MATH 235/W08: Orthogonality; Least-Squares; & Best Approximation SOLUTIONS to Assignment 6

Size: px
Start display at page:

Download "MATH 235/W08: Orthogonality; Least-Squares; & Best Approximation SOLUTIONS to Assignment 6"

Transcription

1 MATH 235/W08: Orthogonality; Least-Squares; & Best Approximation SOLUTIONS to Assignment 6 Solutions to questions 1,2,6,8. Contents 1 Least Squares and the Normal Equations*** Solution Best Polynomial Fit*** Solution Least Squares Solutions and Errors 10 4 Best Quadratic Polynomial Fit 10 5 Best Approximation in Continuous Function Space 10 6 Orthogonality*** Solution MATLAB; Best Line Fit 12 8 MATLAB; Best Quadratic Fit*** Solution BONUS: Eigenvalues and Best Approximation 14 1

2 1 Least Squares and the Normal Equations*** Find the least-squares approximation and the error to a solution of Ax = b, by constructing the normal equations for ˆx and then solving for ˆx: (a) A = 2 6, b = i i (b) A = 1 3i, b = 4 + 2i 1 + 2i 1 + 3i 2 + i Note that the normal equations over C for Ax = b are A Ax = A b where the operation denotes complex conjugation plus transposition, that is, A = A T. (c) A = , b = Hint: The file tempoutput.txt at hwolkowi/henry/teaching/w08/235.w08/miscfiles/tempoutput.txt and MATLAB may help. 1.1 Solution BEGIN SOLUTION: (a) Following is the solution first using \ in MATLAB and then using GE. The MATLAB output follows. format compact A=[ ]; b=[3;3;3]; disp( construct matrix and RHS for normal equations ) construct matrix and RHS for normal equations AtA=A *A;Atb=A *b; disp( solve for xhat using \ ) 2

3 solve for xhat using \ xhat=ata\atb xhat = disp( the error A xhat -b is ) the error A xhat -b is norm(a*xhat-b) ans = disp( solve for xhat using GE with a check col. ) solve for xhat using GE with a check col. disp( First form the augmented matrix ) First form the augmented matrix augm=[ata Atb ] augm = disp( Now add a check column ) Now add a check column augm=[augm augm*ones(3,1)] augm = tempa=sym(augm) [ 38, 82, -12, 108] [ 82, 182, -36, 228] disp( Now start to pivot ) Now start to pivot tempa(1,:)=tempa(1,:)/tempa(1,1) [ 1, 41/19, -6/19, 54/19] [ 82, 182, -36, 228] tempa(2,:)=tempa(2,:) - tempa(2,1)*tempa(1,:) [ 1, 41/19, -6/19, 54/19] [ 0, 96/19, -192/19, -96/19] tempa(2,:)=tempa(2,:)/tempa(2,2) [ 1, 41/19, -6/19, 54/19] [ 0, 1, -2, -1] tempa(1,:)=tempa(1,:) - tempa(1,2)*tempa(2,:) [ 1, 0, 4, 5] [ 0, 1, -2, -1] disp( the solution is from column 3 ) 3

4 the solution is from column 3 xhat=tempa(:,3) xhat = 4-2 disp( the error A xhat -b is ) the error A xhat -b is norm(a*double(xhat)-b) ans = echo off (b) Following is the solution first using \ in MATLAB and then using GE. The MATLAB output follows. format compact A=[ -2*i 1; -1 3*i;-1+2*i -1+3*i ]; b=[-3+i;-4+2*i;2+i]; disp( construct matrix and RHS for normal equations ) construct matrix and RHS for normal equations AtA=A *A AtA = i i Atb=A *b Atb = i i disp( solve for xhat using \ ) solve for xhat using \ xhat=ata\atb xhat = i i disp( the error A xhat -b is ) the error A xhat -b is norm(a*xhat-b) ans = disp( solve for xhat using GE with a check col. ) solve for xhat using GE with a check col. disp( First form the augmented matrix ) First form the augmented matrix augm=[ata Atb ] augm = i i 4

5 i i disp( Now add a check column ) Now add a check column augm=[augm augm*ones(3,1)] augm = i i i i i i tempa=sym(augm) [ 10, (7)-(2)*sqrt(-1), (2)-(13)*sqrt(-1), (19)-(15)*sqrt(-1)] [ (7)+(2)*sqrt(-1), 20, (4)+(6)*sqrt(-1), (31)+(8)*sqrt(-1)] disp( Now start to pivot ) Now start to pivot tempa(1,:)=tempa(1,:)/tempa(1,1) [ 1, 7/10-1/5*sqrt(-1), 1/5-13/10*sqrt(-1), 19/10-3/2*sqrt(-1)] [ (7)+(2)*sqrt(-1), 20, (4)+(6)*sqrt(-1), (31)+(8)*sqrt(-1)] tempa(2,:)=tempa(2,:) - tempa(2,1)*tempa(1,:) [ 1, 7/10-1/5*sqrt(-1), 1/5-13/10*sqrt(-1), 19/10-3/2*sqrt(-1)] [ 0, 147/10, 147/10*sqrt(-1), 147/10+147/10*sqrt(-1)] tempa(2,:)=tempa(2,:)/tempa(2,2) [ 1, 7/10-1/5*sqrt(-1), 1/5-13/10*sqrt(-1), 19/10-3/2*sqrt(-1)] [ 0, 1, sqrt(-1), 1+sqrt(-1)] tempa(1,:)=tempa(1,:) - tempa(1,2)*tempa(2,:) [ 1, 0, -2*sqrt(-1), 1-2*sqrt(-1)] [ 0, 1, sqrt(-1), 1+sqrt(-1)] disp( the solution is from column 3 ) the solution is from column 3 xhat=tempa(:,3) xhat = -2*sqrt(-1) sqrt(-1) disp( the error A xhat -b is ) the error A xhat -b is norm(a*double(xhat)-b) ans = echo off (c) Following is the solution using \ in MATLAB. Due to the size of the problem we do not show the individual row operations for GE. format compact A =[

6 ]; b =[ ]; disp( construct matrix and RHS for normal equations ) construct matrix and RHS for normal equations AtA=A *A AtA = Atb=A *b Atb = disp( solve for xhat using \ ) solve for xhat using \ xhat=ata\atb xhat =

7 disp( the error A xhat -b is ) the error A xhat -b is norm(a*xhat-b) ans = echo off END SOLUTION. 2 Best Polynomial Fit***. You are given the four data points: y = 4 at t = 2; y = 3 at t = 1; y = 1 at t = 0; y = 0 at t = 2. (a) Find the best straight-line fit (least squares) to this data having the form y = β 0 + β 1 t. (b) Find the best quadratic polynomial fit (least squares) to this data having the form y = β 0 + β 1 t + β 2 t Solution BEGIN SOLUTION: Let the points for y and t be denoted by y i and t i, respectively. (a) First form the equations, in matrix form, using y i = β 0 + β 1 t i : ( ) y = 3 1 = 1 1 β β Then form and solve the normal equations. The MATLAB outputs appear below with the plots of the best fits in Figure 1. (b) First form the equations, in matrix form, using y i = β 0 + β 1 t i + β 2 t 2 i : y = 3 1 = β β 1. β Then form and solve the normal equations. The MATLAB outputs appear below with the plots of the best fits in Figure 1. 7

8 format compact disp( first find the parameters for the best line fit ) first find the parameters for the best line fit A=[ ]; b= [4;3;1;0]; AtA=A *A AtA = Atb=A *b Atb = 8-11 disp( y-inters. and slope for best line fit are: ) y-inters. and slope for best line fit are: beta=sym(ata)\sym(atb) beta = 61/35-36/35 betad=double(beta); plot(a(:,2),b, xr ) legend( best line fit ) hold on ts=linspace(-4,4); ys=betad(1)+betad(2).*ts; plot(ts,ys) disp( second find the parameters for the best quadratic fit ) second find the parameters for the best quadratic fit A=[ ]; b= [4;3;1;0]; AtA=A *A AtA = Atb=A *b Atb = 8 8

9 disp( beta_0, beta_1, beta_2 are: ) beta_0, beta_1, beta_2 are: beta=sym(ata)\sym(atb) beta = 73/55-58/55 2/11 betad=double(beta); hold on ys=betad(1)+betad(2).*ts+betad(3).*ts.^2; plot(ts,ys, g: ) legend( original data, best line fit, best quadratic fit ) title( Best straight-line and quadratic polynomial fits for problem 2 ) xlabel( t-axis ) ylabel( y-axis ) print bestfitsprob2.ps echo off 10 8 Best straight line and quadratic polynomial fits for problem 2 original data best line fit best quadratic fit 6 y axis t axis Figure 1: Plots for the best polynomial fits for Problem 2. END SOLUTION. 9

10 3 Least Squares Solutions and Errors For the inconsistent linear system Ax = b where A = , b = find a least-squares solution and the corresponding least-squares error for the solution. 4 Best Quadratic Polynomial Fit For the data set {(x,y) R 2 ( 1, 4),(0, 2),(2, 2),(3, 5)}, find the least squares quadratic polynomial of the form y(x) = a + bx + cx 2 that best approximates this data. 5 Best Approximation in Continuous Function Space 1. Consider the vector space C[ 1, 1] of continuous functions on the interval [-1,1], together with the inner product given by < f,g >= 1 1 f(t)g(t)dt, for f,g C[ 1,1]. Let P 2[ 1,1] be the { subspace of C[ 1,1] having } an orthonormal basis given by 45 B = 8 (t2 1 3 ), 3 2 t, 2 1. Find the best quadratic approximation to e t on [ 1,1]. 2. Consider the vector space C[0,1] of continuous functions on the interval [0,1], together with the inner product given by < f,g >= 1 0 f(t)g(t)dt, for f,g C[0,1]. Let P 2[0,1] be the subspace of C[0,1] having a basis given by B = {1,x,x 2 }. Find the best quadratic approximation to x on [0,1]. 6 Orthogonality*** 1. Suppose that A is a m n real matrix. And suppose that Ax = 0 and A T y = 2y. Show that x is orthogonal to y. 2. State and justify whether the following three statements are True or False (give an example in either case): , (a) Q 1 is an orthogonal matrix when Q is an orthogonal matrix. (b) If Q (a m n matrix with m > n) has orthonormal columns, then Qx always equals x. (c) If Q (a m n matrix with m > n) has orthonormal columns, then Q T y always equals y. 6.1 Solution BEGIN SOLUTION: 10

11 1. Since 2y = A T y (y is an eigenvector of A T with eigenvalue 2), we see that y is in the range of A T. Since Ax = 0, we see that x is in the nullspace of A. Therefore, by a theorem proved in class and by a theorem in the text, x y. A direct proof follows: 2x T y = x T (2y) = x T (A T y) = x T A T y = (Ax) T y = 0 T y = (a) TRUE. Justification: The definition of Q orthogonal is QQ T = I. (Equivalently Q T Q = I.) But, (Q T ) 1 = (Q 1 ) T so I = I 1 = (QQ T ) 1 = (Q T ) 1 Q 1 = (Q 1 ) T Q 1, i.e. since the inverse is unique, Q 1 is( an orthogonal ) matrix if Q is. A trivial example 0 1 is Q = I. Another trivial example is. Both these are examples of symmetric 1 0 ( ) cases and so not very interesting. A nonsymmetric example is (b) TRUE. Justification: Note Qx ( 2 = ) x T Q T Qx = x T x = x 2, since Q T Q = I n. Again, ( ) In x a trivial example is with Q = and x R 0 n any vector. We see that Qx =. m n,n 0 Therefore Qx 2 = x = x 2. 1 (c) FALSE. Justification: A simple counter-example to the claim is Q = 0 and y = We get Q T y = 0 y = 2. 1 END SOLUTION. 11

12 7 MATLAB; Best Line Fit Over the past four Winter Olympics Games, the Canadian team won the following numbers of medals: Year Location Number of Medals 1994 Lillehammer, Norway Nagano, Japan Salt Lake City, USA Turin, Italy 24 Scaling the years, we can translate this information to the data points (0,13), (1,15), (2,17), (3,24). (a) Determine the least squares line y = β 0 + β 1 x which best fits these data points. (b) Using your line from (a), predict the total number of medals that Canada will win at the Winter Olympics in Vancouver in MATLAB; Best Quadratic Fit*** Newton s Laws of Motion imply that an object thrown vertically with a velocity of v meters per second will be at a height of h(t) = vt 1 2 gt2 meters after t seconds, where g is the acceleration due to gravity. The values in the table were observed. By fitting a quadratic h(t) = c 0 + c 1 t + c 2 t 2 to these data, estimate the values of v and g in this question. 8.1 Solution t h BEGIN SOLUTION: The MATLAB program below (and the output) show that the estimates are: v = 503/10 and g = 2( 5) = 10. A plot appears in Figure 2. format compact disp( first find the parameters for the best line fit ) first find the parameters for the best line fit A=[ 1.5.5^ ^ ^ ^2]; b= [23.7;45.1;64;80.4]; AtA=A *A AtA = 12

13 Atb=A *b Atb = disp( beta_0, beta_1, beta_2 are: ) beta_0, beta_1, beta_2 are: beta=sym(ata)\sym(atb) beta = -1/5 503/10-5 betad=double(beta); plot(a(:,2),b, rx ) hold on ts=linspace(0,4); ys=betad(1)+betad(2).*ts+betad(3).*ts.^2; plot(ts,ys, g: ) legend( original data, best quadratic fit ) title( best quadratic fit for Newton s Law of Motion ) xlabel( t-axis ) ylabel( y-axis ) print bestnewton.ps echo off END SOLUTION. 13

14 best quadratic fit for Newton s Law of Motion original data best quadratic fit y axis t axis Figure 2: Plots for the best polynomial fits for Problem 8. 9 BONUS: Eigenvalues and Best Approximation 1. Consider the 3 3 matrix Determine the entries a, b, c, d, e, f so that: a b c A = 1 d e. 0 1 f The top left 1 1 block is a matrix with eigenvalue 2; The top left 2 2 block is a matrix with eigenvalues 3 and 3; The matrix A has eigenvalues 0,1 and Find the best line y = c + dt by calculus (not MATLAB). Choose c and d to minimize the least squares problem E(c,d) := 1 0 (c + dt t 2 ) 2 dt. 3. (MATLAB) First note that: The command a=ones(n,1) produces an n 1 matrix of 1 s. The command r=(1:n) produces the vector ( 1,2,...,n ), transposed to a column vector. The command s = r. 2 produces the vector ( 1 2,2 2,...,n 2), because the dot means a component at a time. This problem looks for the line y = c + dt closest to the parabola y = t 2. With n = 10, choose C and D to give the line y = C + Dt that is closest to t 2 at the points t = 1 10, 2 10,...,1 (in the vector r/10 with r). The inconsistent equations Ax = b are 14

15 ( ) ( ) C a r/n = s/n D 2. 15

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work. Assignment 1 Math 5341 Linear Algebra Review Give complete answers to each of the following questions Show all of your work Note: You might struggle with some of these questions, either because it has

More information

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 You have 1 hour and 20 minutes. No notes, books, or other references. You are permitted to use Maple during this exam, but you must start with a blank

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Math 369 Exam #2 Practice Problem Solutions

Math 369 Exam #2 Practice Problem Solutions Math 369 Exam #2 Practice Problem Solutions 2 5. Is { 2, 3, 8 } a basis for R 3? Answer: No, it is not. To show that it is not a basis, it suffices to show that this is not a linearly independent set.

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

Solutions to Review Problems for Chapter 6 ( ), 7.1

Solutions to Review Problems for Chapter 6 ( ), 7.1 Solutions to Review Problems for Chapter (-, 7 The Final Exam is on Thursday, June,, : AM : AM at NESBITT Final Exam Breakdown Sections % -,7-9,- - % -9,-,7,-,-7 - % -, 7 - % Let u u and v Let x x x x,

More information

MATH 2360 REVIEW PROBLEMS

MATH 2360 REVIEW PROBLEMS MATH 2360 REVIEW PROBLEMS Problem 1: In (a) (d) below, either compute the matrix product or indicate why it does not exist: ( )( ) 1 2 2 1 (a) 0 1 1 2 ( ) 0 1 2 (b) 0 3 1 4 3 4 5 2 5 (c) 0 3 ) 1 4 ( 1

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Reduction to the associated homogeneous system via a particular solution

Reduction to the associated homogeneous system via a particular solution June PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 5) Linear Algebra This study guide describes briefly the course materials to be covered in MA 5. In order to be qualified for the credit, one

More information

(Linear equations) Applied Linear Algebra in Geoscience Using MATLAB

(Linear equations) Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB (Linear equations) Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots

More information

Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

More information

MATH 304 Linear Algebra Lecture 34: Review for Test 2.

MATH 304 Linear Algebra Lecture 34: Review for Test 2. MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Linear transformations (Leon 4.1 4.3) Matrix transformations Matrix of a linear mapping Similar matrices Orthogonality (Leon 5.1

More information

Sample Final Exam: Solutions

Sample Final Exam: Solutions Sample Final Exam: Solutions Problem. A linear transformation T : R R 4 is given by () x x T = x 4. x + (a) Find the standard matrix A of this transformation; (b) Find a basis and the dimension for Range(T

More information

Econ Slides from Lecture 8

Econ Slides from Lecture 8 Econ 205 Sobel Econ 205 - Slides from Lecture 8 Joel Sobel September 1, 2010 Computational Facts 1. det AB = det BA = det A det B 2. If D is a diagonal matrix, then det D is equal to the product of its

More information

Linear Algebra Using MATLAB

Linear Algebra Using MATLAB Linear Algebra Using MATLAB MATH 5331 1 May 12, 2010 1 Selected material from the text Linear Algebra and Differential Equations Using MATLAB by Martin Golubitsky and Michael Dellnitz Contents 1 Preliminaries

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

MATH 369 Linear Algebra

MATH 369 Linear Algebra Assignment # Problem # A father and his two sons are together 00 years old. The father is twice as old as his older son and 30 years older than his younger son. How old is each person? Problem # 2 Determine

More information

MATH 260 LINEAR ALGEBRA EXAM III Fall 2014

MATH 260 LINEAR ALGEBRA EXAM III Fall 2014 MAH 60 LINEAR ALGEBRA EXAM III Fall 0 Instructions: the use of built-in functions of your calculator such as det( ) or RREF is permitted ) Consider the table and the vectors and matrices given below Fill

More information

Math Final December 2006 C. Robinson

Math Final December 2006 C. Robinson Math 285-1 Final December 2006 C. Robinson 2 5 8 5 1 2 0-1 0 1. (21 Points) The matrix A = 1 2 2 3 1 8 3 2 6 has the reduced echelon form U = 0 0 1 2 0 0 0 0 0 1. 2 6 1 0 0 0 0 0 a. Find a basis for the

More information

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MATH 3 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MAIN TOPICS FOR THE FINAL EXAM:. Vectors. Dot product. Cross product. Geometric applications. 2. Row reduction. Null space, column space, row space, left

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 1: Inner Products, Length, Orthogonality Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/ Motivation Not all linear systems have

More information

MATH 304 Linear Algebra Lecture 19: Least squares problems (continued). Norms and inner products.

MATH 304 Linear Algebra Lecture 19: Least squares problems (continued). Norms and inner products. MATH 304 Linear Algebra Lecture 19: Least squares problems (continued). Norms and inner products. Orthogonal projection Theorem 1 Let V be a subspace of R n. Then any vector x R n is uniquely represented

More information

PRACTICE PROBLEMS FOR THE FINAL

PRACTICE PROBLEMS FOR THE FINAL PRACTICE PROBLEMS FOR THE FINAL Here are a slew of practice problems for the final culled from old exams:. Let P be the vector space of polynomials of degree at most. Let B = {, (t ), t + t }. (a) Show

More information

Math 20F Final Exam(ver. c)

Math 20F Final Exam(ver. c) Name: Solutions Student ID No.: Discussion Section: Math F Final Exam(ver. c) Winter 6 Problem Score /48 /6 /7 4 /4 5 /4 6 /4 7 /7 otal / . (48 Points.) he following are rue/false questions. For this problem

More information

ft-uiowa-math2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST

ft-uiowa-math2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST me me ft-uiowa-math255 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 2/3/2 at :3pm CST. ( pt) Library/TCNJ/TCNJ LinearSystems/problem3.pg Give a geometric description of the following

More information

MATH. 20F SAMPLE FINAL (WINTER 2010)

MATH. 20F SAMPLE FINAL (WINTER 2010) MATH. 20F SAMPLE FINAL (WINTER 2010) You have 3 hours for this exam. Please write legibly and show all working. No calculators are allowed. Write your name, ID number and your TA s name below. The total

More information

Linear Algebra Final Exam Study Guide Solutions Fall 2012

Linear Algebra Final Exam Study Guide Solutions Fall 2012 . Let A = Given that v = 7 7 67 5 75 78 Linear Algebra Final Exam Study Guide Solutions Fall 5 explain why it is not possible to diagonalize A. is an eigenvector for A and λ = is an eigenvalue for A diagonalize

More information

Math Linear Algebra II. 1. Inner Products and Norms

Math Linear Algebra II. 1. Inner Products and Norms Math 342 - Linear Algebra II Notes 1. Inner Products and Norms One knows from a basic introduction to vectors in R n Math 254 at OSU) that the length of a vector x = x 1 x 2... x n ) T R n, denoted x,

More information

Reading Mathematical Expressions & Arithmetic Operations Expression Reads Note

Reading Mathematical Expressions & Arithmetic Operations Expression Reads Note Math 001 - Term 171 Reading Mathematical Expressions & Arithmetic Operations Expression Reads Note x A x belongs to A,x is in A Between an element and a set. A B A is a subset of B Between two sets. φ

More information

Find the solution set of 2x 3y = 5. Answer: We solve for x = (5 + 3y)/2. Hence the solution space consists of all vectors of the form

Find the solution set of 2x 3y = 5. Answer: We solve for x = (5 + 3y)/2. Hence the solution space consists of all vectors of the form Math 2 Homework #7 March 4, 2 7.3.3. Find the solution set of 2x 3y = 5. Answer: We solve for x = (5 + 3y/2. Hence the solution space consists of all vectors of the form ( ( ( ( x (5 + 3y/2 5/2 3/2 x =

More information

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA MATH 33 Sample Questions for Exam 3. Find x and y so that x 4 3 5x 3y + y = 5 5. x = 3/7, y = 49/7. Let A = 3 4, B = 3 5, C = 3 Perform the indicated operations, if possible: a AC b AB c B + AC d CBA AB

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 2012 MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

More information

Linear Models Review

Linear Models Review Linear Models Review Vectors in IR n will be written as ordered n-tuples which are understood to be column vectors, or n 1 matrices. A vector variable will be indicted with bold face, and the prime sign

More information

(a) Compute the projections of vectors [1,0,0] and [0,1,0] onto the line spanned by a Solution: The projection matrix is P = 1

(a) Compute the projections of vectors [1,0,0] and [0,1,0] onto the line spanned by a Solution: The projection matrix is P = 1 6 [3] 3. Consider the plane S defined by 2u 3v+w = 0, and recall that the normal to this plane is the vector a = [2, 3,1]. (a) Compute the projections of vectors [1,0,0] and [0,1,0] onto the line spanned

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

LINEAR ALGEBRA QUESTION BANK

LINEAR ALGEBRA QUESTION BANK LINEAR ALGEBRA QUESTION BANK () ( points total) Circle True or False: TRUE / FALSE: If A is any n n matrix, and I n is the n n identity matrix, then I n A = AI n = A. TRUE / FALSE: If A, B are n n matrices,

More information

[3] (b) Find a reduced row-echelon matrix row-equivalent to ,1 2 2

[3] (b) Find a reduced row-echelon matrix row-equivalent to ,1 2 2 MATH Key for sample nal exam, August 998 []. (a) Dene the term \reduced row-echelon matrix". A matrix is reduced row-echelon if the following conditions are satised. every zero row lies below every nonzero

More information

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers. Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

More information

MATH 167: APPLIED LINEAR ALGEBRA Least-Squares

MATH 167: APPLIED LINEAR ALGEBRA Least-Squares MATH 167: APPLIED LINEAR ALGEBRA Least-Squares October 30, 2014 Least Squares We do a series of experiments, collecting data. We wish to see patterns!! We expect the output b to be a linear function of

More information

Third Midterm Exam Name: Practice Problems November 11, Find a basis for the subspace spanned by the following vectors.

Third Midterm Exam Name: Practice Problems November 11, Find a basis for the subspace spanned by the following vectors. Math 7 Treibergs Third Midterm Exam Name: Practice Problems November, Find a basis for the subspace spanned by the following vectors,,, We put the vectors in as columns Then row reduce and choose the pivot

More information

Solutions to Math 51 First Exam October 13, 2015

Solutions to Math 51 First Exam October 13, 2015 Solutions to Math First Exam October 3, 2. (8 points) (a) Find an equation for the plane in R 3 that contains both the x-axis and the point (,, 2). The equation should be of the form ax + by + cz = d.

More information

1 Inner Product and Orthogonality

1 Inner Product and Orthogonality CSCI 4/Fall 6/Vora/GWU/Orthogonality and Norms Inner Product and Orthogonality Definition : The inner product of two vectors x and y, x x x =.., y =. x n y y... y n is denoted x, y : Note that n x, y =

More information

LAB 2: Orthogonal Projections, the Four Fundamental Subspaces, QR Factorization, and Inconsistent Linear Systems

LAB 2: Orthogonal Projections, the Four Fundamental Subspaces, QR Factorization, and Inconsistent Linear Systems Math 550A MATLAB Assignment #2 1 Revised 8/14/10 LAB 2: Orthogonal Projections, the Four Fundamental Subspaces, QR Factorization, and Inconsistent Linear Systems In this lab you will use Matlab to study

More information

Math 3013 Problem Set 4

Math 3013 Problem Set 4 (e) W = {x, 3x, 4x 3, 5x 4 x i R} in R 4 Math 33 Problem Set 4 Problems from.6 (pgs. 99- of text):,3,5,7,9,,7,9,,35,37,38. (Problems,3,4,7,9 in text). Determine whether the indicated subset is a subspace

More information

MATH 121: EXTRA PRACTICE FOR TEST 2. Disclaimer: Any material covered in class and/or assigned for homework is a fair game for the exam.

MATH 121: EXTRA PRACTICE FOR TEST 2. Disclaimer: Any material covered in class and/or assigned for homework is a fair game for the exam. MATH 121: EXTRA PRACTICE FOR TEST 2 Disclaimer: Any material covered in class and/or assigned for homework is a fair game for the exam. 1 Linear Functions 1. Consider the functions f(x) = 3x + 5 and g(x)

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

Problem 1: Solving a linear equation

Problem 1: Solving a linear equation Math 38 Practice Final Exam ANSWERS Page Problem : Solving a linear equation Given matrix A = 2 2 3 7 4 and vector y = 5 8 9. (a) Solve Ax = y (if the equation is consistent) and write the general solution

More information

homogeneous 71 hyperplane 10 hyperplane 34 hyperplane 69 identity map 171 identity map 186 identity map 206 identity matrix 110 identity matrix 45

homogeneous 71 hyperplane 10 hyperplane 34 hyperplane 69 identity map 171 identity map 186 identity map 206 identity matrix 110 identity matrix 45 address 12 adjoint matrix 118 alternating 112 alternating 203 angle 159 angle 33 angle 60 area 120 associative 180 augmented matrix 11 axes 5 Axiom of Choice 153 basis 178 basis 210 basis 74 basis test

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

REVIEW FOR EXAM III SIMILARITY AND DIAGONALIZATION

REVIEW FOR EXAM III SIMILARITY AND DIAGONALIZATION REVIEW FOR EXAM III The exam covers sections 4.4, the portions of 4. on systems of differential equations and on Markov chains, and..4. SIMILARITY AND DIAGONALIZATION. Two matrices A and B are similar

More information

Math 54. Selected Solutions for Week 5

Math 54. Selected Solutions for Week 5 Math 54. Selected Solutions for Week 5 Section 4. (Page 94) 8. Consider the following two systems of equations: 5x + x 3x 3 = 5x + x 3x 3 = 9x + x + 5x 3 = 4x + x 6x 3 = 9 9x + x + 5x 3 = 5 4x + x 6x 3

More information

Chapter 3: Theory Review: Solutions Math 308 F Spring 2015

Chapter 3: Theory Review: Solutions Math 308 F Spring 2015 Chapter : Theory Review: Solutions Math 08 F Spring 05. What two properties must a function T : R m R n satisfy to be a linear transformation? (a) For all vectors u and v in R m, T (u + v) T (u) + T (v)

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information

The Adjoint of a Linear Operator

The Adjoint of a Linear Operator The Adjoint of a Linear Operator Michael Freeze MAT 531: Linear Algebra UNC Wilmington Spring 2015 1 / 18 Adjoint Operator Let L : V V be a linear operator on an inner product space V. Definition The adjoint

More information

Math 250B Midterm II Information Spring 2019 SOLUTIONS TO PRACTICE PROBLEMS

Math 250B Midterm II Information Spring 2019 SOLUTIONS TO PRACTICE PROBLEMS Math 50B Midterm II Information Spring 019 SOLUTIONS TO PRACTICE PROBLEMS Problem 1. Determine whether each set S below forms a subspace of the given vector space V. Show carefully that your answer is

More information

b for the linear system x 1 + x 2 + a 2 x 3 = a x 1 + x 3 = 3 x 1 + x 2 + 9x 3 = 3 ] 1 1 a 2 a

b for the linear system x 1 + x 2 + a 2 x 3 = a x 1 + x 3 = 3 x 1 + x 2 + 9x 3 = 3 ] 1 1 a 2 a Practice Exercises for Exam Exam will be on Monday, September 8, 7. The syllabus for Exam consists of Sections One.I, One.III, Two.I, and Two.II. You should know the main definitions, results and computational

More information

Solutions: Problem Set 3 Math 201B, Winter 2007

Solutions: Problem Set 3 Math 201B, Winter 2007 Solutions: Problem Set 3 Math 201B, Winter 2007 Problem 1. Prove that an infinite-dimensional Hilbert space is a separable metric space if and only if it has a countable orthonormal basis. Solution. If

More information

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Exam 2 will be held on Tuesday, April 8, 7-8pm in 117 MacMillan What will be covered The exam will cover material from the lectures

More information

Math Matrix Algebra

Math Matrix Algebra Math 44 - Matrix Algebra Review notes - (Alberto Bressan, Spring 7) sec: Orthogonal diagonalization of symmetric matrices When we seek to diagonalize a general n n matrix A, two difficulties may arise:

More information

Additional Homework Problems

Additional Homework Problems Math 216 2016-2017 Fall Additional Homework Problems 1 In parts (a) and (b) assume that the given system is consistent For each system determine all possibilities for the numbers r and n r where r is the

More information

MATH 220 FINAL EXAMINATION December 13, Name ID # Section #

MATH 220 FINAL EXAMINATION December 13, Name ID # Section # MATH 22 FINAL EXAMINATION December 3, 2 Name ID # Section # There are??multiple choice questions. Each problem is worth 5 points. Four possible answers are given for each problem, only one of which is

More information

Math 291-2: Final Exam Solutions Northwestern University, Winter 2016

Math 291-2: Final Exam Solutions Northwestern University, Winter 2016 Math 29-2: Final Exam Solutions Northwestern University, Winter 206 Determine whether each of the following statements is true or false f it is true, explain why; if it is false, give a counterexample

More information

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

More information

LINEAR ALGEBRA SUMMARY SHEET.

LINEAR ALGEBRA SUMMARY SHEET. LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linear-algebra-summary-sheet/ This document is a concise collection of many of the important theorems of linear algebra, organized

More information

. = V c = V [x]v (5.1) c 1. c k

. = V c = V [x]v (5.1) c 1. c k Chapter 5 Linear Algebra It can be argued that all of linear algebra can be understood using the four fundamental subspaces associated with a matrix Because they form the foundation on which we later work,

More information

A Brief Outline of Math 355

A Brief Outline of Math 355 A Brief Outline of Math 355 Lecture 1 The geometry of linear equations; elimination with matrices A system of m linear equations with n unknowns can be thought of geometrically as m hyperplanes intersecting

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

Math 314/ Exam 2 Blue Exam Solutions December 4, 2008 Instructor: Dr. S. Cooper. Name:

Math 314/ Exam 2 Blue Exam Solutions December 4, 2008 Instructor: Dr. S. Cooper. Name: Math 34/84 - Exam Blue Exam Solutions December 4, 8 Instructor: Dr. S. Cooper Name: Read each question carefully. Be sure to show all of your work and not just your final conclusion. You may not use your

More information

Math 554 Qualifying Exam. You may use any theorems from the textbook. Any other claims must be proved in details.

Math 554 Qualifying Exam. You may use any theorems from the textbook. Any other claims must be proved in details. Math 554 Qualifying Exam January, 2019 You may use any theorems from the textbook. Any other claims must be proved in details. 1. Let F be a field and m and n be positive integers. Prove the following.

More information

Symmetric matrices and dot products

Symmetric matrices and dot products Symmetric matrices and dot products Proposition An n n matrix A is symmetric iff, for all x, y in R n, (Ax) y = x (Ay). Proof. If A is symmetric, then (Ax) y = x T A T y = x T Ay = x (Ay). If equality

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

MTH 2032 SemesterII

MTH 2032 SemesterII MTH 202 SemesterII 2010-11 Linear Algebra Worked Examples Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education December 28, 2011 ii Contents Table of Contents

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show

Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show MTH 0: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology - Kanpur Problem Set Problems marked (T) are for discussions in Tutorial sessions (T) If A is an m n matrix,

More information

MATH 121: EXTRA PRACTICE FOR TEST 2. Disclaimer: Any material covered in class and/or assigned for homework is a fair game for the exam.

MATH 121: EXTRA PRACTICE FOR TEST 2. Disclaimer: Any material covered in class and/or assigned for homework is a fair game for the exam. MATH 121: EXTRA PRACTICE FOR TEST 2 Disclaimer: Any material covered in class and/or assigned for homework is a fair game for the exam. 1 Linear Functions 1. Consider the functions f(x) = 3x + 5 and g(x)

More information

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015 Solutions to Final Practice Problems Written by Victoria Kala vtkala@math.ucsb.edu Last updated /5/05 Answers This page contains answers only. See the following pages for detailed solutions. (. (a x. See

More information

Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions

Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2013 Main problem of linear algebra 2: Given

More information

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true? . Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in

More information

MIT Final Exam Solutions, Spring 2017

MIT Final Exam Solutions, Spring 2017 MIT 8.6 Final Exam Solutions, Spring 7 Problem : For some real matrix A, the following vectors form a basis for its column space and null space: C(A) = span,, N(A) = span,,. (a) What is the size m n of

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) SVD Fall 2015 1 / 13 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Solution Set 4, Fall 12

Solution Set 4, Fall 12 Solution Set 4, 18.06 Fall 12 1. Do Problem 7 from 3.6. Solution. Since the matrix is invertible, we know the nullspace contains only the zero vector, hence there does not exist a basis for this subspace.

More information

APPM 2360 Exam 2 Solutions Wednesday, March 9, 2016, 7:00pm 8:30pm

APPM 2360 Exam 2 Solutions Wednesday, March 9, 2016, 7:00pm 8:30pm APPM 2360 Exam 2 Solutions Wednesday, March 9, 206, 7:00pm 8:30pm ON THE FRONT OF YOUR BLUEBOOK write: () your name, (2) your student ID number, (3) recitation section (4) your instructor s name, and (5)

More information

Linear Algebra Quiz 4. Problem 1 (Linear Transformations): 4 POINTS Show all Work! Consider the tranformation T : R 3 R 3 given by:

Linear Algebra Quiz 4. Problem 1 (Linear Transformations): 4 POINTS Show all Work! Consider the tranformation T : R 3 R 3 given by: Page 1 This is a 60 min Quiz. Please make sure you put your name on the top right hand corner of each sheet. Remember the Honors Code will be enforced! You may use your book. NO HELP FROM ANYONE. Problem

More information

Linear Algebra. Min Yan

Linear Algebra. Min Yan Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................

More information

(v, w) = arccos( < v, w >

(v, w) = arccos( < v, w > MA322 Sathaye Notes on Inner Products Notes on Chapter 6 Inner product. Given a real vector space V, an inner product is defined to be a bilinear map F : V V R such that the following holds: For all v

More information

EXAM. Exam #2. Math 2360 Summer II, 2000 Morning Class. Nov. 15, 2000 ANSWERS

EXAM. Exam #2. Math 2360 Summer II, 2000 Morning Class. Nov. 15, 2000 ANSWERS EXAM Exam # Math 6 Summer II Morning Class Nov 5 ANSWERS i Problem Consider the matrix 6 pts A = 6 4 9 5 7 6 5 5 5 4 The RREF of A is the matrix R = A Find a basis for the nullspace of A Solve the homogeneous

More information

Math 308 Practice Final Exam Page and vector y =

Math 308 Practice Final Exam Page and vector y = Math 308 Practice Final Exam Page Problem : Solving a linear equation 2 0 2 5 Given matrix A = 3 7 0 0 and vector y = 8. 4 0 0 9 (a) Solve Ax = y (if the equation is consistent) and write the general solution

More information

New Mexico Tech Hyd 510

New Mexico Tech Hyd 510 Vectors vector - has magnitude and direction (e.g. velocity, specific discharge, hydraulic gradient) scalar - has magnitude only (e.g. porosity, specific yield, storage coefficient) unit vector - a unit

More information

Projections and Least Square Solutions. Recall that given an inner product space V with subspace W and orthogonal basis for

Projections and Least Square Solutions. Recall that given an inner product space V with subspace W and orthogonal basis for Math 57 Spring 18 Projections and Least Square Solutions Recall that given an inner product space V with subspace W and orthogonal basis for W, B {v 1, v,..., v k }, the orthogonal projection of V onto

More information

EXERCISES ON DETERMINANTS, EIGENVALUES AND EIGENVECTORS. 1. Determinants

EXERCISES ON DETERMINANTS, EIGENVALUES AND EIGENVECTORS. 1. Determinants EXERCISES ON DETERMINANTS, EIGENVALUES AND EIGENVECTORS. Determinants Ex... Let A = 0 4 4 2 0 and B = 0 3 0. (a) Compute 0 0 0 0 A. (b) Compute det(2a 2 B), det(4a + B), det(2(a 3 B 2 )). 0 t Ex..2. For

More information

MATH 304 Linear Algebra Lecture 18: Orthogonal projection (continued). Least squares problems. Normed vector spaces.

MATH 304 Linear Algebra Lecture 18: Orthogonal projection (continued). Least squares problems. Normed vector spaces. MATH 304 Linear Algebra Lecture 18: Orthogonal projection (continued). Least squares problems. Normed vector spaces. Orthogonality Definition 1. Vectors x,y R n are said to be orthogonal (denoted x y)

More information

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88 Math Camp 2010 Lecture 4: Linear Algebra Xiao Yu Wang MIT Aug 2010 Xiao Yu Wang (MIT) Math Camp 2010 08/10 1 / 88 Linear Algebra Game Plan Vector Spaces Linear Transformations and Matrices Determinant

More information

Extra Problems for Math 2050 Linear Algebra I

Extra Problems for Math 2050 Linear Algebra I Extra Problems for Math 5 Linear Algebra I Find the vector AB and illustrate with a picture if A = (,) and B = (,4) Find B, given A = (,4) and [ AB = A = (,4) and [ AB = 8 If possible, express x = 7 as

More information

MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2.

MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2. MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2. Diagonalization Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

More information

Recall: Dot product on R 2 : u v = (u 1, u 2 ) (v 1, v 2 ) = u 1 v 1 + u 2 v 2, u u = u u 2 2 = u 2. Geometric Meaning:

Recall: Dot product on R 2 : u v = (u 1, u 2 ) (v 1, v 2 ) = u 1 v 1 + u 2 v 2, u u = u u 2 2 = u 2. Geometric Meaning: Recall: Dot product on R 2 : u v = (u 1, u 2 ) (v 1, v 2 ) = u 1 v 1 + u 2 v 2, u u = u 2 1 + u 2 2 = u 2. Geometric Meaning: u v = u v cos θ. u θ v 1 Reason: The opposite side is given by u v. u v 2 =

More information

Scientific Computing: Dense Linear Systems

Scientific Computing: Dense Linear Systems Scientific Computing: Dense Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 February 9th, 2012 A. Donev (Courant Institute)

More information

1. Write in symbols: (a) The quotient of -6 and the sum of 2 and -8. (b) Now Simplify the expression in part a. 2. Simplify. x 4, given x=-2 and y=4

1. Write in symbols: (a) The quotient of -6 and the sum of 2 and -8. (b) Now Simplify the expression in part a. 2. Simplify. x 4, given x=-2 and y=4 Sample problems for common Final Exam Math 115 LASC Directions: To receive credit show enough work so that your method of solution is clear. Box answers. Show all work on this test form. No Work=No Credit.

More information