[3] (b) Find a reduced rowechelon matrix rowequivalent to ,1 2 2


 Mae Norman
 3 years ago
 Views:
Transcription
1 MATH Key for sample nal exam, August 998 []. (a) Dene the term \reduced rowechelon matrix". A matrix is reduced rowechelon if the following conditions are satised. every zero row lies below every nonzero row. all pivots are equal to. each pivot lies to the left of all pivots of rows below it. every other entry in the column of a pivot is equal to 0. [] (b) Find a reduced rowechelon matrix rowequivalent to,,,, 5 Applying the row operations R! R, R, R! R +R,we get 0, 0 Applying the row operations R! R, R, R! R, R,we get 0, 0, Finally, applying R $ R, R! (,)R,we get
2 MATH Page of. Let A, 0, ; x x x x x x 5 5 ; and b 0 [] (a) Express the general solution of the homogeneous system Ax 0 as a linear combination of vectors in R 5. By performing on [Ajb] the row operations R! R + R, R! R +R, R! R,R, and R! ()R we get [Hjc] From this we see that the general solution of the homogeneous system is 5: x r [,;,; ; 0; 0] + r [0;,; 0;,; ] (r ;r R): [] (b) Write down the general solution of the nonhomogeneous system Ax b. From the reduced augmented matrix, we see that x [0;;0;;0] + r [,;,; ; 0; 0] + r [0;,; 0;,; ] (r ;r R):
3 MATH Page of. The matrix A in R nn is dened to be invertible if there exists B in R nn such that Let A; C R nn both be invertible. AB BA I: [] (a) Show that AC is invertible. Since A and C are invertible there exist B;D R nn such that AB BA I and CD DC I: Using the associativity of matrix multiplication, we have (AC)(DB) A(CD)B AIB AB I (DB)(AC) D(BA)C DIC DC I: Thus DB witnesses that AC is invertible. [] (b) Show that A T is invertible. Let B witness that A is invertible, i.e., AB BA I: Taking the transpose of each term we have B T A T A T B T I: Therefore B T witnesses that A T is invertible.
4 MATH Page of []. (a) Explain how to compute the rank of a matrix. By performing row operations on the given matrix A nd a reduced rowechelon matrix H rowequivalent to A. The rank of A is the number of nonzero rows of H. [] (b) Explain why it is true that rank(ab) min(rank(a); rank(b)) for all matrices A, B such that AB is dened. The crux of the matter is that the columns of AB are linear combinations of the columns of A indeed, if a ;::: ;a n are the columns of A and [b j ;::: ;b nj ] is the jth column of B, then the jth column of AB is b j a + :::+b nj a n. Therefore colspace(ab) colspace(a) and so rank(ab) dim(colspace(ab)) dim(colspace(a)) rank(a) : Applying this result to the product B T A T we obtain This is enough. rank(ab) rank, (AB) T rank(b T A T ) rank(b T )rank(b) :
5 MATH Page 5 of [] 5. Find a formula which denes a linear transformation F : R! R which satises F ([; ; ]) [0; ; ]; F ([;,;,])[;0;0] : The requirement above species F on a subspace W of dimension. To complete the specication of F on R we require that F ([0; ; 0]) [0; 0; 0]. Since F is linear, F ([; 0; 0]) F (()[[; ; ] + ()[[;,;,]) () ([0; ; ]+[;0;0]) F ([0; 0; ]) F ([; ; ], [; 0; 0], [0; ; 0])[0;;], [ ; ; ], [0; 0; 0] : Thus the standard matrix representation of F is Therefore a formula dening F is [F (e ) F (e ) F (e )] 0, 0 0 F ([x; y; z]) () [x, z; x + z; x + z] :
6 MATH Page of Denition of vector space A vector space over R is a set V of vectors together with a distinguished vector 0 in V and three functions which satisfy (u; v)! u + v; v!,v; (r; v)! rv (u; v V; r R) A (u + v) + w u +(v + w) associative law A u + v v + u commutative law A 0 + u u additive identity A u +(,u)0 additive inverse S r(u + v) ru + rv distributivity S (r + s)u ru + su distributivity S r(su) (rs)u associative law S u u scale preservation for all u; v; w V and r; sr. []. From the axioms for a vector space show that for all vectors u, v, w in V, u + v u + w ) v w : Suppose that u + v u + w. Then This is enough. v 0 + v by A (u+(,u)) + v by A (u+ v)+(,u) by A, A (u+ w)+(,u) hypothesis (u+(,u)) + w by A, A 0 + w by A w A :
7 MATH Page of. Let V R denote the vector space over R whose vectors are the matrices with entries from R. Let v 0 0 ; v 0 0 ; v 0 0 ; v 0 0 : [] (a) Show that fv ; v ; v ; v g is linearly dependent. By inspection, v + v v + v : [] (b) Find u V such that fv ; v ; v ; ug is a basis for V. 0 We can take u. Then u, v 0 0, u, v, u, v, v + u are the four matrices with one entry equal to and all the other entries equal to 0. Thus fv ; v ; v ; ug is a basis for V.
8 MATH Page 8 of [] 8. (a) Evaluate the determinant Performing the row operations R 5! R 5, R and R! R, R yields a matrix in which rows and 5 are the same. These row operations do not change the value of the determinant. So the given determinant is 0. [] (b) Let A be a square matrix. State the relationship between det(a) and rank(a). Let A be in R nn. Then det(a) 0 () rank(a) n:
9 MATH Page 9 of 9. Let A denote the matrix [] (a) Find the eigenvalues of A. The characteristic polynomial is, 0 0, 0, 0,, 0,,,,, 0, 0 0, 0, 0 0,, 0,,, (, ),,, 0,, 0, 0, 0 0, 0,, 0,,,,, (, ), 0, 0,,,,,, 0, 0,, 0, 0, 0 0, 0,, 0,,,,,,,(, ), 0,,, 0, (, ) (, ), : Therefore the eigenvalues are 0;; p. [] (b) Find a matrix C such that C, AC is a diagonal. By inspection eigenvectors belonging to 0, are [; ;,;,], [;,; ; 0] respectively. We compute an eigenvector belonging to + p by nullspace p ( + )I, A 0 p 0 0,,,, p p nullspace B 0 p p C, 0 +, 5A sp([; ; ; ]) : Hence [; ; ; p ] is an eigenvector belonging to + p, and similarly [; ; ;, p ] is an eigenvector belonging to, p. Therefore we may take C,,, 0 p, p 5
10 MATH Page 0 of [] 0. (a) Find the projection of [;,; ] on sp([; ;,]). p [;,; ] [; ;,] [; ;,](,)[; ;,] [; ;,] : [; ;,] [; ;,] [] (b) Find a formula for the projection of b [b ;b ;b ] on the subspace sp([; ;,]; [,; ; ])., Let A denote the matrix, W sp([; ;,]; [,; ; ]) is T. The projection matrix for the subspace P A(A T A), A T A A 8,, So the projection of b on W is P b,, b, b, A T A 8 0, 0 8 0, 0 ;b ; b,b. 8 A T
11 MATH Page of []. (a) State three conditions on a matrix A R nn which are equivalent to Abeing an orthogonal matrix. Any three of the following ve conditions are acceptable:. The columns of A form an orthonormal basis of R n.. The rows of A form an orthonormal basis of R n.. A T A I.. kaxk kxk for all x R n. 5. (Ax) (Ay) x yfor all x; y R n. [] (b) Let T : R! R be an orthogonal linear transformation such that T ([; 0]) [; p ]: Explain why there are only two possibilities for T and describe them. The standard matrix representation of T is an orthogonal matrix and has columns T ([; 0]) and T ([0; ]). From condition we see that T ([; 0]) and T ([0; ]) form an orthonormal basis of R. Since T ([; 0]) [; p ], we see that, if T ([0; ])[a ;a ], then a + a and ()a +( p )a 0. Therefore T ([0; ]) is either [ p ;,] or [, p ; ].
12 MATH Page of [8]. The following data points are given: (,;,8); (,;,8); (; 0); (; 0); (; ); (; 8) By using a method from linear algebra nd the leastsquares linear t for these data points. Your answer should make it clear what method you are using. Let A,, (A T A), A T 0 T and b,8, T. Then, 0,, 9 8,,,8 0 According to the theory, the coecients of the leastsquares linear t are given by r0 r (A T A), A T b So the leastsquares linear t is y5+x A T :
13 MATH Page of. Let R R denote the vector space over R consisting of all functions f : R! R. Let V denote the subspace of R R. spanned by f; sin x; cos xg. Let B h; sin x; cos xi; B 0 hsin x; cos x; sin x cos xi: Let F : V! V be the unique linear transformation which maps B to B 0 in the sense that F () sin x, F (sin x) cos x, and F (cos x) sin x cos x. [] (a) Find a matrix C R such that, for all v in V, Cv B v B 0 Note that sin x + cos x sin x sin x cos x cos x, sin x + cos x: Thus the required matrix C is C B;B 0 0, [] (b) Find the matrix [F ] B;B which represents F with respect to B; B. Notice that the matrix of F with respect to B; B 0 is I the identity matrix. Therefore the matrix of F with respect to B; B is [F ] B;B C B 0 ;B [F ] B;B 0 (C B;B 0),,,, 0 0 0,, 0
14 MATH Page of [5]. Consider the curve inr whose equation is x + p xy +y : Show that this curve is an ellipse and nd the length of its major and minor axes. The symmetric matrix of coecients of the quadratic form x + p xy +y is A p p : The characteristic polynomial is (,9)(,). Letting C be the orthogonal diagonalizing x x matrix, the change of variables C converts the equation to y y 9x +y : This is clearly the equation of an ellipse. The major axis has length, while the minor axis has length. [] 5. Consider the surface S in R whose equation is x + y + z +xy +yz +zx, x + z : Show that S is cylindrical in the sense that there is a unit vector u such that S is invariant under translation by any scalar multiple of u. Here the symmetric matrix of coecients has eigenvalues, 0, where 0 has multiplicity. So the associated orthogonal transformation converts the equation to the form x, p x + ay + bz : The exact values of a and b do not matter except that one of them is nonzero. Making a rotation about the xaxis we can convert the equation to the form x, p x + cy : This is enough. The unit vector u is the one in the direction of the zaxis.
MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION
MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether
More informationMath Linear Algebra Final Exam Review Sheet
Math 151 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a componentwise operation. Two vectors v and w may be added together as long as they contain the same number n of
More informationMATH 31  ADDITIONAL PRACTICE PROBLEMS FOR FINAL
MATH 3  ADDITIONAL PRACTICE PROBLEMS FOR FINAL MAIN TOPICS FOR THE FINAL EXAM:. Vectors. Dot product. Cross product. Geometric applications. 2. Row reduction. Null space, column space, row space, left
More informationANSWERS. E k E 2 E 1 A = B
MATH 7 Final Exam Spring ANSWERS Essay Questions points Define an Elementary Matrix Display the fundamental matrix multiply equation which summarizes a sequence of swap, combination and multiply operations,
More information2. Every linear system with the same number of equations as unknowns has a unique solution.
1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations
More information1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det
What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix
More informationMath 224, Fall 2007 Exam 3 Thursday, December 6, 2007
Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 You have 1 hour and 20 minutes. No notes, books, or other references. You are permitted to use Maple during this exam, but you must start with a blank
More informationMath 315: Linear Algebra Solutions to Assignment 7
Math 5: Linear Algebra s to Assignment 7 # Find the eigenvalues of the following matrices. (a.) 4 0 0 0 (b.) 0 0 9 5 4. (a.) The characteristic polynomial det(λi A) = (λ )(λ )(λ ), so the eigenvalues are
More informationKnowledge Discovery and Data Mining 1 (VO) ( )
Knowledge Discovery and Data Mining 1 (VO) (707.003) Review of Linear Algebra Denis Helic KTI, TU Graz Oct 9, 2014 Denis Helic (KTI, TU Graz) KDDM1 Oct 9, 2014 1 / 74 Big picture: KDDM Probability Theory
More informationMath 313 Chapter 5 Review
Math 313 Chapter 5 Review Howard Anton, 9th Edition May 2010 Do NOT write on me! Contents 1 5.1 Real Vector Spaces 2 2 5.2 Subspaces 3 3 5.3 Linear Independence 4 4 5.4 Basis and Dimension 5 5 5.5 Row
More informationMath 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam
Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system
More informationLinear Algebra Practice Problems
Math 7, Professor Ramras Linear Algebra Practice Problems () Consider the following system of linear equations in the variables x, y, and z, in which the constants a and b are real numbers. x y + z = a
More informationMath Final December 2006 C. Robinson
Math 2851 Final December 2006 C. Robinson 2 5 8 5 1 2 01 0 1. (21 Points) The matrix A = 1 2 2 3 1 8 3 2 6 has the reduced echelon form U = 0 0 1 2 0 0 0 0 0 1. 2 6 1 0 0 0 0 0 a. Find a basis for the
More informationMath 215 HW #9 Solutions
Math 5 HW #9 Solutions. Problem 4.4.. If A is a 5 by 5 matrix with all a ij, then det A. Volumes or the big formula or pivots should give some upper bound on the determinant. Answer: Let v i be the ith
More informationRow Space, Column Space, and Nullspace
Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space
More informationMath 308 Practice Final Exam Page and vector y =
Math 308 Practice Final Exam Page Problem : Solving a linear equation 2 0 2 5 Given matrix A = 3 7 0 0 and vector y = 8. 4 0 0 9 (a) Solve Ax = y (if the equation is consistent) and write the general solution
More information18.06SC Final Exam Solutions
18.06SC Final Exam Solutions 1 (4+7=11 pts.) Suppose A is 3 by 4, and Ax = 0 has exactly 2 special solutions: 1 2 x 1 = 1 and x 2 = 1 1 0 0 1 (a) Remembering that A is 3 by 4, find its row reduced echelon
More informationMath 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations:
Homework Exercises 1 1 Find the complete solutions (if any!) to each of the following systems of simultaneous equations: (i) x 4y + 3z = 2 3x 11y + 13z = 3 2x 9y + 2z = 7 x 2y + 6z = 2 (ii) x 4y + 3z =
More informationProblem 1: Solving a linear equation
Math 38 Practice Final Exam ANSWERS Page Problem : Solving a linear equation Given matrix A = 2 2 3 7 4 and vector y = 5 8 9. (a) Solve Ax = y (if the equation is consistent) and write the general solution
More informationftuiowamath2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST
me me ftuiowamath255 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 2/3/2 at :3pm CST. ( pt) Library/TCNJ/TCNJ LinearSystems/problem3.pg Give a geometric description of the following
More informationLinear Algebra. Christos Michalopoulos. September 24, NTU, Department of Economics
Linear Algebra Christos Michalopoulos NTU, Department of Economics September 24, 2011 Christos Michalopoulos Linear Algebra September 24, 2011 1 / 93 Linear Equations Denition A linear equation in nvariables
More informationLinear Algebra Formulas. Ben Lee
Linear Algebra Formulas Ben Lee January 27, 2016 Definitions and Terms Diagonal: Diagonal of matrix A is a collection of entries A ij where i = j. Diagonal Matrix: A matrix (usually square), where entries
More informationProblem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show
MTH 0: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology  Kanpur Problem Set Problems marked (T) are for discussions in Tutorial sessions (T) If A is an m n matrix,
More informationYORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions
YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For
More informationPRACTICE PROBLEMS FOR THE FINAL
PRACTICE PROBLEMS FOR THE FINAL Here are a slew of practice problems for the final culled from old exams:. Let P be the vector space of polynomials of degree at most. Let B = {, (t ), t + t }. (a) Show
More informationMA 265 FINAL EXAM Fall 2012
MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators
More informationMath 369 Exam #2 Practice Problem Solutions
Math 369 Exam #2 Practice Problem Solutions 2 5. Is { 2, 3, 8 } a basis for R 3? Answer: No, it is not. To show that it is not a basis, it suffices to show that this is not a linearly independent set.
More informationElementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th.
Elementary Linear Algebra Review for Exam Exam is Monday, November 6th. The exam will cover sections:.4,..4, 5. 5., 7., the class notes on Markov Models. You must be able to do each of the following. Section.4
More information5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.
Linear Algebra  Test File  Spring Test # For problems  consider the following system of equations. x + y  z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the
More informationGlossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
Glossary of Linear Algebra Terms Basis (for a subspace) A linearly independent set of vectors that spans the space Basic Variable A variable in a linear system that corresponds to a pivot column in the
More information1. Select the unique answer (choice) for each problem. Write only the answer.
MATH 5 Practice Problem Set Spring 7. Select the unique answer (choice) for each problem. Write only the answer. () Determine all the values of a for which the system has infinitely many solutions: x +
More informationStudy Guide for Linear Algebra Exam 2
Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real
More informationMATH 2360 REVIEW PROBLEMS
MATH 2360 REVIEW PROBLEMS Problem 1: In (a) (d) below, either compute the matrix product or indicate why it does not exist: ( )( ) 1 2 2 1 (a) 0 1 1 2 ( ) 0 1 2 (b) 0 3 1 4 3 4 5 2 5 (c) 0 3 ) 1 4 ( 1
More informationSolutions to Exam I MATH 304, section 6
Solutions to Exam I MATH 304, section 6 YOU MUST SHOW ALL WORK TO GET CREDIT. Problem 1. Let A = 1 2 5 6 1 2 5 6 3 2 0 0 1 3 1 1 2 0 1 3, B =, C =, I = I 0 0 0 1 1 3 4 = 4 4 identity matrix. 3 1 2 6 0
More informationEXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1)
EXERCISE SET 5. 6. The pair (, 2) is in the set but the pair ( )(, 2) = (, 2) is not because the first component is negative; hence Axiom 6 fails. Axiom 5 also fails. 8. Axioms, 2, 3, 6, 9, and are easily
More informationMATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.
MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Rowcolumn rule: ijth entry of AB:
More informationMATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.
MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation
More information(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a).
.(5pts) Let B = 5 5. Compute det(b). (a) (b) (c) 6 (d) (e) 6.(5pts) Determine which statement is not always true for n n matrices A and B. (a) If two rows of A are interchanged to produce B, then det(b)
More informationMath Bootcamp An pdimensional vector is p numbers put together. Written as. x 1 x =. x p
Math Bootcamp 2012 1 Review of matrix algebra 1.1 Vectors and rules of operations An pdimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the
More informationContents. 6 Systems of FirstOrder Linear Dierential Equations. 6.1 General Theory of (FirstOrder) Linear Systems
Dierential Equations (part 3): Systems of FirstOrder Dierential Equations (by Evan Dummit, 26, v 2) Contents 6 Systems of FirstOrder Linear Dierential Equations 6 General Theory of (FirstOrder) Linear
More informationLinear Algebra: Characteristic Value Problem
Linear Algebra: Characteristic Value Problem . The Characteristic Value Problem Let < be the set of real numbers and { be the set of complex numbers. Given an n n real matrix A; does there exist a number
More informationMath 4A Notes. Written by Victoria Kala Last updated June 11, 2017
Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...
More informationANSWERS (5 points) Let A be a 2 2 matrix such that A =. Compute A. 2
MATH 7 Final Exam Sample Problems Spring 7 ANSWERS ) ) ). 5 points) Let A be a matrix such that A =. Compute A. ) A = A ) = ) = ). 5 points) State ) the definition of norm, ) the CauchySchwartz inequality
More informationMTH 5102 Linear Algebra Practice Final Exam April 26, 2016
Name (Last name, First name): MTH 5 Linear Algebra Practice Final Exam April 6, 6 Exam Instructions: You have hours to complete the exam. There are a total of 9 problems. You must show your work and write
More informationLINEAR ALGEBRA 1, 2012I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS
LINEAR ALGEBRA, I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,
More informationMath 323 Exam 2 Sample Problems Solution Guide October 31, 2013
Math Exam Sample Problems Solution Guide October, Note that the following provides a guide to the solutions on the sample problems, but in some cases the complete solution would require more work or justification
More informationConceptual Questions for Review
Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.
More informationMATH 240 Spring, Chapter 1: Linear Equations and Matrices
MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear
More informationMATH 304 Linear Algebra Lecture 34: Review for Test 2.
MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Linear transformations (Leon 4.1 4.3) Matrix transformations Matrix of a linear mapping Similar matrices Orthogonality (Leon 5.1
More informationMATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.
MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.
More informationMATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)
MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m
More informationSpring 2014 Math 272 Final Exam Review Sheet
Spring 2014 Math 272 Final Exam Review Sheet You will not be allowed use of a calculator or any other device other than your pencil or pen and some scratch paper. Notes are also not allowed. In kindness
More informationProblem # Max points possible Actual score Total 120
FINAL EXAMINATION  MATH 2121, FALL 2017. Name: ID#: Email: Lecture & Tutorial: Problem # Max points possible Actual score 1 15 2 15 3 10 4 15 5 15 6 15 7 10 8 10 9 15 Total 120 You have 180 minutes to
More informationSolutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015
Solutions to Final Practice Problems Written by Victoria Kala vtkala@math.ucsb.edu Last updated /5/05 Answers This page contains answers only. See the following pages for detailed solutions. (. (a x. See
More informationApplied Matrix Algebra Lecture Notes Section 2.2. Gerald Höhn Department of Mathematics, Kansas State University
Applied Matrix Algebra Lecture Notes Section 22 Gerald Höhn Department of Mathematics, Kansas State University September, 216 Chapter 2 Matrices 22 Inverses Let (S) a 11 x 1 + a 12 x 2 + +a 1n x n = b
More informationHOMEWORK PROBLEMS FROM STRANG S LINEAR ALGEBRA AND ITS APPLICATIONS (4TH EDITION)
HOMEWORK PROBLEMS FROM STRANG S LINEAR ALGEBRA AND ITS APPLICATIONS (4TH EDITION) PROFESSOR STEVEN MILLER: BROWN UNIVERSITY: SPRING 2007 1. CHAPTER 1: MATRICES AND GAUSSIAN ELIMINATION Page 9, # 3: Describe
More informationSection 3.3. Matrix Rank and the Inverse of a Full Rank Matrix
3.3. Matrix Rank and the Inverse of a Full Rank Matrix 1 Section 3.3. Matrix Rank and the Inverse of a Full Rank Matrix Note. The lengthy section (21 pages in the text) gives a thorough study of the rank
More information(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax =
. (5 points) (a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? dim N(A), since rank(a) 3. (b) If we also know that Ax = has no solution, what do we know about the rank of A? C(A)
More informationAPPM 3310 Problem Set 4 Solutions
APPM 33 Problem Set 4 Solutions. Problem.. Note: Since these are nonstandard definitions of addition and scalar multiplication, be sure to show that they satisfy all of the vector space axioms. Solution:
More informationMATH 223 FINAL EXAM APRIL, 2005
MATH 223 FINAL EXAM APRIL, 2005 Instructions: (a) There are 10 problems in this exam. Each problem is worth five points, divided equally among parts. (b) Full credit is given to complete work only. Simply
More informationHomework 1/Solutions. Graded Exercises
MTH 3103 Abstract Algebra I and Number Theory S18 Homework 1/Solutions Graded Exercises Exercise 1. Below are parts of the addition table and parts of the multiplication table of a ring. Complete both
More informationMath 314H Solutions to Homework # 3
Math 34H Solutions to Homework # 3 Complete the exercises from the second maple assignment which can be downloaded from my linear algebra course web page Attach printouts of your work on this problem to
More informationDigital Workbook for GRA 6035 Mathematics
Eivind Eriksen Digital Workbook for GRA 6035 Mathematics November 10, 2014 BI Norwegian Business School Contents Part I Lectures in GRA6035 Mathematics 1 Linear Systems and Gaussian Elimination........................
More informationLinear Algebra: Matrix Eigenvalue Problems
CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given
More informationNOTES on LINEAR ALGEBRA 1
School of Economics, Management and Statistics University of Bologna Academic Year 207/8 NOTES on LINEAR ALGEBRA for the students of Stats and Maths This is a modified version of the notes by Prof Laura
More information1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?
. Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in
More informationChapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015
Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 205. If A is a 3 3 triangular matrix, explain why det(a) is equal to the product of entries on the diagonal. If A is a lower triangular or diagonal
More informationPreliminary Linear Algebra 1. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 100
Preliminary Linear Algebra 1 Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 100 Notation for all there exists such that therefore because end of proof (QED) Copyright c 2012
More informationMATH Spring 2011 Sample problems for Test 2: Solutions
MATH 304 505 Spring 011 Sample problems for Test : Solutions Any problem may be altered or replaced by a different one! Problem 1 (15 pts) Let M, (R) denote the vector space of matrices with real entries
More informationPart I True or False. (One point each. A wrong answer is subject to one point deduction.)
FACULTY OF ENGINEERING CHULALONGKORN UNIVERSITY 21121 Computer Engineering Mathematics YEAR II, Second Semester, Final Examination, March 3, 214, 13: 16: Name ID 2 1 CR58 Instructions 1. There are 43 questions,
More information1. In this problem, if the statement is always true, circle T; otherwise, circle F.
Math 1553, Extra Practice for Midterm 3 (sections 4565) Solutions 1 In this problem, if the statement is always true, circle T; otherwise, circle F a) T F If A is a square matrix and the homogeneous equation
More informationLINEAR ALGEBRA REVIEW
LINEAR ALGEBRA REVIEW SPENCER BECKERKAHN Basic Definitions Domain and Codomain. Let f : X Y be any function. This notation means that X is the domain of f and Y is the codomain of f. This means that for
More informationThird Midterm Exam Name: Practice Problems November 11, Find a basis for the subspace spanned by the following vectors.
Math 7 Treibergs Third Midterm Exam Name: Practice Problems November, Find a basis for the subspace spanned by the following vectors,,, We put the vectors in as columns Then row reduce and choose the pivot
More informationSECTION 3.3. PROBLEM 22. The null space of a matrix A is: N(A) = {X : AX = 0}. Here are the calculations of AX for X = a,b,c,d, and e. =
SECTION 3.3. PROBLEM. The null space of a matrix A is: N(A) {X : AX }. Here are the calculations of AX for X a,b,c,d, and e. Aa [ ][ ] 3 3 [ ][ ] Ac 3 3 [ ] 3 3 [ ] 4+4 6+6 Ae [ ], Ab [ ][ ] 3 3 3 [ ]
More informationReview Notes for Linear Algebra True or False Last Updated: February 22, 2010
Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Chapter 4 [ Vector Spaces 4.1 If {v 1,v 2,,v n } and {w 1,w 2,,w n } are linearly independent, then {v 1 +w 1,v 2 +w 2,,v n
More information1 Last time: leastsquares problems
MATH Linear algebra (Fall 07) Lecture Last time: leastsquares problems Definition. If A is an m n matrix and b R m, then a leastsquares solution to the linear system Ax = b is a vector x R n such that
More informationPractice Final Exam. Solutions.
MATH Applied Linear Algebra December 6, 8 Practice Final Exam Solutions Find the standard matrix f the linear transfmation T : R R such that T, T, T Solution: Easy to see that the transfmation T can be
More informationLinear Algebra 1 Exam 1 Solutions 6/12/3
Linear Algebra 1 Exam 1 Solutions 6/12/3 Question 1 Consider the linear system in the variables (x, y, z, t, u), given by the following matrix, in echelon form: 1 2 1 3 1 2 0 1 1 3 1 4 0 0 0 1 2 3 Reduce
More informationChapter 2. General Vector Spaces. 2.1 Real Vector Spaces
Chapter 2 General Vector Spaces Outline : Real vector spaces Subspaces Linear independence Basis and dimension Row Space, Column Space, and Nullspace 2 Real Vector Spaces 2 Example () Let u and v be vectors
More informationMath 265 Linear Algebra Sample Spring 2002., rref (A) =
Math 265 Linear Algebra Sample Spring 22. It is given that A = rref (A T )= 2 3 5 3 2 6, rref (A) = 2 3 and (a) Find the rank of A. (b) Find the nullityof A. (c) Find a basis for the column space of A.
More informationMATH. 20F SAMPLE FINAL (WINTER 2010)
MATH. 20F SAMPLE FINAL (WINTER 2010) You have 3 hours for this exam. Please write legibly and show all working. No calculators are allowed. Write your name, ID number and your TA s name below. The total
More informationNo books, notes, any calculator, or electronic devices are allowed on this exam. Show all of your steps in each answer to receive a full credit.
MTH 309001 Fall 2016 Exam 1 10/05/16 Name (Print): PID: READ CAREFULLY THE FOLLOWING INSTRUCTION Do not open your exam until told to do so. This exam contains 7 pages (including this cover page) and 7
More information2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian
FE661  Statistical Methods for Financial Engineering 2. Linear algebra Jitkomut Songsiri matrices and vectors linear equations range and nullspace of matrices function of vectors, gradient and Hessian
More informationELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS. 1. Linear Equations and Matrices
ELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS KOLMAN & HILL NOTES BY OTTO MUTZBAUER 11 Systems of Linear Equations 1 Linear Equations and Matrices Numbers in our context are either real numbers or complex
More informationMAT Linear Algebra Collection of sample exams
MAT 342  Linear Algebra Collection of sample exams Ax. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system
More informationRecall the convention that, for us, all vectors are column vectors.
Some linear algebra Recall the convention that, for us, all vectors are column vectors. 1. Symmetric matrices Let A be a real matrix. Recall that a complex number λ is an eigenvalue of A if there exists
More informationMath 1553, Introduction to Linear Algebra
Learning goals articulate what students are expected to be able to do in a course that can be measured. This course has courselevel learning goals that pertain to the entire course, and sectionlevel
More information4.3  Linear Combinations and Independence of Vectors
 Linear Combinations and Independence of Vectors De nitions, Theorems, and Examples De nition 1 A vector v in a vector space V is called a linear combination of the vectors u 1, u,,u k in V if v can be
More informationLINEAR ALGEBRA SUMMARY SHEET.
LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linearalgebrasummarysheet/ This document is a concise collection of many of the important theorems of linear algebra, organized
More informationQuick Tour of Linear Algebra and Graph Theory
Quick Tour of Linear Algebra and Graph Theory CS224W: Social and Information Network Analysis Fall 2014 David Hallac Based on Peter Lofgren, Yu Wayne Wu, and Borja Pelato s previous versions Matrices and
More informationProperties of Linear Transformations from R n to R m
Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation
More informationChapter 5 Eigenvalues and Eigenvectors
Chapter 5 Eigenvalues and Eigenvectors Outline 5.1 Eigenvalues and Eigenvectors 5.2 Diagonalization 5.3 Complex Vector Spaces 2 5.1 Eigenvalues and Eigenvectors Eigenvalue and Eigenvector If A is a n n
More informationMATH 1553, Intro to Linear Algebra FINAL EXAM STUDY GUIDE
MATH 553, Intro to Linear Algebra FINAL EXAM STUDY GUIDE In studying for the final exam, you should FIRST study all tests andquizzeswehave had this semester (solutions can be found on Canvas). Then go
More informationEigenvalues and Eigenvectors
5 Eigenvalues and Eigenvectors 5.2 THE CHARACTERISTIC EQUATION DETERMINANATS n n Let A be an matrix, let U be any echelon form obtained from A by row replacements and row interchanges (without scaling),
More informationIMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET
IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each
More informationChapter 1. Matrix Algebra
ST4233, Linear Models, Semester 1 20082009 Chapter 1. Matrix Algebra 1 Matrix and vector notation Definition 1.1 A matrix is a rectangular or square array of numbers of variables. We use uppercase boldface
More informationLinear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions
Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions AnnaKarin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2013 Main problem of linear algebra 2: Given
More informationhomogeneous 71 hyperplane 10 hyperplane 34 hyperplane 69 identity map 171 identity map 186 identity map 206 identity matrix 110 identity matrix 45
address 12 adjoint matrix 118 alternating 112 alternating 203 angle 159 angle 33 angle 60 area 120 associative 180 augmented matrix 11 axes 5 Axiom of Choice 153 basis 178 basis 210 basis 74 basis test
More informationMath 415 Exam I. Name: Student ID: Calculators, books and notes are not allowed!
Math 415 Exam I Calculators, books and notes are not allowed! Name: Student ID: Score: Math 415 Exam I (20pts) 1. Let A be a square matrix satisfying A 2 = 2A. Find the determinant of A. Sol. From A 2
More informationChapter 3 Transformations
Chapter 3 Transformations An Introduction to Optimization Spring, 2014 WeiTa Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases
More information