMS

More information

Lab 8 - POLARIZATION

Lab 8 - POLARIZATION 137 Name Date Partners Lab 8 - POLARIZATION OBJECTIVES To study the general phenomena of electromagnetic wave polarization To investigate linearly polarized microwaves To investigate linearly polarized

More information

Homonuclear 2DJ spectroscopy - HOMO2DJ

Homonuclear 2DJ spectroscopy - HOMO2DJ Homonuclear 2DJ spectroscop - HOMO2DJ All 2D eperiments we ve analzed so far are used to find out correlations or connections between spin sstems. There are man other things that we can etract from 2D

More information

6.4 graphs OF logarithmic FUnCTIOnS

6.4 graphs OF logarithmic FUnCTIOnS SECTION 6. graphs of logarithmic functions 9 9 learning ObjeCTIveS In this section, ou will: Identif the domain of a logarithmic function. Graph logarithmic functions. 6. graphs OF logarithmic FUnCTIOnS

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

4. What is the speed (in cm s - 1 ) of the tip of the minute hand?

4. What is the speed (in cm s - 1 ) of the tip of the minute hand? Topic 4 Waves PROBLEM SET Formative Assessment NAME: TEAM: THIS IS A PRACTICE ASSESSMENT. Show formulas, substitutions, answers, and units! Topic 4.1 Oscillations A mass is attached to a horizontal spring.

More information

Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs

Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs Ch 5 Alg Note Sheet Ke Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs Definition: Standard Form of a Quadratic Function The

More information

74 Maths Quest 10 for Victoria

74 Maths Quest 10 for Victoria Linear graphs Maria is working in the kitchen making some high energ biscuits using peanuts and chocolate chips. She wants to make less than g of biscuits but wants the biscuits to contain at least 8 g

More information

11.4 Polar Coordinates

11.4 Polar Coordinates 11. Polar Coordinates 917 11. Polar Coordinates In Section 1.1, we introduced the Cartesian coordinates of a point in the plane as a means of assigning ordered pairs of numbers to points in the plane.

More information

2.3 Solving Absolute Value Inequalities

2.3 Solving Absolute Value Inequalities .3 Solving Absolute Value Inequalities Essential Question: What are two was to solve an absolute value inequalit? Resource Locker Eplore Visualizing the Solution Set of an Absolute Value Inequalit You

More information

Name Class Date. Deriving the Standard-Form Equation of a Parabola

Name Class Date. Deriving the Standard-Form Equation of a Parabola Name Class Date 1. Parabolas Essential Question: How is the distance formula connected with deriving equations for both vertical and horizontal parabolas? Eplore Deriving the Standard-Form Equation of

More information

CHAPTER 4 TEST REVIEW

CHAPTER 4 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 74 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 4 TEST REVIEW 1. In which of the following regions of the electromagnetic spectrum is radiation

More information

Linear Relationships

Linear Relationships Linear Relationships Curriculum Read www.mathletics.com Basics Page questions. Draw the following lines on the provided aes: a Line with -intercept and -intercept -. The -intercept is ( 0and, ) the -intercept

More information

Chapter 18 Quadratic Function 2

Chapter 18 Quadratic Function 2 Chapter 18 Quadratic Function Completed Square Form 1 Consider this special set of numbers - the square numbers or the set of perfect squares. 4 = = 9 = 3 = 16 = 4 = 5 = 5 = Numbers like 5, 11, 15 are

More information

a. plotting points in Cartesian coordinates (Grade 9 and 10), b. using a graphing calculator such as the TI-83 Graphing Calculator,

a. plotting points in Cartesian coordinates (Grade 9 and 10), b. using a graphing calculator such as the TI-83 Graphing Calculator, GRADE PRE-CALCULUS UNIT C: QUADRATIC FUNCTIONS CLASS NOTES FRAME. After linear functions, = m + b, and their graph the Quadratic Functions are the net most important equation or function. The Quadratic

More information

Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008

Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008 Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008 Name Section This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit

More information

C. Incorrect! The velocity of electromagnetic waves in a vacuum is the same, 3.14 x 10 8 m/s.

C. Incorrect! The velocity of electromagnetic waves in a vacuum is the same, 3.14 x 10 8 m/s. AP Physics - Problem Drill 21: Physical Optics 1. Which of these statements is incorrect? Question 01 (A) Visible light is a small part of the electromagnetic spectrum. (B) An electromagnetic wave is a

More information

Physics 214 Course Overview

Physics 214 Course Overview Physics 214 Course Overview Lecturer: Mike Kagan Course topics Electromagnetic waves Optics Thin lenses Interference Diffraction Relativity Photons Matter waves Black Holes EM waves Intensity Polarization

More information

Pre-AP Algebra 2 Lesson 1-1 Basics of Functions

Pre-AP Algebra 2 Lesson 1-1 Basics of Functions Lesson 1-1 Basics of Functions Objectives: The students will be able to represent functions verball, numericall, smbolicall, and graphicall. The students will be able to determine if a relation is a function

More information

y R T However, the calculations are easier, when carried out using the polar set of co-ordinates ϕ,r. The relations between the co-ordinates are:

y R T However, the calculations are easier, when carried out using the polar set of co-ordinates ϕ,r. The relations between the co-ordinates are: Curved beams. Introduction Curved beams also called arches were invented about ears ago. he purpose was to form such a structure that would transfer loads, mainl the dead weight, to the ground b the elements

More information

Electromagnetic wave energy & polarization

Electromagnetic wave energy & polarization Phys 0 Lecture 6 Electromagnetic wave energy & polarization Today we will... Learn about properties p of electromagnetic waves Energy density & intensity Polarization linear, circular, unpolarized Apply

More information

PHYS 102 Exams. PHYS 102 Exam 3 PRINT (A)

PHYS 102 Exams. PHYS 102 Exam 3 PRINT (A) PHYS 102 Exams PHYS 102 Exam 3 PRINT (A) The next two questions pertain to the situation described below. A metal ring, in the page, is in a region of uniform magnetic field pointing out of the page as

More information

2.1 Rates of Change and Limits AP Calculus

2.1 Rates of Change and Limits AP Calculus . Rates of Change and Limits AP Calculus. RATES OF CHANGE AND LIMITS Limits Limits are what separate Calculus from pre calculus. Using a it is also the foundational principle behind the two most important

More information

14.1 Systems of Linear Equations in Two Variables

14.1 Systems of Linear Equations in Two Variables 86 Chapter 1 Sstems of Equations and Matrices 1.1 Sstems of Linear Equations in Two Variables Use the method of substitution to solve sstems of equations in two variables. Use the method of elimination

More information

POLARIZATION OF LIGHT

POLARIZATION OF LIGHT POLARIZATION OF LIGHT OVERALL GOALS The Polarization of Light lab strongly emphasizes connecting mathematical formalism with measurable results. It is not your job to understand every aspect of the theory,

More information

Functions. Introduction

Functions. Introduction Functions,00 P,000 00 0 70 7 80 8 0 000 00 00 Figure Standard and Poor s Inde with dividends reinvested (credit "bull": modification of work b Praitno Hadinata; credit "graph": modification of work b MeasuringWorth)

More information

LESSON #12 - FORMS OF A LINE COMMON CORE ALGEBRA II

LESSON #12 - FORMS OF A LINE COMMON CORE ALGEBRA II LESSON # - FORMS OF A LINE COMMON CORE ALGEBRA II Linear functions come in a variet of forms. The two shown below have been introduced in Common Core Algebra I and Common Core Geometr. TWO COMMON FORMS

More information

Lab 8 - Polarization

Lab 8 - Polarization Lab 8 Polarization L8-1 Name Date Partners Lab 8 - Polarization OBJECTIVES To study the general phenomena of electromagnetic wave polarization To investigate linearly polarized microwaves To investigate

More information

Section 3.1 Solving Linear Systems by Graphing

Section 3.1 Solving Linear Systems by Graphing Section 3.1 Solving Linear Sstems b Graphing Name: Period: Objective(s): Solve a sstem of linear equations in two variables using graphing. Essential Question: Eplain how to tell from a graph of a sstem

More information

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following:

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following: Math 323 Eam 2 - Practice Problem Solutions 1. Given the vectors a = 2,, 1, b = 3, 2,4, and c = 1, 4,, compute the following: (a) A unit vector in the direction of c. u = c c = 1, 4, 1 4 =,, 1+16+ 17 17

More information

Strain Transformation and Rosette Gage Theory

Strain Transformation and Rosette Gage Theory Strain Transformation and Rosette Gage Theor It is often desired to measure the full state of strain on the surface of a part, that is to measure not onl the two etensional strains, and, but also the shear

More information

P1 Chapter 4 :: Graphs & Transformations

P1 Chapter 4 :: Graphs & Transformations P1 Chapter 4 :: Graphs & Transformations jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 14 th September 2017 Use of DrFrostMaths for practice Register for free at: www.drfrostmaths.com/homework

More information

2.3 Solving Absolute Value Inequalities

2.3 Solving Absolute Value Inequalities Name Class Date.3 Solving Absolute Value Inequalities Essential Question: What are two was to solve an absolute value inequalit? Resource Locker Eplore Visualizing the Solution Set of an Absolute Value

More information

Assignment , 7.1, 7.2, 7.5, 7.11, 7.12, 7.15, TIR and FTIR

Assignment , 7.1, 7.2, 7.5, 7.11, 7.12, 7.15, TIR and FTIR LC45-summer, 1 1. 1.1, 7.1, 7., 7.5, 7.11, 7.1, 7.15, 7.1 1.1. TIR and FTIR a) B considering the electric field component in medium B in Figure 1. (b), eplain how ou can adjust the amount of transmitted

More information

nm nm

nm nm The Quantum Mechanical Model of the Atom You have seen how Bohr s model of the atom eplains the emission spectrum of hdrogen. The emission spectra of other atoms, however, posed a problem. A mercur atom,

More information

Chapter Nine Chapter Nine

Chapter Nine Chapter Nine Chapter Nine Chapter Nine 6 CHAPTER NINE ConcepTests for Section 9.. Table 9. shows values of f(, ). Does f appear to be an increasing or decreasing function of? Of? Table 9. 0 0 0 7 7 68 60 0 80 77 73

More information

Standing waves [49 marks]

Standing waves [49 marks] Standing waves [49 marks] 1. The graph shows the variation with time t of the velocity v of an object undergoing simple harmonic motion (SHM). At which velocity does the displacement from the mean position

More information

SOLVING SYSTEMS OF EQUATIONS

SOLVING SYSTEMS OF EQUATIONS SOLVING SYSTEMS OF EQUATIONS 4.. 4..4 Students have been solving equations even before Algebra. Now the focus on what a solution means, both algebraicall and graphicall. B understanding the nature of solutions,

More information

Section 3.1. ; X = (0, 1]. (i) f : R R R, f (x, y) = x y

Section 3.1. ; X = (0, 1]. (i) f : R R R, f (x, y) = x y Paul J. Bruillard MATH 0.970 Problem Set 6 An Introduction to Abstract Mathematics R. Bond and W. Keane Section 3.1: 3b,c,e,i, 4bd, 6, 9, 15, 16, 18c,e, 19a, 0, 1b Section 3.: 1f,i, e, 6, 1e,f,h, 13e,

More information

Lab 11 - Polarization

Lab 11 - Polarization 181 Name Date Partners Lab 11 - Polarization OBJECTIVES To study the general phenomena of electromagnetic wave polarization To investigate linearly polarized microwaves To investigate linearly polarized

More information

In order to take a closer look at what I m talking about, grab a sheet of graph paper and graph: y = x 2 We ll come back to that graph in a minute.

In order to take a closer look at what I m talking about, grab a sheet of graph paper and graph: y = x 2 We ll come back to that graph in a minute. Module 7: Conics Lesson Notes Part : Parabolas Parabola- The parabola is the net conic section we ll eamine. We talked about parabolas a little bit in our section on quadratics. Here, we eamine them more

More information

Systems of Linear and Quadratic Equations. Check Skills You ll Need. y x. Solve by Graphing. Solve the following system by graphing.

Systems of Linear and Quadratic Equations. Check Skills You ll Need. y x. Solve by Graphing. Solve the following system by graphing. NY- Learning Standards for Mathematics A.A. Solve a sstem of one linear and one quadratic equation in two variables, where onl factoring is required. A.G.9 Solve sstems of linear and quadratic equations

More information

Methods of Solving Ordinary Differential Equations (Online)

Methods of Solving Ordinary Differential Equations (Online) 7in 0in Felder c0_online.te V3 - Januar, 05 0:5 A.M. Page CHAPTER 0 Methods of Solving Ordinar Differential Equations (Online) 0.3 Phase Portraits Just as a slope field (Section.4) gives us a wa to visualize

More information

5.2 Solving Linear-Quadratic Systems

5.2 Solving Linear-Quadratic Systems Name Class Date 5. Solving Linear-Quadratic Sstems Essential Question: How can ou solve a sstem composed of a linear equation in two variables and a quadratic equation in two variables? Resource Locker

More information

The American School of Marrakesh. Algebra 2 Algebra 2 Summer Preparation Packet

The American School of Marrakesh. Algebra 2 Algebra 2 Summer Preparation Packet The American School of Marrakesh Algebra Algebra Summer Preparation Packet Summer 016 Algebra Summer Preparation Packet This summer packet contains eciting math problems designed to ensure our readiness

More information

Unit 3: Relations and Functions

Unit 3: Relations and Functions Unit 3: Relations and Functions 5-1: Binar Relations Binar Relation: - a set ordered pairs (coordinates) that include two variables (elements). (, ) = horizontal = vertical Domain: - all the -values (first

More information

PHY2048 Physics with Calculus I

PHY2048 Physics with Calculus I PHY2048 Physics with Calculus I Section 584761 Prof. Douglas H. Laurence Exam 1 (Chapters 2 6) February 14, 2018 Name: Solutions 1 Instructions: This exam is composed of 10 multiple choice questions and

More information

POLARIZATION AND BIREFRINGENCE

POLARIZATION AND BIREFRINGENCE UNIT 3 POLARIZATION AND BIREFRINGENCE Name Lab Partner(s) Date Lab Section # TA signature Be sure to have your TA check your lab work and sign this sheet before you leave. Save it until the end of the

More information

We have examined power functions like f (x) = x 2. Interchanging x

We have examined power functions like f (x) = x 2. Interchanging x CHAPTER 5 Eponential and Logarithmic Functions We have eamined power functions like f =. Interchanging and ields a different function f =. This new function is radicall different from a power function

More information

Testing Bridge Thickness

Testing Bridge Thickness . Testing Bridge Thickness Goals Make tables and graphs to represent data Describe relationships between variables Use data patterns to make predictions In their previous work in Variables and Patterns

More information

NCC Precalculus Partnership Program Final Examination, 2004

NCC Precalculus Partnership Program Final Examination, 2004 NCC Precalculus Partnership Program Final Eamination, 2004 Part I: Answer onl 20 of the 25 questions below. Each question is worth 2 points. Place our answers on the answer sheet provided. Write the word

More information

Chapter One. Chapter One

Chapter One. Chapter One Chapter One Chapter One CHAPTER ONE Hughes Hallett et al c 005, John Wile & Sons ConcepTests and Answers and Comments for Section.. Which of the following functions has its domain identical with its range?

More information

1. (a) Sketch the graph of a function that has two local maxima, one local minimum, and no absolute minimum. Solution: Such a graph is shown below.

1. (a) Sketch the graph of a function that has two local maxima, one local minimum, and no absolute minimum. Solution: Such a graph is shown below. MATH 9 Eam (Version ) Solutions November 7, S. F. Ellermeer Name Instructions. Your work on this eam will be graded according to two criteria: mathematical correctness and clarit of presentation. In other

More information

Don t Copy This. Michael Faraday 3/1/13. Chapter 25: EM Induction and EM Waves. Key Terms:

Don t Copy This. Michael Faraday 3/1/13. Chapter 25: EM Induction and EM Waves. Key Terms: 3/1/13 Chapter 25: EM Induction and EM Waves Key Terms: Induced Induced emf current Flux Lenz s Law waves Photons EM Don t Copy This Last chapter we learned that a current can create a magnetic field.

More information

5.6 RATIOnAl FUnCTIOnS. Using Arrow notation. learning ObjeCTIveS

5.6 RATIOnAl FUnCTIOnS. Using Arrow notation. learning ObjeCTIveS CHAPTER PolNomiAl ANd rational functions learning ObjeCTIveS In this section, ou will: Use arrow notation. Solve applied problems involving rational functions. Find the domains of rational functions. Identif

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions 6 Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) CHAPTER OUTLINE 6. Eponential Functions 6. Logarithmic Properties 6. Graphs

More information

Laboratory and Rotating frames

Laboratory and Rotating frames Laborator and Rotating frames The coordinate sstem that we used for the previous eample (laborator frame) is reall pathetic. The whole sstem is spinning at ω o, which makes an kind of analsis impossible.

More information

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002 151-232: Imaging Systems Laboratory II Laboratory 6: The Polarization of Light April 16 & 18, 22 Abstract. In this lab, we will investigate linear and circular polarization of light. Linearly polarized

More information