Third and Fourth Order Piece-wise Defined Recursive Sequences

Size: px
Start display at page:

Download "Third and Fourth Order Piece-wise Defined Recursive Sequences"

Transcription

1 International Mathematical Forum, Vol. 11, 016, no., HIKARI Ltd, Third and Fourth Order Piece-wise Defined Recursive Sequences Saleem Al-Ashhab Department of Mathematics Al-albayt University, Mafraq, Jordan Copyright c 015 Saleem Al-Ashhab. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract We introduce a recursive sequence with a piecewise defined function as the right hand side. This function is discontinuous and includes nonlinear terms, i.e. one branch of this function contains the exponent three and four. We present results concerning the asymptotic behavior of the sequence. We specify conditions under which the sequence contains periodic subsequences. Mathematics Subject Classification: 11D5; 39A8; 39A99 Keywords: piecewise defined sequence, periodic sequnces, Cubic equations and Cardan s formula 1. Introduction Qena, Al-Ashhab and Guyker [6] considered the following difference equation: Q k = hq k 1, if Q k 1 v, Q k = hq k 1 j, if Q k 1 > v, for k = 1,,... where the initial value was set at Q 0 = 1. They proved the existence of periodic behavior for the sequence in some cases.

2 6 Saleem Al-Ashhab In [], [4] and [8] the work on this topic was extended and we find there more results concerning the nonlinear difference equation. We are going in this paper to study the cubic termss and terms of fourth order instead of quadratic terms. By doing this we will use some formulas related to cubic equations and equations of the fourth order. In [7] we find that the cubic equation y 3 + 3py + q = 0 possesses a solution of the form y = u + v, where u = 3 q + q + p 3, v = 3 q q + p 3 There exists a transformation from a general cubic equation to the previous form. Furhter, an equation of the form x 4 + bx 3 + cx + dx + e = 0 has the same roots of the equation x + b + A x + y + by d A where A = 8y + b 4c and y is any real root of the equation 8y 3 4cy + (bd 8e)y + e(4c b ) d = 0. We can take also the negative root as the value of A as is usually referred to Ferrari s method. But, it is enough for us here the described procedure.. Sequences with cubic exponent We generalize Qena s work in this section (see [5] and [6]). We replace the quadratic term by a term raised to an integer power. Later, we concentrate on the powers three and four. Definition 1 Let h, j, v and L 0 be positive real numbers. Let τ be an integer. We define the sequence L k as follows L k = hl τ k 1, if L k 1 v, L k = hl k 1 j, if L k 1 > v, for k = 1,,... In this section we will take τ = 3. We consider the following equation h 3 y 3 + (1 + h)(h n + y) + h = 0,

3 Third and fourth order piece-wise defined recursive sequences 63 where h, n 5. We use the notation G(i) = i j=0 τ j, T = 1 + h h 3, p = T 3, q = T hn + h. According to Cardan s Formula one of the solutions of the cubic equation is r = 3 q + R + q 3 R, R = q + p 3. We note that r < 0, r 3 + T r + T h n + h = 0. On the side the function f(x) = 3 x + a 3 x a, x 0 is decreasing for any real a > 0. Hence, we deduce that 3 R 3 R + q q < 3 q In particular we get r > 3 T hn + h... (1) Proposition 1: Let i > 0 be an integer. If we set n = G(i) + 1, j = h n + r, 3 4h n h v < h 0.75n 1, L 0 = 1, then we obtain the sequence L 0, L 1 = h,..., L i+5 = h,... Proof: According to definition and (1) L 0 = 1 v, L 1 = h v,..., L i = h G(i 1) 3 h n 1 v,

4 64 Saleem Al-Ashhab L i+1 = h G(i) = h n 1 > h 0.75n 1 > v, L i+ = h G(i)+1 j = r < 3 h n h v, L i+3 = hl 3 i+ = hr 3. According to definition r 3 = T r (T h n + h ) < T 3 T hn + h (T h n + h ). Hence, due to T < 0.5 we obtain r 3 < 3 T hn + h (T h n + h ). According to calculus the function f(x) = x 3 x is increasing for x > Since x x 3 4 x 3 > 0 for x > 4.5 we obtain for x > 4.5, 0 < α < 0.5 x + α 3 x + α > x 3 x > 4 x 3. Thus, by setting x = T h n, α = h we obtain L i+3 = hr 3 > 4 T 3 h 3n+4 > 4 h 3n > v, L i+4 = h( hr 3 ) j = h r 3 j = h T r + T h n+ + 1 h n r = r h + hn+3 + h n+ + 1 h n = h r + h 3 + h n+. h 3 h 3 Due to (1) we obtain h r > 3 4(T h n+6 + h 4 ) > 3 4(h n+3 + h n+4 + h 4 ) > 3 h n+4 > h n+. Since x x > x 1.9 for x > 10, we obtain by substituting x = h n+ h n+ + h r > h n+ h n+ > h 1.9(0.5n+1) = h 0.95n+1.9,

5 Third and fourth order piece-wise defined recursive sequences 65 L i+4 > h0.95n h 3 h 3 > h 0.95n 1.1 > h 0.75n 1 > v. Finally, according to definition and the properties of r we obtain L i+5 = h( h r 3 ) (1 + h)j = h 3 r 3 (1 + h)(h n + r) = h. We illustrate the proposition with the following example: We set h = i =. We have then n = G() + 1 = 14, 33 v < 74. The equation 8x 3 + 3( 14 + x) + = 0 has the solution Hence, we have j = = We obtain the sequence: L 1 =, L = 4 = 16, L 3 = 13 = 819 > v, L 4 = 14 j = < v, L 5 = ( ) 3 = 175 > v, L 6 = = 8184, L 7 = =, Sequences with fourth order terms In this section we will take τ = 4. We consider the following 4 th order equation h 3 (x h n ) 4 (1 + h)x h = 0. Using the substitution z = x h n, we transform it into z h h 3 z h + hn (1 + h) h 3 = 0 This equation will be solved symbolically exact by applying a procedure based on Cardan s formula: We move on to the cubic equation 8y h + hn (1 + h) y ( 1 + h ) = 0 h 3 h 3 One real solution of the cubic equation is y = 3 q + R + 3 q R

6 66 Saleem Al-Ashhab where p = h + hn (1 + h), q = 1 3h 3 16 (1 + h ), R = q + p 3. h 3 Now, we have to solve the quadratic equation where A = 8y. Its discriminant is x A x + (y h + 1 h 3 A ) = 0 = A h 3 4y + 4h h 3 A = y 3 h 1 h 3 y Now, > 0 iff (h y) 3 < h + 1 iff y 3 < 1 (1 + h T ) iff y < 3 h 3. On the other hand, we know that As we already know y = 3 ( T 4 ) + R + ( T 3 4 ) R. 3 a + x + 3 a x < 3 a, x > 0. Specifically, by taking a = ( T 4 ) we conclude then that is positive. We denote by r the greater root of the quadratic equation. In other words, we set r = A +. Now, r is a positive real solution of the 4 4th order equation, i.e. r h h 3 r h + hn (1 + h) h 3 = 0, or r 4 T r T h n 1 h = 0 We deduce that r 4 = T (r + h n ) + 1 h > T (r + hn ).

7 Third and fourth order piece-wise defined recursive sequences 67 But T > h. Hence, we conclude that r 4 > r + hn h > h n. Proposition : Let i > 0 be an integer. If we set n = G(i) + 1, j = h n + r, h G(i 1) v < h G(i), L 0 = 1, then we obtain the sequence L 0, L 1 = h,..., L i+5 = h,... Proof: As in the proof of propostion 1 we obtain L 0 = 1, L 1 = h, L = h 5,..., L i+1 = h n 1 > v, L i+ = hl i+1 j = r < v, L i+3 = hr 4 > h n 1 > v, L i+4 = hl i+3 j = h r 4 j = h r 4 h n r. But, we know that Thus, r 4 r h hn h = r h 3 + h + hn h 3. L i+4 = r + h + hn h > h n 1 > v, L i+5 = hl i+4 j = h 3 r 4 (1+h)(r+h n ) = h. We illustrate the proposition with the following example: We set h =, i = 1. In This case we have j = 66.38, since is a root for 8(64 x) 4 3x =. For any v < 3 we obtain the sequence: L 0 = 1, L 1 =, L = 3, L 3 =.38, L 4 = 50, L5 = > 3, L6 =. 4. Conclusion In this paper we proved two similar results. It is still open if we can generalize this result for any integer value of τ. Also, another open question is: what will happen when v lies outside the specified intervals? We expect to obtain a divergent behavior as it was the case in other papers. Also, what are the

8 68 Saleem Al-Ashhab conditions under wich the sequence will return after more steps to first term, like for example L i+6 = h? Acknowledgements. Saleem Al-Ashhab thanks the Al-albayt university for support, since this paper was prepared during the year of sabbatical leave offered by the university. References [1] S. Al-Ashhab, J. Guyker, Piecewise Defined Recursive Sequences with Applications in Matrix Theory, Journal of Mathematical and Computational Sciences, (01), no. 4, [] S. Al-Ashhab, R. Sabra, Nonlinear Piecewise-Defined and Cubic Difference Equations, 4th Annual International Conference on Computational Mathematics, Computational Geometry and Statistics CMCGS cmcgs15.30 [3] E. M. Elsayed, Dynamics of a Rational Recursive Sequence, International Journal of Difference Equations, 4 (009), no., [4] A. Hamadneh, On a Study of Some Difference Equations, Ms. C. thesis, AL al-bayt University, 013, The thesis appeared as: A Study of some Difference Equations including Bifurcation Analysis in the book ISBN by. lap-publishing.com [5] M. Qena, A Study on The Fixed and Periodic Points of Certain Discrete Dynamical Systems Equations, M. S. Thesis, AL al-bayt University, 01, The thesis appeared as New concepts in sequences, with the project number 51030, and ISBN by lap-publishing.com [6] M. Qena, S. Al-Ashhab, J. Guyker, Nonlinear Piecewise Defined Difference Equations, International Mathematical Forum, 7 (01), no. 1, [7] I. Bronstein, K. Semendjajew, Taschenbuch der Mathematik, Teubner verlagsgesellschaft, Leipzig, [8] Ramadan Sabra, Saleem Al-Ashhab, Bifurcations of Quadratic Piece-wise Defined Recursive Sequences, International Mathematical Forum, 10 (015), no. 6, [9] Ramadan Sabra, Saleem Al-Ashhab, Nonlinear Piecewise-Defined Differ-

9 Third and fourth order piece-wise defined recursive sequences 69 ence Equations with Reciprocal and Cubic Terms, GSTF Journal of Mathematics, Statistics and Operations Research JMSOR, 3 (015) Received: October 10, 015; Published: December, 015

ch (for some fixed positive number c) reaching c

ch (for some fixed positive number c) reaching c GSTF Journal of Matematics Statistics and Operations Researc (JMSOR) Vol. No. September 05 DOI 0.60/s4086-05-000-z Nonlinear Piecewise-defined Difference Equations wit Reciprocal and Cubic Terms Ramadan

More information

Diophantine Equations. Elementary Methods

Diophantine Equations. Elementary Methods International Mathematical Forum, Vol. 12, 2017, no. 9, 429-438 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.7223 Diophantine Equations. Elementary Methods Rafael Jakimczuk División Matemática,

More information

A Note on Multiplicity Weight of Nodes of Two Point Taylor Expansion

A Note on Multiplicity Weight of Nodes of Two Point Taylor Expansion Applied Mathematical Sciences, Vol, 207, no 6, 307-3032 HIKARI Ltd, wwwm-hikaricom https://doiorg/02988/ams2077302 A Note on Multiplicity Weight of Nodes of Two Point Taylor Expansion Koichiro Shimada

More information

Basins of Attraction for Optimal Third Order Methods for Multiple Roots

Basins of Attraction for Optimal Third Order Methods for Multiple Roots Applied Mathematical Sciences, Vol., 6, no., 58-59 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ams.6.65 Basins of Attraction for Optimal Third Order Methods for Multiple Roots Young Hee Geum Department

More information

Non Isolated Periodic Orbits of a Fixed Period for Quadratic Dynamical Systems

Non Isolated Periodic Orbits of a Fixed Period for Quadratic Dynamical Systems Applied Mathematical Sciences, Vol. 12, 2018, no. 22, 1053-1058 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.87100 Non Isolated Periodic Orbits of a Fixed Period for Quadratic Dynamical

More information

An Improved Hybrid Algorithm to Bisection Method and Newton-Raphson Method

An Improved Hybrid Algorithm to Bisection Method and Newton-Raphson Method Applied Mathematical Sciences, Vol. 11, 2017, no. 56, 2789-2797 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.710302 An Improved Hybrid Algorithm to Bisection Method and Newton-Raphson

More information

Dynamical Behavior for Optimal Cubic-Order Multiple Solver

Dynamical Behavior for Optimal Cubic-Order Multiple Solver Applied Mathematical Sciences, Vol., 7, no., 5 - HIKARI Ltd, www.m-hikari.com https://doi.org/.988/ams.7.6946 Dynamical Behavior for Optimal Cubic-Order Multiple Solver Young Hee Geum Department of Applied

More information

Poincaré`s Map in a Van der Pol Equation

Poincaré`s Map in a Van der Pol Equation International Journal of Mathematical Analysis Vol. 8, 014, no. 59, 939-943 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.014.411338 Poincaré`s Map in a Van der Pol Equation Eduardo-Luis

More information

Sums of Tribonacci and Tribonacci-Lucas Numbers

Sums of Tribonacci and Tribonacci-Lucas Numbers International Journal of Mathematical Analysis Vol. 1, 018, no. 1, 19-4 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ijma.018.71153 Sums of Tribonacci Tribonacci-Lucas Numbers Robert Frontczak

More information

Note on the Expected Value of a Function of a Fuzzy Variable

Note on the Expected Value of a Function of a Fuzzy Variable International Journal of Mathematical Analysis Vol. 9, 15, no. 55, 71-76 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/ijma.15.5145 Note on the Expected Value of a Function of a Fuzzy Variable

More information

Dynamical System of a Multi-Capital Growth Model

Dynamical System of a Multi-Capital Growth Model Applied Mathematical Sciences, Vol. 9, 2015, no. 83, 4103-4108 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.53274 Dynamical System of a Multi-Capital Growth Model Eva Brestovanská Department

More information

Quadratic Optimization over a Polyhedral Set

Quadratic Optimization over a Polyhedral Set International Mathematical Forum, Vol. 9, 2014, no. 13, 621-629 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.4234 Quadratic Optimization over a Polyhedral Set T. Bayartugs, Ch. Battuvshin

More information

International Mathematical Forum, Vol. 9, 2014, no. 36, HIKARI Ltd,

International Mathematical Forum, Vol. 9, 2014, no. 36, HIKARI Ltd, International Mathematical Forum, Vol. 9, 2014, no. 36, 1751-1756 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.411187 Generalized Filters S. Palaniammal Department of Mathematics Thiruvalluvar

More information

Secure Weakly Convex Domination in Graphs

Secure Weakly Convex Domination in Graphs Applied Mathematical Sciences, Vol 9, 2015, no 3, 143-147 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ams2015411992 Secure Weakly Convex Domination in Graphs Rene E Leonida Mathematics Department

More information

Solving Homogeneous Systems with Sub-matrices

Solving Homogeneous Systems with Sub-matrices Pure Mathematical Sciences, Vol 7, 218, no 1, 11-18 HIKARI Ltd, wwwm-hikaricom https://doiorg/112988/pms218843 Solving Homogeneous Systems with Sub-matrices Massoud Malek Mathematics, California State

More information

A Note on Finite Groups in which C-Normality is a Transitive Relation

A Note on Finite Groups in which C-Normality is a Transitive Relation International Mathematical Forum, Vol. 8, 2013, no. 38, 1881-1887 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2013.39168 A Note on Finite Groups in which C-Normality is a Transitive Relation

More information

On Symmetric Bi-Multipliers of Lattice Implication Algebras

On Symmetric Bi-Multipliers of Lattice Implication Algebras International Mathematical Forum, Vol. 13, 2018, no. 7, 343-350 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2018.8423 On Symmetric Bi-Multipliers of Lattice Implication Algebras Kyung Ho

More information

Some Properties of a Semi Dynamical System. Generated by von Forester-Losata Type. Partial Equations

Some Properties of a Semi Dynamical System. Generated by von Forester-Losata Type. Partial Equations Int. Journal of Math. Analysis, Vol. 7, 2013, no. 38, 1863-1868 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.3481 Some Properties of a Semi Dynamical System Generated by von Forester-Losata

More information

On the Deformed Theory of Special Relativity

On the Deformed Theory of Special Relativity Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 6, 275-282 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.61140 On the Deformed Theory of Special Relativity Won Sang Chung 1

More information

Disconvergent and Divergent Fuzzy Sequences

Disconvergent and Divergent Fuzzy Sequences International Mathematical Forum, Vol. 9, 2014, no. 33, 1625-1630 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.49167 Disconvergent and Divergent Fuzzy Sequences M. Muthukumari Research

More information

A Short Note on Universality of Some Quadratic Forms

A Short Note on Universality of Some Quadratic Forms International Mathematical Forum, Vol. 8, 2013, no. 12, 591-595 HIKARI Ltd, www.m-hikari.com A Short Note on Universality of Some Quadratic Forms Cherng-tiao Perng Department of Mathematics Norfolk State

More information

On Permutation Polynomials over Local Finite Commutative Rings

On Permutation Polynomials over Local Finite Commutative Rings International Journal of Algebra, Vol. 12, 2018, no. 7, 285-295 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ija.2018.8935 On Permutation Polynomials over Local Finite Commutative Rings Javier

More information

Devaney's Chaos of One Parameter Family. of Semi-triangular Maps

Devaney's Chaos of One Parameter Family. of Semi-triangular Maps International Mathematical Forum, Vol. 8, 2013, no. 29, 1439-1444 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2013.36114 Devaney's Chaos of One Parameter Family of Semi-triangular Maps

More information

A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials

A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials Applied Mathematical Sciences, Vol. 8, 2014, no. 35, 1723-1730 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4127 A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating

More information

On Two New Classes of Fibonacci and Lucas Reciprocal Sums with Subscripts in Arithmetic Progression

On Two New Classes of Fibonacci and Lucas Reciprocal Sums with Subscripts in Arithmetic Progression Applied Mathematical Sciences Vol. 207 no. 25 2-29 HIKARI Ltd www.m-hikari.com https://doi.org/0.2988/ams.207.7392 On Two New Classes of Fibonacci Lucas Reciprocal Sums with Subscripts in Arithmetic Progression

More information

Toric Deformation of the Hankel Variety

Toric Deformation of the Hankel Variety Applied Mathematical Sciences, Vol. 10, 2016, no. 59, 2921-2925 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.6248 Toric Deformation of the Hankel Variety Adelina Fabiano DIATIC - Department

More information

Symmetric Properties for Carlitz s Type (h, q)-twisted Tangent Polynomials Using Twisted (h, q)-tangent Zeta Function

Symmetric Properties for Carlitz s Type (h, q)-twisted Tangent Polynomials Using Twisted (h, q)-tangent Zeta Function International Journal of Algebra, Vol 11, 2017, no 6, 255-263 HIKARI Ltd, wwwm-hiaricom https://doiorg/1012988/ija20177728 Symmetric Properties for Carlitz s Type h, -Twisted Tangent Polynomials Using

More information

Locating Chromatic Number of Banana Tree

Locating Chromatic Number of Banana Tree International Mathematical Forum, Vol. 12, 2017, no. 1, 39-45 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.610138 Locating Chromatic Number of Banana Tree Asmiati Department of Mathematics

More information

k-weyl Fractional Derivative, Integral and Integral Transform

k-weyl Fractional Derivative, Integral and Integral Transform Int. J. Contemp. Math. Sciences, Vol. 8, 213, no. 6, 263-27 HIKARI Ltd, www.m-hiari.com -Weyl Fractional Derivative, Integral and Integral Transform Luis Guillermo Romero 1 and Luciano Leonardo Luque Faculty

More information

Nonexistence of Limit Cycles in Rayleigh System

Nonexistence of Limit Cycles in Rayleigh System International Journal of Mathematical Analysis Vol. 8, 014, no. 49, 47-431 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.014.4883 Nonexistence of Limit Cycles in Rayleigh System Sandro-Jose

More information

Linearization of Two Dimensional Complex-Linearizable Systems of Second Order Ordinary Differential Equations

Linearization of Two Dimensional Complex-Linearizable Systems of Second Order Ordinary Differential Equations Applied Mathematical Sciences, Vol. 9, 2015, no. 58, 2889-2900 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.4121002 Linearization of Two Dimensional Complex-Linearizable Systems of

More information

Remarks on the Maximum Principle for Parabolic-Type PDEs

Remarks on the Maximum Principle for Parabolic-Type PDEs International Mathematical Forum, Vol. 11, 2016, no. 24, 1185-1190 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2016.69125 Remarks on the Maximum Principle for Parabolic-Type PDEs Humberto

More information

Morphisms Between the Groups of Semi Magic Squares and Real Numbers

Morphisms Between the Groups of Semi Magic Squares and Real Numbers International Journal of Algebra, Vol. 8, 2014, no. 19, 903-907 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2014.212137 Morphisms Between the Groups of Semi Magic Squares and Real Numbers

More information

Remarks on Fuglede-Putnam Theorem for Normal Operators Modulo the Hilbert-Schmidt Class

Remarks on Fuglede-Putnam Theorem for Normal Operators Modulo the Hilbert-Schmidt Class International Mathematical Forum, Vol. 9, 2014, no. 29, 1389-1396 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.47141 Remarks on Fuglede-Putnam Theorem for Normal Operators Modulo the

More information

A Generalization of Generalized Triangular Fuzzy Sets

A Generalization of Generalized Triangular Fuzzy Sets International Journal of Mathematical Analysis Vol, 207, no 9, 433-443 HIKARI Ltd, wwwm-hikaricom https://doiorg/02988/ijma2077350 A Generalization of Generalized Triangular Fuzzy Sets Chang Il Kim Department

More information

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method International Journal of Mathematical Analysis Vol. 9, 2015, no. 39, 1919-1928 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.54124 Improvements in Newton-Rapshon Method for Nonlinear

More information

Hyperbolic Functions and. the Heat Balance Integral Method

Hyperbolic Functions and. the Heat Balance Integral Method Nonl. Analysis and Differential Equations, Vol. 1, 2013, no. 1, 23-27 HIKARI Ltd, www.m-hikari.com Hyperbolic Functions and the Heat Balance Integral Method G. Nhawu and G. Tapedzesa Department of Mathematics,

More information

Formula for Lucas Like Sequence of Fourth Step and Fifth Step

Formula for Lucas Like Sequence of Fourth Step and Fifth Step International Mathematical Forum, Vol. 12, 2017, no., 10-110 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.612169 Formula for Lucas Like Sequence of Fourth Step and Fifth Step Rena Parindeni

More information

Remark on the Sensitivity of Simulated Solutions of the Nonlinear Dynamical System to the Used Numerical Method

Remark on the Sensitivity of Simulated Solutions of the Nonlinear Dynamical System to the Used Numerical Method International Journal of Mathematical Analysis Vol. 9, 2015, no. 55, 2749-2754 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.59236 Remark on the Sensitivity of Simulated Solutions of

More information

Hopf Bifurcation Analysis of a Dynamical Heart Model with Time Delay

Hopf Bifurcation Analysis of a Dynamical Heart Model with Time Delay Applied Mathematical Sciences, Vol 11, 2017, no 22, 1089-1095 HIKARI Ltd, wwwm-hikaricom https://doiorg/1012988/ams20177271 Hopf Bifurcation Analysis of a Dynamical Heart Model with Time Delay Luca Guerrini

More information

Development of a Family of Optimal Quartic-Order Methods for Multiple Roots and Their Dynamics

Development of a Family of Optimal Quartic-Order Methods for Multiple Roots and Their Dynamics Applied Mathematical Sciences, Vol. 9, 5, no. 49, 747-748 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ams.5.5658 Development of a Family of Optimal Quartic-Order Methods for Multiple Roots and

More information

Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation on a Restricted Domain

Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation on a Restricted Domain Int. Journal of Math. Analysis, Vol. 7, 013, no. 55, 745-75 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.013.394 Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation

More information

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique Int. Journal of Math. Analysis, Vol. 7, 3, no. 53, 65-636 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ijma.3.3894 A Study on Linear and Nonlinear Stiff Problems Using Single-Term Haar Wavelet Series

More information

k-pell, k-pell-lucas and Modified k-pell Numbers: Some Identities and Norms of Hankel Matrices

k-pell, k-pell-lucas and Modified k-pell Numbers: Some Identities and Norms of Hankel Matrices International Journal of Mathematical Analysis Vol. 9, 05, no., 3-37 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ijma.05.4370 k-pell, k-pell-lucas and Modified k-pell Numbers: Some Identities

More information

H-Transversals in H-Groups

H-Transversals in H-Groups International Journal of Algebra, Vol. 8, 2014, no. 15, 705-712 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2014.4885 H-Transversals in H-roups Swapnil Srivastava Department of Mathematics

More information

Contemporary Engineering Sciences, Vol. 11, 2018, no. 48, HIKARI Ltd,

Contemporary Engineering Sciences, Vol. 11, 2018, no. 48, HIKARI Ltd, Contemporary Engineering Sciences, Vol. 11, 2018, no. 48, 2349-2356 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.85243 Radially Symmetric Solutions of a Non-Linear Problem with Neumann

More information

A Generalization of p-rings

A Generalization of p-rings International Journal of Algebra, Vol. 9, 2015, no. 8, 395-401 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2015.5848 A Generalization of p-rings Adil Yaqub Department of Mathematics University

More information

Double Total Domination in Circulant Graphs 1

Double Total Domination in Circulant Graphs 1 Applied Mathematical Sciences, Vol. 12, 2018, no. 32, 1623-1633 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.811172 Double Total Domination in Circulant Graphs 1 Qin Zhang and Chengye

More information

Double Total Domination on Generalized Petersen Graphs 1

Double Total Domination on Generalized Petersen Graphs 1 Applied Mathematical Sciences, Vol. 11, 2017, no. 19, 905-912 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.7114 Double Total Domination on Generalized Petersen Graphs 1 Chengye Zhao 2

More information

Skew Cyclic and Quasi-Cyclic Codes of Arbitrary Length over Galois Rings

Skew Cyclic and Quasi-Cyclic Codes of Arbitrary Length over Galois Rings International Journal of Algebra, Vol. 7, 2013, no. 17, 803-807 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2013.310100 Skew Cyclic and Quasi-Cyclic Codes of Arbitrary Length over Galois

More information

Existence, Uniqueness Solution of a Modified. Predator-Prey Model

Existence, Uniqueness Solution of a Modified. Predator-Prey Model Nonlinear Analysis and Differential Equations, Vol. 4, 6, no. 4, 669-677 HIKARI Ltd, www.m-hikari.com https://doi.org/.988/nade.6.6974 Existence, Uniqueness Solution of a Modified Predator-Prey Model M.

More information

An Abundancy Result for the Two Prime Power Case and Results for an Equations of Goormaghtigh

An Abundancy Result for the Two Prime Power Case and Results for an Equations of Goormaghtigh International Mathematical Forum, Vol. 8, 2013, no. 9, 427-432 HIKARI Ltd, www.m-hikari.com An Abundancy Result for the Two Prime Power Case and Results for an Equations of Goormaghtigh Richard F. Ryan

More information

A Class of Multi-Scales Nonlinear Difference Equations

A Class of Multi-Scales Nonlinear Difference Equations Applied Mathematical Sciences, Vol. 12, 2018, no. 19, 911-919 HIKARI Ltd, www.m-hiari.com https://doi.org/10.12988/ams.2018.8799 A Class of Multi-Scales Nonlinear Difference Equations Tahia Zerizer Mathematics

More information

Secure Weakly Connected Domination in the Join of Graphs

Secure Weakly Connected Domination in the Join of Graphs International Journal of Mathematical Analysis Vol. 9, 2015, no. 14, 697-702 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.519 Secure Weakly Connected Domination in the Join of Graphs

More information

Alternate Locations of Equilibrium Points and Poles in Complex Rational Differential Equations

Alternate Locations of Equilibrium Points and Poles in Complex Rational Differential Equations International Mathematical Forum, Vol. 9, 2014, no. 35, 1725-1739 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.410170 Alternate Locations of Equilibrium Points and Poles in Complex

More information

The Rainbow Connection of Windmill and Corona Graph

The Rainbow Connection of Windmill and Corona Graph Applied Mathematical Sciences, Vol. 8, 2014, no. 128, 6367-6372 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.48632 The Rainbow Connection of Windmill and Corona Graph Yixiao Liu Department

More information

On the Solution of the n-dimensional k B Operator

On the Solution of the n-dimensional k B Operator Applied Mathematical Sciences, Vol. 9, 015, no. 10, 469-479 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.1988/ams.015.410815 On the Solution of the n-dimensional B Operator Sudprathai Bupasiri Faculty

More information

On Some Identities and Generating Functions

On Some Identities and Generating Functions Int. Journal of Math. Analysis, Vol. 7, 2013, no. 38, 1877-1884 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.35131 On Some Identities and Generating Functions for k- Pell Numbers Paula

More information

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces Applied Mathematical Sciences, Vol. 11, 2017, no. 12, 549-560 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.718 The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive

More information

Restrained Independent 2-Domination in the Join and Corona of Graphs

Restrained Independent 2-Domination in the Join and Corona of Graphs Applied Mathematical Sciences, Vol. 11, 2017, no. 64, 3171-3176 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.711343 Restrained Independent 2-Domination in the Join and Corona of Graphs

More information

Symmetric Properties for the (h, q)-tangent Polynomials

Symmetric Properties for the (h, q)-tangent Polynomials Adv. Studies Theor. Phys., Vol. 8, 04, no. 6, 59-65 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/astp.04.43 Symmetric Properties for the h, q-tangent Polynomials C. S. Ryoo Department of Mathematics

More information

On Linear Recursive Sequences with Coefficients in Arithmetic-Geometric Progressions

On Linear Recursive Sequences with Coefficients in Arithmetic-Geometric Progressions Applied Mathematical Sciences, Vol. 9, 015, no. 5, 595-607 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.015.5163 On Linear Recursive Sequences with Coefficients in Arithmetic-Geometric Progressions

More information

Research on Independence of. Random Variables

Research on Independence of. Random Variables Applied Mathematical Sciences, Vol., 08, no. 3, - 7 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/ams.08.8708 Research on Independence of Random Variables Jian Wang and Qiuli Dong School of Mathematics

More information

Approximation to the Dissipative Klein-Gordon Equation

Approximation to the Dissipative Klein-Gordon Equation International Journal of Mathematical Analysis Vol. 9, 215, no. 22, 159-163 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.5236 Approximation to the Dissipative Klein-Gordon Equation Edilber

More information

Polynomial Functions. x n 2 a n. x n a 1. f x = a o. x n 1 a 2. x 0, , a 1

Polynomial Functions. x n 2 a n. x n a 1. f x = a o. x n 1 a 2. x 0, , a 1 Polynomial Functions A polynomial function is a sum of multiples of an independent variable raised to various integer powers. The general form of a polynomial function is f x = a o x n a 1 x n 1 a 2 x

More information

Generalization of the Banach Fixed Point Theorem for Mappings in (R, ϕ)-spaces

Generalization of the Banach Fixed Point Theorem for Mappings in (R, ϕ)-spaces International Mathematical Forum, Vol. 10, 2015, no. 12, 579-585 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2015.5861 Generalization of the Banach Fixed Point Theorem for Mappings in (R,

More information

Some Properties of D-sets of a Group 1

Some Properties of D-sets of a Group 1 International Mathematical Forum, Vol. 9, 2014, no. 21, 1035-1040 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.45104 Some Properties of D-sets of a Group 1 Joris N. Buloron, Cristopher

More information

Another Sixth-Order Iterative Method Free from Derivative for Solving Multiple Roots of a Nonlinear Equation

Another Sixth-Order Iterative Method Free from Derivative for Solving Multiple Roots of a Nonlinear Equation Applied Mathematical Sciences, Vol. 11, 2017, no. 43, 2121-2129 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.76208 Another Sixth-Order Iterative Method Free from Derivative for Solving

More information

The Greatest Common Divisor of k Positive Integers

The Greatest Common Divisor of k Positive Integers International Mathematical Forum, Vol. 3, 208, no. 5, 25-223 HIKARI Ltd, www.m-hiari.com https://doi.org/0.2988/imf.208.822 The Greatest Common Divisor of Positive Integers Rafael Jaimczu División Matemática,

More information

Sequences from Heptagonal Pyramid Corners of Integer

Sequences from Heptagonal Pyramid Corners of Integer International Mathematical Forum, Vol 13, 2018, no 4, 193-200 HIKARI Ltd, wwwm-hikaricom https://doiorg/1012988/imf2018815 Sequences from Heptagonal Pyramid Corners of Integer Nurul Hilda Syani Putri,

More information

Prentice Hall CME Project, Algebra

Prentice Hall CME Project, Algebra Prentice Hall Advanced Algebra C O R R E L A T E D T O Oregon High School Standards Draft 6.0, March 2009, Advanced Algebra Advanced Algebra A.A.1 Relations and Functions: Analyze functions and relations

More information

β Baire Spaces and β Baire Property

β Baire Spaces and β Baire Property International Journal of Contemporary Mathematical Sciences Vol. 11, 2016, no. 5, 211-216 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2016.612 β Baire Spaces and β Baire Property Tugba

More information

More on Tree Cover of Graphs

More on Tree Cover of Graphs International Journal of Mathematical Analysis Vol. 9, 2015, no. 12, 575-579 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.410320 More on Tree Cover of Graphs Rosalio G. Artes, Jr.

More information

Taxicab Equations for Power Two, Three, Four & Five

Taxicab Equations for Power Two, Three, Four & Five International Mathematical Forum, Vol. 9, 2014, no. 12, 561-577 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.419 Taxicab Equations for Power Two, Three, Four & Five Oliver Couto University

More information

Crisp Profile Symmetric Decomposition of Fuzzy Numbers

Crisp Profile Symmetric Decomposition of Fuzzy Numbers Applied Mathematical Sciences, Vol. 10, 016, no. 8, 1373-1389 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.016.59598 Crisp Profile Symmetric Decomposition of Fuzzy Numbers Maria Letizia Guerra

More information

The Shifted Data Problems by Using Transform of Derivatives

The Shifted Data Problems by Using Transform of Derivatives Applied Mathematical Sciences, Vol. 8, 2014, no. 151, 7529-7534 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49784 The Shifted Data Problems by Using Transform of Derivatives Hwajoon

More information

Generalized Functions for the Fractional Calculus. and Dirichlet Averages

Generalized Functions for the Fractional Calculus. and Dirichlet Averages International Mathematical Forum, Vol. 8, 2013, no. 25, 1199-1204 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2013.3483 Generalized Functions for the Fractional Calculus and Dirichlet Averages

More information

Numerical Investigation of the Time Invariant Optimal Control of Singular Systems Using Adomian Decomposition Method

Numerical Investigation of the Time Invariant Optimal Control of Singular Systems Using Adomian Decomposition Method Applied Mathematical Sciences, Vol. 8, 24, no. 2, 6-68 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ams.24.4863 Numerical Investigation of the Time Invariant Optimal Control of Singular Systems

More information

On a Certain Representation in the Pairs of Normed Spaces

On a Certain Representation in the Pairs of Normed Spaces Applied Mathematical Sciences, Vol. 12, 2018, no. 3, 115-119 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.712362 On a Certain Representation in the Pairs of ormed Spaces Ahiro Hoshida

More information

A Numerical Solution of Classical Van der Pol-Duffing Oscillator by He s Parameter-Expansion Method

A Numerical Solution of Classical Van der Pol-Duffing Oscillator by He s Parameter-Expansion Method Int. J. Contemp. Math. Sciences, Vol. 8, 2013, no. 15, 709-71 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2013.355 A Numerical Solution of Classical Van der Pol-Duffing Oscillator by

More information

Approximations to the t Distribution

Approximations to the t Distribution Applied Mathematical Sciences, Vol. 9, 2015, no. 49, 2445-2449 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.52148 Approximations to the t Distribution Bashar Zogheib 1 and Ali Elsaheli

More information

A Direct Proof of Caristi s Fixed Point Theorem

A Direct Proof of Caristi s Fixed Point Theorem Applied Mathematical Sciences, Vol. 10, 2016, no. 46, 2289-2294 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.66190 A Direct Proof of Caristi s Fixed Point Theorem Wei-Shih Du Department

More information

Boundary Value Problem for Second Order Ordinary Linear Differential Equations with Variable Coefficients

Boundary Value Problem for Second Order Ordinary Linear Differential Equations with Variable Coefficients International Journal of Mathematical Analysis Vol. 9, 2015, no. 3, 111-116 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.12988/ijma.2015.411353 Boundary Value Problem for Second Order Ordinary Linear

More information

Explicit Expressions for Free Components of. Sums of the Same Powers

Explicit Expressions for Free Components of. Sums of the Same Powers Applied Mathematical Sciences, Vol., 27, no. 53, 2639-2645 HIKARI Ltd, www.m-hikari.com https://doi.org/.2988/ams.27.79276 Explicit Expressions for Free Components of Sums of the Same Powers Alexander

More information

A Two-step Iterative Method Free from Derivative for Solving Nonlinear Equations

A Two-step Iterative Method Free from Derivative for Solving Nonlinear Equations Applied Mathematical Sciences, Vol. 8, 2014, no. 161, 8021-8027 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49710 A Two-step Iterative Method Free from Derivative for Solving Nonlinear

More information

A Laplace Type Problems for a Lattice with Cell Composed by Three Quadrilaterals and with Maximum Probability

A Laplace Type Problems for a Lattice with Cell Composed by Three Quadrilaterals and with Maximum Probability Applied Mathematical Sciences, Vol. 8, 1, no. 165, 879-886 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/ams.1.11915 A Laplace Type Problems for a Lattice with Cell Composed by Three Quadrilaterals

More information

Complete Ideal and n-ideal of B-algebra

Complete Ideal and n-ideal of B-algebra Applied Mathematical Sciences, Vol. 11, 2017, no. 35, 1705-1713 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.75159 Complete Ideal and n-ideal of B-algebra Habeeb Kareem Abdullah University

More information

Restrained Weakly Connected Independent Domination in the Corona and Composition of Graphs

Restrained Weakly Connected Independent Domination in the Corona and Composition of Graphs Applied Mathematical Sciences, Vol. 9, 2015, no. 20, 973-978 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.4121046 Restrained Weakly Connected Independent Domination in the Corona and

More information

Math 2: Algebra 2, Geometry and Statistics Ms. Sheppard-Brick Chapter 4 Test Review

Math 2: Algebra 2, Geometry and Statistics Ms. Sheppard-Brick Chapter 4 Test Review Chapter 4 Test Review Students will be able to (SWBAT): Write an explicit and a recursive function rule for a linear table of values. Write an explicit function rule for a quadratic table of values. Determine

More information

On a Diophantine Equation 1

On a Diophantine Equation 1 International Journal of Contemporary Mathematical Sciences Vol. 12, 2017, no. 2, 73-81 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2017.728 On a Diophantine Equation 1 Xin Zhang Department

More information

Recurrence Relations between Symmetric Polynomials of n-th Order

Recurrence Relations between Symmetric Polynomials of n-th Order Applied Mathematical Sciences, Vol. 8, 214, no. 15, 5195-522 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.214.47525 Recurrence Relations between Symmetric Polynomials of n-th Order Yuriy

More information

Generalized Boolean and Boolean-Like Rings

Generalized Boolean and Boolean-Like Rings International Journal of Algebra, Vol. 7, 2013, no. 9, 429-438 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2013.2894 Generalized Boolean and Boolean-Like Rings Hazar Abu Khuzam Department

More information

On Extreme Point Quadratic Fractional. Programming Problem

On Extreme Point Quadratic Fractional. Programming Problem Applied Mathematical Sciences, Vol. 8, 2014, no. 6, 261-277 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.312700 On Extreme Point Quadratic Fractional Programming Problem Basiya K. Abdulrahim

More information

A Trivial Dynamics in 2-D Square Root Discrete Mapping

A Trivial Dynamics in 2-D Square Root Discrete Mapping Applied Mathematical Sciences, Vol. 12, 2018, no. 8, 363-368 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.8121 A Trivial Dynamics in 2-D Square Root Discrete Mapping M. Mammeri Department

More information

Continuity of Darboux Functions

Continuity of Darboux Functions International Mathematical Forum, Vol. 8, 2013, no. 16, 783-788 HIKARI Ltd, www.m-hikari.com Continuity of Darboux Functions Nikita Shekutkovski Ss. Cyril and Methodius University, Skopje, Republic of

More information

k-tuples of Positive Integers with Restrictions

k-tuples of Positive Integers with Restrictions International Mathematical Forum, Vol. 13, 2018, no. 8, 375-383 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2018.8635 k-tuples of Positive Integers with Restrictions Rafael Jakimczuk División

More information

An Alternative Definition for the k-riemann-liouville Fractional Derivative

An Alternative Definition for the k-riemann-liouville Fractional Derivative Applied Mathematical Sciences, Vol. 9, 2015, no. 10, 481-491 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.12988/ams.2015.411893 An Alternative Definition for the -Riemann-Liouville Fractional Derivative

More information

Section 0.2 & 0.3 Worksheet. Types of Functions

Section 0.2 & 0.3 Worksheet. Types of Functions MATH 1142 NAME Section 0.2 & 0.3 Worksheet Types of Functions Now that we have discussed what functions are and some of their characteristics, we will explore different types of functions. Section 0.2

More information

Morera s Theorem for Functions of a Hyperbolic Variable

Morera s Theorem for Functions of a Hyperbolic Variable Int. Journal of Math. Analysis, Vol. 7, 2013, no. 32, 1595-1600 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.212354 Morera s Theorem for Functions of a Hyperbolic Variable Kristin

More information

On the Equation of Fourth Order with. Quadratic Nonlinearity

On the Equation of Fourth Order with. Quadratic Nonlinearity International Journal of Mathematical Analysis Vol. 9, 015, no. 5, 659-666 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.015.5109 On the Equation of Fourth Order with Quadratic Nonlinearity

More information