Math 3191 Applied Linear Algebra

Size: px
Start display at page:

Download "Math 3191 Applied Linear Algebra"

Transcription

1 Math 191 Applied Linear Algebra Lecture 1: Inner Products, Length, Orthogonality Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/

2 Motivation Not all linear systems have solutions. EXAMPLE: No solution to 1 5 x 1 x 5 = 5 exists. Why? 8 9 < Ax is a point on the line spanned by 1 = 5 and b is not on the line. So Ax b for all : ; x. x x 1 Math 191Applied Linear Algebra p./

3 Approximate Solutions Instead find bx so that Abx lies closest to b. x x 1 Using techniques in this chapter, we will find that bx= , so that Abx = Math 191Applied Linear Algebra p./

4 Observation: Segment joining Abx and b is perpendicular ( or orthogonal) to the set of solutions to Ax = b. Need to develop fundamental ideas of length orthogonality orthogonal projections The key to all of these concepts is the Inner Product. Math 191Applied Linear Algebra p./

5 The Inner Product Inner product or dot product of u = u 1 u.. 5 and v = v 1 v.. 5 : u n v n u v = u T v = h u 1 u u n i v 1 v.. 5 = u 1 v 1 + u v + + u n v n v n Note that v u =v 1 u v n u n = u 1 v u n v n = u v Math 191Applied Linear Algebra p.5/

6 THEOREM 1 Let u, v and w be vectors in R n, and let c be any scalar. Then a. u v = v u b. (u + v) w = u w + v w c. (cu) v =c (u v) = u (cv) d. u u 0, and u u = 0 if and only if u = 0. Combining parts b and c, one can show (c 1 u c p u p ) w =c 1 (u 1 w) + + c p (u p w) Math 191Applied Linear Algebra p./

7 Length of a Vector For v = v 1 v.., the length or norm of v is the nonnegative scalar v defined 5 by v n v = v v = p v1 + v + + v n and v = v v. For example, if v = a b 5, then v = a + b (distance between 0 and v) Observation: For any scalar c, cv = c v Math 191Applied Linear Algebra p./

8 Distance in R n The distance between u and v in R n : dist(u, v) = u v. This agrees with the usual formulas for R and R. Let u = (u 1, u ) and v = (v 1, v ). Then u v = (u 1 v 1, u v ) and dist(u, v) = u v = (u 1 v 1, u v ) = q (u 1 v 1 ) + (u v ) Math 191Applied Linear Algebra p.8/

9 Orthogonal Vectors [dist (u, v)] = u v = (u v) (u v) = (u) (u v) + ( v) (u v) = = u u u v + v u + v v = u + v u v [dist (u, v)] = u + v u v Math 191Applied Linear Algebra p.9/

10 Previous slide showed that [dist (u, v)] = u + v u v Similarly, we can show that [dist (u, v)] = u + v + u v Since [dist (u, v)] = [dist (u, v)], u v =. Two vectors u and v are said to be orthogonal (to each other) if u v = 0. Also note that if u and v are orthogonal, then u + v = u + v. THEOREM THE PYTHAGOREAN THEOREM Two vectors u and v are orthogonal if and only if u + v = u + v. Math 191Applied Linear Algebra p.10/

11 Orthogonal Complements If a vector z is orthogonal to every vector in a subspace W of R n, then z is said to be orthogonal to W. The set of vectors z that are orthogonal to W is called the orthogonal complement of W and is denoted by W (read as W perp ). Math 191Applied Linear Algebra p.11/

12 Row, Null and Columns Spaces THEOREM Let A be an m n matrix. Then the orthogonal complement of the row space of A is the nullspace of A, and the orthogonal complement of the column space of A is the nullspace of A T : (Row A) =Nul A, (Col A) =Nul A T. Why? (See complete proof in the text) Consider Ax = 0: r 1 x 0 r x 0 Note that Ax = =. where r 1,..., r m are the rows of A. Thus, x 5. 5 r m x 0 is orthogonal to each row of A. So x is orthogonal to Row A. Math 191Applied Linear Algebra p.1/

13 EXAMPLE Let A = >< 0 1 Basis for Nul A = 1 5 >:, >= 0 5 and therefore Nul A is a plane in R. >; >< 1 >= Basis for Row A = 0 5 and therefore Row A is a line in R. >: >; < Basis for Col A = 1 = 5 : ; and therefore Col A is a line in R. 8 9 < Basis for Nul A T = = 5 : 1 ; and therefore Nul AT is a line in R. Math 191Applied Linear Algebra p.1/

14 Section. Orthogonal Sets A set of vectors {u 1, u,..., u p } in R n is called an orthogonal set if u i u j = 0 whenever i j. EXAMPLE: Is 8 >< >: , , >= 5 >; an orthogonal set? Solution: Label the vectors u 1, u, and u respectively. Then u 1 u =, u 1 u =, u u = Therefore, {u 1, u, u } is an orthogonal set. Math 191Applied Linear Algebra p.1/

15 THEOREM Suppose S = {u 1, u,..., u p } is an orthogonal set of nonzero vectors in R n and W =span{u 1, u,..., u p }. Then S is a linearly independent set and is therefore a basis for W. Partial Proof: Suppose c 1 u 1 + c u + + c p u p = 0 (c 1 u 1 + c u + + c p u p ) = 0 (c 1 u 1 ) u 1 + (c u ) u (c p u p ) u 1 = 0 c 1 (u 1 u 1 ) + c (u u 1 ) + + c p (u p u 1 ) = 0 c 1 (u 1 u 1 ) = 0 Since u 1 0, u 1 u 1 > 0 which means c 1 =. In a similar manner, c,...,c p can be shown to by all 0. So S is a linearly independent set. Math 191Applied Linear Algebra p.15/

16 Orthogonal Basis An orthogonal basis for a subspace W of R n is a basis for W that is also an orthogonal set. Question: Why would we want to have an orthogonal basis? Ans: It makes it easy to calculate the coordinates relative to the basis. EXAMPLE: Suppose S = {u 1, u,..., u p } is an orthogonal basis for a subspace W of R n and suppose y is in W. Find c 1,...,c p so that y =c 1 u 1 + c u + + c p u p. Solution: y = (c 1 u 1 + c u + + c p u p ) y u 1 = (c 1 u 1 + c u + + c p u p ) u 1 y u 1 =c 1 (u 1 u 1 ) + c (u u 1 ) + + c p (u p u 1 ) y u 1 =c 1 (u 1 u 1 ) c 1 = y u 1 u 1 u 1 Similarly, c =, c =,..., c p = Math 191Applied Linear Algebra p.1/

17 THEOREM 5 Let {u 1, u,..., u p } be an orthogonal basis for a subspace W of R n. Then each y in W has a unique representation as a linear combination of u 1, u,..., u p. In fact, if then y =c 1 u 1 + c u + + c p u p c j = y u j u j u j (j = 1,..., p). Math 191Applied Linear Algebra p.1/

18 EXAMPLE: Express y = 5 as a linear combination of the orthogonal basis 8 >< >: , , >= 5. >; Solution: y u 1 u 1 u 1 = y u u u = y u u u = Hence y = u 1 + u + u Math 191Applied Linear Algebra p.18/

19 Orthogonal Projections For a nonzero vector u in R n, suppose we want to write y in R n as the the following y = (multiple of u) + (multiple a vector to u). (y αu) u =0 y u α (u u) =0 = α = by= y u u (orthogonal projection of y onto u) u u and z = y y u u (component of y orthogonal to u) u u Math 191Applied Linear Algebra p.19/

20 Example Let y = 8 5 and u = 1 5. Compute the distance from y to the line through 0 and u. Solution: by= y u u u u = Distance from y to the line through 0 and u = distance from by to y = by y = Math 191Applied Linear Algebra p.0/

21 Orthonormal Sets A set of vectors {u 1, u,..., u p } in R n is called an orthonormal set if 1. It is orthogonal.. Each vector has length 1. If the orthonormal set {u 1, u,..., u p } spans a vector space W, then {u 1, u,..., u p } is called an orthonormal basis for W. Math 191Applied Linear Algebra p.1/

22 Orthogonal Matrices Recall that v is a unit vector if v = v v = v T v = 1. Suppose U = [u 1 u u ] where {u 1, u, u } is an orthonormal set. Then U T U = u T 1 u T u T 5 [u 1 u u ] = u T 1 u 1 u T 1 u u T 1 u u T u 1 u T u u T u u T u 1 u T u u T u 5 = 5 = It can be shown that UU T = I also. So U 1 = U T (such a matrix is called an orthogonal matrix). (NOTE: U must be square to be orthogonal). Math 191Applied Linear Algebra p./

23 THEOREM U T U = I. An m n matrix U has orthonormal columns if and only if THEOREM Let U be an m n matrix with orthonormal columns, and let x and y be in R n. Then a. Ux = x b. (Ux) (Uy) = x y c. (Ux) (Uy) = 0 if and only if x y = 0. Proof of part b: (Ux) (Uy) = Math 191Applied Linear Algebra p./

Math 2331 Linear Algebra

Math 2331 Linear Algebra 6.1 Inner Product, Length & Orthogonality Math 2331 Linear Algebra 6.1 Inner Product, Length & Orthogonality Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/

More information

March 27 Math 3260 sec. 56 Spring 2018

March 27 Math 3260 sec. 56 Spring 2018 March 27 Math 3260 sec. 56 Spring 2018 Section 4.6: Rank Definition: The row space, denoted Row A, of an m n matrix A is the subspace of R n spanned by the rows of A. We now have three vector spaces associated

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Orthogonal Projections, Gram-Schmidt Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./ Orthonormal Sets A set of vectors {u, u,...,

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 6.2 Orthogonal Sets Math 233 Linear Algebra 6.2 Orthogonal Sets Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math233 Jiwen He, University of Houston

More information

6.1. Inner Product, Length and Orthogonality

6.1. Inner Product, Length and Orthogonality These are brief notes for the lecture on Friday November 13, and Monday November 1, 2009: they are not complete, but they are a guide to what I want to say on those days. They are guaranteed to be incorrect..1.

More information

Orthogonality and Least Squares

Orthogonality and Least Squares 6 Orthogonality and Least Squares 6.1 INNER PRODUCT, LENGTH, AND ORTHOGONALITY INNER PRODUCT If u and v are vectors in, then we regard u and v as matrices. n 1 n The transpose u T is a 1 n matrix, and

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Null and Column Spaces Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./8 Announcements Study Guide posted HWK posted Math 9Applied

More information

Worksheet for Lecture 23 (due December 4) Section 6.1 Inner product, length, and orthogonality

Worksheet for Lecture 23 (due December 4) Section 6.1 Inner product, length, and orthogonality Worksheet for Lecture (due December 4) Name: Section 6 Inner product, length, and orthogonality u Definition Let u = u n product or dot product to be and v = v v n be vectors in R n We define their inner

More information

MTH 2310, FALL Introduction

MTH 2310, FALL Introduction MTH 2310, FALL 2011 SECTION 6.2: ORTHOGONAL SETS Homework Problems: 1, 5, 9, 13, 17, 21, 23 1, 27, 29, 35 1. Introduction We have discussed previously the benefits of having a set of vectors that is linearly

More information

Section 6.1. Inner Product, Length, and Orthogonality

Section 6.1. Inner Product, Length, and Orthogonality Section 6. Inner Product, Length, and Orthogonality Orientation Almost solve the equation Ax = b Problem: In the real world, data is imperfect. x v u But due to measurement error, the measured x is not

More information

Chapter 6. Orthogonality and Least Squares

Chapter 6. Orthogonality and Least Squares Chapter 6 Orthogonality and Least Squares Section 6.1 Inner Product, Length, and Orthogonality Orientation Recall: This course is about learning to: Solve the matrix equation Ax = b Solve the matrix equation

More information

6. Orthogonality and Least-Squares

6. Orthogonality and Least-Squares Linear Algebra 6. Orthogonality and Least-Squares CSIE NCU 1 6. Orthogonality and Least-Squares 6.1 Inner product, length, and orthogonality. 2 6.2 Orthogonal sets... 8 6.3 Orthogonal projections... 13

More information

v = v 1 2 +v 2 2. Two successive applications of this idea give the length of the vector v R 3 :

v = v 1 2 +v 2 2. Two successive applications of this idea give the length of the vector v R 3 : Length, Angle and the Inner Product The length (or norm) of a vector v R 2 (viewed as connecting the origin to a point (v 1,v 2 )) is easily determined by the Pythagorean Theorem and is denoted v : v =

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

Math Linear Algebra

Math Linear Algebra Math 220 - Linear Algebra (Summer 208) Solutions to Homework #7 Exercise 6..20 (a) TRUE. u v v u = 0 is equivalent to u v = v u. The latter identity is true due to the commutative property of the inner

More information

Section 6.2, 6.3 Orthogonal Sets, Orthogonal Projections

Section 6.2, 6.3 Orthogonal Sets, Orthogonal Projections Section 6. 6. Orthogonal Sets Orthogonal Projections Main Ideas in these sections: Orthogonal set = A set of mutually orthogonal vectors. OG LI. Orthogonal Projection of y onto u or onto an OG set {u u

More information

Chapter 6: Orthogonality

Chapter 6: Orthogonality Chapter 6: Orthogonality (Last Updated: November 7, 7) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved around.. Inner products

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 16: Change of Basis Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/0 Rank The rank of A is the dimension of the column space

More information

Overview. Motivation for the inner product. Question. Definition

Overview. Motivation for the inner product. Question. Definition Overview Last time we studied the evolution of a discrete linear dynamical system, and today we begin the final topic of the course (loosely speaking) Today we ll recall the definition and properties of

More information

Orthogonal Complements

Orthogonal Complements Orthogonal Complements Definition Let W be a subspace of R n. If a vector z is orthogonal to every vector in W, then z is said to be orthogonal to W. The set of all such vectors z is called the orthogonal

More information

Announcements Wednesday, November 15

Announcements Wednesday, November 15 3π 4 Announcements Wednesday, November 15 Reviews today: Recitation Style Solve and discuss Practice problems in groups Preparing for the exam tips and strategies It is not mandatory Eduardo at Culc 141,

More information

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work. Assignment 1 Math 5341 Linear Algebra Review Give complete answers to each of the following questions Show all of your work Note: You might struggle with some of these questions, either because it has

More information

Orthogonal Projection. Hung-yi Lee

Orthogonal Projection. Hung-yi Lee Orthogonal Projection Hung-yi Lee Reference Textbook: Chapter 7.3, 7.4 Orthogonal Projection What is Orthogonal Complement What is Orthogonal Projection How to do Orthogonal Projection Application of Orthogonal

More information

MTH 2032 SemesterII

MTH 2032 SemesterII MTH 202 SemesterII 2010-11 Linear Algebra Worked Examples Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education December 28, 2011 ii Contents Table of Contents

More information

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

More information

Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition

Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 205 Motivation When working with an inner product space, the most

More information

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 2. Linear Transformations Math 4377/638 Advanced Linear Algebra 2. Linear Transformations, Null Spaces and Ranges Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/

More information

Announcements Wednesday, November 15

Announcements Wednesday, November 15 Announcements Wednesday, November 15 The third midterm is on this Friday, November 17. The exam covers 3.1, 3.2, 5.1, 5.2, 5.3, and 5.5. About half the problems will be conceptual, and the other half computational.

More information

Recall: Dot product on R 2 : u v = (u 1, u 2 ) (v 1, v 2 ) = u 1 v 1 + u 2 v 2, u u = u u 2 2 = u 2. Geometric Meaning:

Recall: Dot product on R 2 : u v = (u 1, u 2 ) (v 1, v 2 ) = u 1 v 1 + u 2 v 2, u u = u u 2 2 = u 2. Geometric Meaning: Recall: Dot product on R 2 : u v = (u 1, u 2 ) (v 1, v 2 ) = u 1 v 1 + u 2 v 2, u u = u 2 1 + u 2 2 = u 2. Geometric Meaning: u v = u v cos θ. u θ v 1 Reason: The opposite side is given by u v. u v 2 =

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 4.5 The Dimension of a Vector Space Math 233 Linear Algebra 4.5 The Dimension of a Vector Space Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan

More information

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v

More information

LINEAR ALGEBRA SUMMARY SHEET.

LINEAR ALGEBRA SUMMARY SHEET. LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linear-algebra-summary-sheet/ This document is a concise collection of many of the important theorems of linear algebra, organized

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

Math 261 Lecture Notes: Sections 6.1, 6.2, 6.3 and 6.4 Orthogonal Sets and Projections

Math 261 Lecture Notes: Sections 6.1, 6.2, 6.3 and 6.4 Orthogonal Sets and Projections Math 6 Lecture Notes: Sections 6., 6., 6. and 6. Orthogonal Sets and Projections We will not cover general inner product spaces. We will, however, focus on a particular inner product space the inner product

More information

Chapter 6 - Orthogonality

Chapter 6 - Orthogonality Chapter 6 - Orthogonality Maggie Myers Robert A. van de Geijn The University of Texas at Austin Orthogonality Fall 2009 http://z.cs.utexas.edu/wiki/pla.wiki/ 1 Orthogonal Vectors and Subspaces http://z.cs.utexas.edu/wiki/pla.wiki/

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 6. Orthogonal Projections Math 2 Linear Algebra 6. Orthogonal Projections Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math2 Jiwen He, University of

More information

ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6]

ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6] ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6] Inner products and Norms Inner product or dot product of 2 vectors u and v in R n : u.v = u 1 v 1 + u 2 v 2 + + u n v n Calculate u.v when u = 1 2 2 0 v = 1 0

More information

Lecture 9: Vector Algebra

Lecture 9: Vector Algebra Lecture 9: Vector Algebra Linear combination of vectors Geometric interpretation Interpreting as Matrix-Vector Multiplication Span of a set of vectors Vector Spaces and Subspaces Linearly Independent/Dependent

More information

Criteria for Determining If A Subset is a Subspace

Criteria for Determining If A Subset is a Subspace These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Definitions An m n (read "m by n") matrix, is a rectangular array of entries, where m is the number of rows and n the number of columns. 2 Definitions (Con t) A is square if m=

More information

Inner products. Theorem (basic properties): Given vectors u, v, w in an inner product space V, and a scalar k, the following properties hold:

Inner products. Theorem (basic properties): Given vectors u, v, w in an inner product space V, and a scalar k, the following properties hold: Inner products Definition: An inner product on a real vector space V is an operation (function) that assigns to each pair of vectors ( u, v) in V a scalar u, v satisfying the following axioms: 1. u, v

More information

University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam January 23, 2015

University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam January 23, 2015 University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra PhD Preliminary Exam January 23, 2015 Name: Exam Rules: This exam lasts 4 hours and consists of

More information

Lecture 23: 6.1 Inner Products

Lecture 23: 6.1 Inner Products Lecture 23: 6.1 Inner Products Wei-Ta Chu 2008/12/17 Definition An inner product on a real vector space V is a function that associates a real number u, vwith each pair of vectors u and v in V in such

More information

Math 54 HW 4 solutions

Math 54 HW 4 solutions Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

More information

Answer Key for Exam #2

Answer Key for Exam #2 . Use elimination on an augmented matrix: Answer Key for Exam # 4 4 8 4 4 4 The fourth column has no pivot, so x 4 is a free variable. The corresponding system is x + x 4 =, x =, x x 4 = which we solve

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Typical Problem: Compute.

Typical Problem: Compute. Math 2040 Chapter 6 Orhtogonality and Least Squares 6.1 and some of 6.7: Inner Product, Length and Orthogonality. Definition: If x, y R n, then x y = x 1 y 1 +... + x n y n is the dot product of x and

More information

Announcements Monday, November 26

Announcements Monday, November 26 Announcements Monday, November 26 Please fill out your CIOS survey! WeBWorK 6.6, 7.1, 7.2 are due on Wednesday. No quiz on Friday! But this is the only recitation on chapter 7. My office is Skiles 244

More information

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,

More information

Lecture 3: Linear Algebra Review, Part II

Lecture 3: Linear Algebra Review, Part II Lecture 3: Linear Algebra Review, Part II Brian Borchers January 4, Linear Independence Definition The vectors v, v,..., v n are linearly independent if the system of equations c v + c v +...+ c n v n

More information

MATH 221, Spring Homework 10 Solutions

MATH 221, Spring Homework 10 Solutions MATH 22, Spring 28 - Homework Solutions Due Tuesday, May Section 52 Page 279, Problem 2: 4 λ A λi = and the characteristic polynomial is det(a λi) = ( 4 λ)( λ) ( )(6) = λ 6 λ 2 +λ+2 The solutions to the

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Lecture 03. Math 22 Summer 2017 Section 2 June 26, 2017

Lecture 03. Math 22 Summer 2017 Section 2 June 26, 2017 Lecture 03 Math 22 Summer 2017 Section 2 June 26, 2017 Just for today (10 minutes) Review row reduction algorithm (40 minutes) 1.3 (15 minutes) Classwork Review row reduction algorithm Review row reduction

More information

Solutions to Review Problems for Chapter 6 ( ), 7.1

Solutions to Review Problems for Chapter 6 ( ), 7.1 Solutions to Review Problems for Chapter (-, 7 The Final Exam is on Thursday, June,, : AM : AM at NESBITT Final Exam Breakdown Sections % -,7-9,- - % -9,-,7,-,-7 - % -, 7 - % Let u u and v Let x x x x,

More information

22m:033 Notes: 6.1 Inner Product, Length and Orthogonality

22m:033 Notes: 6.1 Inner Product, Length and Orthogonality m:033 Notes: 6. Inner Product, Length and Orthogonality Dennis Roseman University of Iowa Iowa City, IA http://www.math.uiowa.edu/ roseman April, 00 The inner product Arithmetic is based on addition and

More information

Problem # Max points possible Actual score Total 120

Problem # Max points possible Actual score Total 120 FINAL EXAMINATION - MATH 2121, FALL 2017. Name: ID#: Email: Lecture & Tutorial: Problem # Max points possible Actual score 1 15 2 15 3 10 4 15 5 15 6 15 7 10 8 10 9 15 Total 120 You have 180 minutes to

More information

1 Last time: inverses

1 Last time: inverses MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

More information

MATH 304 Linear Algebra Lecture 34: Review for Test 2.

MATH 304 Linear Algebra Lecture 34: Review for Test 2. MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Linear transformations (Leon 4.1 4.3) Matrix transformations Matrix of a linear mapping Similar matrices Orthogonality (Leon 5.1

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

2.4 Hilbert Spaces. Outline

2.4 Hilbert Spaces. Outline 2.4 Hilbert Spaces Tom Lewis Spring Semester 2017 Outline Hilbert spaces L 2 ([a, b]) Orthogonality Approximations Definition A Hilbert space is an inner product space which is complete in the norm defined

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

The geometry of least squares

The geometry of least squares The geometry of least squares We can think of a vector as a point in space, where the elements of the vector are the coordinates of the point. Consider for example, the following vector s: t = ( 4, 0),

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers. Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

Linear Algebra V = T = ( 4 3 ).

Linear Algebra V = T = ( 4 3 ). Linear Algebra Vectors A column vector is a list of numbers stored vertically The dimension of a column vector is the number of values in the vector W is a -dimensional column vector and V is a 5-dimensional

More information

Announcements Monday, November 20

Announcements Monday, November 20 Announcements Monday, November 20 You already have your midterms! Course grades will be curved at the end of the semester. The percentage of A s, B s, and C s to be awarded depends on many factors, and

More information

We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true.

We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true. Dimension We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true. Lemma If a vector space V has a basis B containing n vectors, then any set containing more

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture 9: Diagonalization Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./9 Section. Diagonalization The goal here is to develop a useful

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

MATH 22A: LINEAR ALGEBRA Chapter 4

MATH 22A: LINEAR ALGEBRA Chapter 4 MATH 22A: LINEAR ALGEBRA Chapter 4 Jesús De Loera, UC Davis November 30, 2012 Orthogonality and Least Squares Approximation QUESTION: Suppose Ax = b has no solution!! Then what to do? Can we find an Approximate

More information

Computational math: Assignment 1

Computational math: Assignment 1 Computational math: Assignment 1 Thanks Ting Gao for her Latex file 11 Let B be a 4 4 matrix to which we apply the following operations: 1double column 1, halve row 3, 3add row 3 to row 1, 4interchange

More information

Lecture 22: Section 4.7

Lecture 22: Section 4.7 Lecture 22: Section 47 Shuanglin Shao December 2, 213 Row Space, Column Space, and Null Space Definition For an m n, a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn, the vectors r 1 = [ a 11 a 12 a 1n

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

Announcements Monday, November 26

Announcements Monday, November 26 Announcements Monday, November 26 Please fill out your CIOS survey! WeBWorK 6.6, 7.1, 7.2 are due on Wednesday. No quiz on Friday! But this is the only recitation on chapter 7. My office is Skiles 244

More information

2. Review of Linear Algebra

2. Review of Linear Algebra 2. Review of Linear Algebra ECE 83, Spring 217 In this course we will represent signals as vectors and operators (e.g., filters, transforms, etc) as matrices. This lecture reviews basic concepts from linear

More information

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer.

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer. Chapter 3 Directions: For questions 1-11 mark each statement True or False. Justify each answer. 1. (True False) Asking whether the linear system corresponding to an augmented matrix [ a 1 a 2 a 3 b ]

More information

Linear Models Review

Linear Models Review Linear Models Review Vectors in IR n will be written as ordered n-tuples which are understood to be column vectors, or n 1 matrices. A vector variable will be indicted with bold face, and the prime sign

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008. This chapter is available free to all individuals, on the understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

Designing Information Devices and Systems II

Designing Information Devices and Systems II EECS 16B Fall 2016 Designing Information Devices and Systems II Linear Algebra Notes Introduction In this set of notes, we will derive the linear least squares equation, study the properties symmetric

More information

DS-GA 1002 Lecture notes 10 November 23, Linear models

DS-GA 1002 Lecture notes 10 November 23, Linear models DS-GA 2 Lecture notes November 23, 2 Linear functions Linear models A linear model encodes the assumption that two quantities are linearly related. Mathematically, this is characterized using linear functions.

More information

The Gram Schmidt Process

The Gram Schmidt Process u 2 u The Gram Schmidt Process Now we will present a procedure, based on orthogonal projection, that converts any linearly independent set of vectors into an orthogonal set. Let us begin with the simple

More information

The Gram Schmidt Process

The Gram Schmidt Process The Gram Schmidt Process Now we will present a procedure, based on orthogonal projection, that converts any linearly independent set of vectors into an orthogonal set. Let us begin with the simple case

More information

MATH 1553, SPRING 2018 SAMPLE MIDTERM 2 (VERSION B), 1.7 THROUGH 2.9

MATH 1553, SPRING 2018 SAMPLE MIDTERM 2 (VERSION B), 1.7 THROUGH 2.9 MATH 155, SPRING 218 SAMPLE MIDTERM 2 (VERSION B), 1.7 THROUGH 2.9 Name Section 1 2 4 5 Total Please read all instructions carefully before beginning. Each problem is worth 1 points. The maximum score

More information

Announcements Monday, November 19

Announcements Monday, November 19 Announcements Monday, November 19 You should already have the link to view your graded midterm online. Course grades will be curved at the end of the semester. The percentage of A s, B s, and C s to be

More information

Linear Algebra, Summer 2011, pt. 3

Linear Algebra, Summer 2011, pt. 3 Linear Algebra, Summer 011, pt. 3 September 0, 011 Contents 1 Orthogonality. 1 1.1 The length of a vector....................... 1. Orthogonal vectors......................... 3 1.3 Orthogonal Subspaces.......................

More information

Orthogonality. 6.1 Orthogonal Vectors and Subspaces. Chapter 6

Orthogonality. 6.1 Orthogonal Vectors and Subspaces. Chapter 6 Chapter 6 Orthogonality 6.1 Orthogonal Vectors and Subspaces Recall that if nonzero vectors x, y R n are linearly independent then the subspace of all vectors αx + βy, α, β R (the space spanned by x and

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information

orthogonal relations between vectors and subspaces Then we study some applications in vector spaces and linear systems, including Orthonormal Basis,

orthogonal relations between vectors and subspaces Then we study some applications in vector spaces and linear systems, including Orthonormal Basis, 5 Orthogonality Goals: We use scalar products to find the length of a vector, the angle between 2 vectors, projections, orthogonal relations between vectors and subspaces Then we study some applications

More information

Section 6.4. The Gram Schmidt Process

Section 6.4. The Gram Schmidt Process Section 6.4 The Gram Schmidt Process Motivation The procedures in 6 start with an orthogonal basis {u, u,..., u m}. Find the B-coordinates of a vector x using dot products: x = m i= x u i u i u i u i Find

More information

Sept. 26, 2013 Math 3312 sec 003 Fall 2013

Sept. 26, 2013 Math 3312 sec 003 Fall 2013 Sept. 26, 2013 Math 3312 sec 003 Fall 2013 Section 4.1: Vector Spaces and Subspaces Definition A vector space is a nonempty set V of objects called vectors together with two operations called vector addition

More information

Linear independence, span, basis, dimension - and their connection with linear systems

Linear independence, span, basis, dimension - and their connection with linear systems Linear independence span basis dimension - and their connection with linear systems Linear independence of a set of vectors: We say the set of vectors v v..v k is linearly independent provided c v c v..c

More information

Math 1180, Notes, 14 1 C. v 1 v n v 2. C A ; w n. A and w = v i w i : v w = i=1

Math 1180, Notes, 14 1 C. v 1 v n v 2. C A ; w n. A and w = v i w i : v w = i=1 Math 8, 9 Notes, 4 Orthogonality We now start using the dot product a lot. v v = v v n then by Recall that if w w ; w n and w = v w = nx v i w i : Using this denition, we dene the \norm", or length, of

More information

Lecture 10: Vector Algebra: Orthogonal Basis

Lecture 10: Vector Algebra: Orthogonal Basis Lecture 0: Vector Algebra: Orthogonal Basis Orthogonal Basis of a subspace Computing an orthogonal basis for a subspace using Gram-Schmidt Orthogonalization Process Orthogonal Set Any set of vectors that

More information

Chapter 1 Vector Spaces

Chapter 1 Vector Spaces Chapter 1 Vector Spaces Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 110 Linear Algebra Vector Spaces Definition A vector space V over a field

More information

Inner Product, Length, and Orthogonality

Inner Product, Length, and Orthogonality Inner Product, Length, and Orthogonality Linear Algebra MATH 2076 Linear Algebra,, Chapter 6, Section 1 1 / 13 Algebraic Definition for Dot Product u 1 v 1 u 2 Let u =., v = v 2. be vectors in Rn. The

More information

Linear Algebra Final Exam Study Guide Solutions Fall 2012

Linear Algebra Final Exam Study Guide Solutions Fall 2012 . Let A = Given that v = 7 7 67 5 75 78 Linear Algebra Final Exam Study Guide Solutions Fall 5 explain why it is not possible to diagonalize A. is an eigenvector for A and λ = is an eigenvalue for A diagonalize

More information

Math 240, 4.3 Linear Independence; Bases A. DeCelles. 1. definitions of linear independence, linear dependence, dependence relation, basis

Math 240, 4.3 Linear Independence; Bases A. DeCelles. 1. definitions of linear independence, linear dependence, dependence relation, basis Math 24 4.3 Linear Independence; Bases A. DeCelles Overview Main ideas:. definitions of linear independence linear dependence dependence relation basis 2. characterization of linearly dependent set using

More information