Restrained Weakly Connected Independent Domination in the Corona and Composition of Graphs

Size: px
Start display at page:

Download "Restrained Weakly Connected Independent Domination in the Corona and Composition of Graphs"

Transcription

1 Applied Mathematical Sciences, Vol. 9, 2015, no. 20, HIKARI Ltd, Restrained Weakly Connected Independent Domination in the Corona and Composition of Graphs Rene E. Leonida Mathematics Department College of Natural Sciences and Mathematics Mindanao State University Fatima, General Santos City, Philippines Copyright c 2015 Rene E. Leonida. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we explore the concept of restrained weakly connected independent domination in graphs. In particular, we characterized the restrained weakly connected independent dominating sets in the corona, and composition of graphs and; as a consequence, their restrained weakly connected independent domination numbers are obtained. Mathematics Subject Classification: 05C69 Keywords: domination, restrained domination, independent domination, weakly connected domination, restrained weakly connected independent domination 1 Introduction and Preliminary Results Let G = (V (G), E(G)) be a simple connected graph. For any vertex v V (G), the open neighborhood of v is the set N(v) = {u V (G) : uv E(G)} and the closed neighborhood of v is the set N[v] = N(v) {v}. For a set X V (G), the open neighborhood of X is N(X) = v X N(v) and the closed neighborhood of X is N[X] = X N(X). A subset S of V (G) is an

2 974 Rene E. Leonida independent set if for every x, y S, xy / E(G). The independence number β(g) of G is the largest cardinality of an independent set of G. A subset S of V (G) is called weakly connected if the subgraph S w = (N G [S], E W ) weakly induced by S, is connected, where E W is the set of all edges with at least one vertex in S. A subset S of V (G) is a dominating set of G if for every v V (G)\S, there exists u S such that uv E(G). The domination number γ(g) of G is the smallest cardinality of a dominating set of G. A dominating set of G which is independent is called an independent dominating set of G. The independent domination number i(g) of G is the smallest cardinality of an independent dominating set of G. A dominating set of G which is weakly connected is called a weakly connected dominating set. The weakly connected domination number γ w (G) of G is the smallest cardinality of a weakly connected dominating set of G. An independent dominating set of G which is weakly connected is called a weakly connected independent dominating set. The weakly connected independent domination number i w (G) of G is the smallest cardinality of a weakly connected independent dominating set of G. Similarly, the upper weakly connected independent domination number β w (G) of G is the largest cardinality of a weakly connected independent dominating set of G. A dominating set S is called a restrained dominating set of G if for every u V (G)\S, there exists w V (G)\S such that uw E(G). The restrained domination number of G, denoted by γ r (G), is the smallest cardinality of a secure dominating set of G. A set S is called a restrained weakly connected independent dominating set of G if S is a weakly connected independent dominating set of G and for every u V (G)\S, there exists w V (G)\S such that uw E(G). The restrained weakly connected independent domination number of G, denoted by i rw (G), is the smallest cardinality of a restrained weakly connected dominating set of G. The concept of weakly connected independent domination is discussed in [3] [4], and [5]. Another domination parameter is the restrained domination which was discussed in [1], [2], and [5]. A combination of these two concepts give rise to a new variant of domination called restrained weakly connected independent domination. 2 Corona of Graphs Let G and H be graphs of order m and n, respectively. The corona G H of G and H is the graph obtained by taking one copy of G and m copies of H, and then joining the ith vertex of G to every vertex of the ith copy of H. For every v V (G), denote by H v the copy of H whose vertices are attached one by one to the vertex v. Denote by v + H v the subgraph of the corona G H corresponding to the join {v} + H v.

3 Restrained weakly connected independent domination 975 The following theorem will be useful. Theorem 2.1 Let G be a connected graph of order n 3 and let K 1 = {v}. Then S V (K 1 +G) is a restrained weakly connected independent dominating set of K 1 + G if and only if one of the following holds: (i) S = {v}. (ii) S is an independent dominating set of G. Proof : Suppose S V (K 1 + G) is a restrained weakly connected independent dominating set of K 1 +G. If v / S, then S V (G). Clearly S is a dominating set of G. For the converse, if S = {v}, then S is a restrained weakly connected independent dominating of K 1 + G. Suppose S is an independent dominating set of G. Then S is a weakly connected independent dominating set of K 1 +G. Since vx E(K 1 + G) for all x V (G)\S, it follows that S is a restrained weakly connected independent dominating set of K 1 + G. The following result characterizes the restrained weakly connected independent domination in the corona of two connected graphs. Theorem 2.2 Let G and H be connected graphs of order m 2 and n 3, respectively. Then S V (G H) is a restrained weakly connected independent dominating set of G H if and only if S = S 1, where S 1 is v V (G)\S 1 S v a weakly connected independent dominating set of G and S v is an independent dominating set of H v for all v V (G)\S 1. Proof : Suppose S V (G H) be a restrained weakly connected independent dominating set of G H. Let S 1 = S V (G). Since S is a weakly connected independent dominating set of G, S 1 is a weakly connected independent dominating set of G. Let v V (G)\S 1. By Theorem 2.1, S v is an independent dominating set of H v. Hence, S = S 1. Conversely, suppose S = S 1 v V (G)\S 1 S v v V (G)\S 1 S v, where S 1 is a weakly connected independent dominating set of G and S v is an independent dominating set of H v for all v V (G)\S 1. By Theorem 2.1, {v} is a restrained weakly connected independent dominating set of v + H v for each v S 1 and S v is a restrained weakly connected independent dominating set of v + H v for each v / S 1. Therefore, S is a restrained weakly connected independent dominating set of G H.

4 976 Rene E. Leonida The following theorem can be found in [4]. Theorem 2.3 Let G be a connected graph of order m and H any graph with i(h) 1. If C V (G H) is a minimum weakly connected independent dominating set of G H, then C V (G) is a maximum weakly connected independent dominating set of G. Corollary 2.4 Let G and H be connected graphs of order m 2 and n 3, respectively. Then i rw (G H) = β w (G) + (m β w (G))i(H). Proof : The corollary clearly holds when i(h) = 1. Suppose i(h) 1. Let S 1 be a maximum weakly connected independent dominating set of G and S be a minimum independent dominating set of H. For each v V (G)\S 1, let S v V (H v ) be such that S v = S. Let S 2 = {S v : v V (G)\S 1 }. By Theorem 2.2, S = S 1 S 2 is a restrained weakly connected independent dominating set of G H. Thus, i rw (G H) S = S 1 + v V (G)\S 1 S v = β w (G) + (m β w (G))i(H). Next, let S be a minimum restrained weakly connnected independent dominating set of G H. Let S 1 = S V (G) and S 2 = S \S 1. For each u V (G)\S 1, let S u V (H u ) be an independent dominating set of H u. Then S 2 = {S u : u V (G)\S 1 }. By Theorem 2.3, S 1 is a maximum weakly connected independent dominating set of G. Thus, S 1 = β w (G). Hence, i rw (G H) = S = S 1 + u V (G)\S 1 S u β w (G) + (m β w (G))i(H). Therefore, i rw (G H) = β w (G) + (m β w (G))i(H). 3 Composition of Graphs Observe that a subset C of V (G[H]) = V (G) V (H) can be written as C = ({x} T x ), where S V (G) and T x V (H) for every x S. Henceforth, we shall use this form to denote any subset C of V (G[H]). The following result can be found in [5]. Theorem 3.1 Let G be a nontrivial connected graph and H any graph. A subset C = ({x} T x ) of V (G[H]) is a weakly connected independent dominating set of G[H] if and only if S is a weakly connected independent dominating set of G and T x is an independent dominating set of H for every x S.

5 Restrained weakly connected independent domination 977 A similar result characterizes the restrained weakly connected independent dominating set of G[H]. Theorem 3.2 Let G and H be nontrivial connected graphs. A subset C = ({x} T x ) of V (G[H]) is a restrained weakly connected independent dominating set of G[H] if and only if S is a weakly connected independent dominating set of G and T x is an independent dominating set of H for every x S. Proof : Suppose C is a restrained weakly connected independent dominating set of G[H]. By Theorem 3.1, C = ({x} T x ), where S is a weakly connected independent dominating set of G and T x is an independent dominating set of H for every x S. Conversely, suppose C = ({x} T x ), where S is a weakly connected independent dominating set of G and T x is an independent dominating set of H for every x S. By Theorem 3.1, C is a weakly connected independent dominating set of G[H]. Now, let (u, a) V (G[H])\C. Consider the following cases: Case 1. u S. Since S is a dominating set of G, choose w V (G)\S such that uw E(G). Hence, (w, a) V (G[H])\C and (u, a)(w, a) E(G[H]). Case 2. u / S. Since H is a nontrivial connected graph, there exists b V (H)\{a} such that ab E(H). Thus, (u, b) V (G[H])\C and (u, a)(u, b) E(G[H]). Therefore, C is a restrained weakly connected independent dominating set of G[H]. Corollary 3.3 Let G and H be nontrivial connected graphs. Then i rw (G[H]) = i w (G)i(H). Proof : Let C = ({x} T x ) be a minimum restrained weakly connected independent dominating set of G[H]. By Theorem 3.2, S is a weakly connected independent dominating set of G and T x is an independent dominating set of H for every x S. Hence, i rw (G[H]) = C = ({x} T x) = S Tx i w (G)i(H). Next, let S be a minimum weakly connected independent dominating set of G and D a minimum independent dominating set of H. For each x S, let T x = D. By Theorem 3.2, C = ({x} T x ) is a restrained weakly connected independent dominating set of G[H]. Thus,

6 978 Rene E. Leonida i rw (G[H]) C = ({x} T x) = S D = iw (G)i(H). Therefore, i rw (G[H]) = i w (G)i(H). References [1] S. R. Canoy, Jr., Restrained Domination in Graphs Under Some Binary Operations, Applied Mathematical Sciences, 8(2014), [2] G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. C. Laskar, and L. R. Marcus, Restrained Domination in Graphs, Discrete Math., 203(1999), [3] R. E. Leonida, Weakly Connected Independent Dominations in the Join of Graphs, International Math. Forum, 8(2013), [4] R. E. Leonida and S. R. Canoy, Jr., Weakly Convex and Weakly Connected Independent Dominations in the Corona of Graphs, International Mathematical Forum, 8(2013), [5] R. E. Leonida, E. P. Sandueta, and S. R. Canoy, Jr., Weakly Connected Independent and Weakly Connected Total Dominations in a Product of Graphs, Applied Mathematical Sciences, 8(2014), [6] N. Tuan and S. R. Canoy, Jr. Independent Restrained Domination in Graphs, Applied Mathematical Sciences, 8(2014), Received: January 3, 2015; Published: February 1, 2015

Secure Weakly Connected Domination in the Join of Graphs

Secure Weakly Connected Domination in the Join of Graphs International Journal of Mathematical Analysis Vol. 9, 2015, no. 14, 697-702 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.519 Secure Weakly Connected Domination in the Join of Graphs

More information

Secure Weakly Convex Domination in Graphs

Secure Weakly Convex Domination in Graphs Applied Mathematical Sciences, Vol 9, 2015, no 3, 143-147 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ams2015411992 Secure Weakly Convex Domination in Graphs Rene E Leonida Mathematics Department

More information

Restrained Independent 2-Domination in the Join and Corona of Graphs

Restrained Independent 2-Domination in the Join and Corona of Graphs Applied Mathematical Sciences, Vol. 11, 2017, no. 64, 3171-3176 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.711343 Restrained Independent 2-Domination in the Join and Corona of Graphs

More information

Locating-Dominating Sets in Graphs

Locating-Dominating Sets in Graphs Applied Mathematical Sciences, Vol. 8, 2014, no. 88, 4381-4388 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.46400 Locating-Dominating Sets in Graphs Sergio R. Canoy, Jr. 1, Gina A.

More information

Secure Connected Domination in a Graph

Secure Connected Domination in a Graph International Journal of Mathematical Analysis Vol. 8, 2014, no. 42, 2065-2074 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.47221 Secure Connected Domination in a Graph Amerkhan G.

More information

On Pairs of Disjoint Dominating Sets in a Graph

On Pairs of Disjoint Dominating Sets in a Graph International Journal of Mathematical Analysis Vol 10, 2016, no 13, 623-637 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ijma20166343 On Pairs of Disjoint Dominating Sets in a Graph Edward M Kiunisala

More information

p-liar s Domination in a Graph

p-liar s Domination in a Graph Applied Mathematical Sciences, Vol 9, 015, no 107, 5331-5341 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/101988/ams0155749 p-liar s Domination in a Graph Carlito B Balandra 1 Department of Arts and Sciences

More information

Another Look at p-liar s Domination in Graphs

Another Look at p-liar s Domination in Graphs International Journal of Mathematical Analysis Vol 10, 2016, no 5, 213-221 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ijma2016511283 Another Look at p-liar s Domination in Graphs Carlito B Balandra

More information

1-movable Independent Outer-connected Domination in Graphs

1-movable Independent Outer-connected Domination in Graphs Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 1 (2017), pp. 41 49 Research India Publications http://www.ripublication.com/gjpam.htm 1-movable Independent Outer-connected

More information

1-movable Restrained Domination in Graphs

1-movable Restrained Domination in Graphs Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 6 (2016), pp. 5245-5225 Research India Publications http://www.ripublication.com/gjpam.htm 1-movable Restrained Domination

More information

Induced Cycle Decomposition of Graphs

Induced Cycle Decomposition of Graphs Applied Mathematical Sciences, Vol. 9, 2015, no. 84, 4165-4169 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.5269 Induced Cycle Decomposition of Graphs Rosalio G. Artes, Jr. Department

More information

The Rainbow Connection of Windmill and Corona Graph

The Rainbow Connection of Windmill and Corona Graph Applied Mathematical Sciences, Vol. 8, 2014, no. 128, 6367-6372 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.48632 The Rainbow Connection of Windmill and Corona Graph Yixiao Liu Department

More information

Double Total Domination on Generalized Petersen Graphs 1

Double Total Domination on Generalized Petersen Graphs 1 Applied Mathematical Sciences, Vol. 11, 2017, no. 19, 905-912 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.7114 Double Total Domination on Generalized Petersen Graphs 1 Chengye Zhao 2

More information

Independent Transversal Equitable Domination in Graphs

Independent Transversal Equitable Domination in Graphs International Mathematical Forum, Vol. 8, 2013, no. 15, 743-751 HIKARI Ltd, www.m-hikari.com Independent Transversal Equitable Domination in Graphs Dhananjaya Murthy B. V 1, G. Deepak 1 and N. D. Soner

More information

Some Properties of D-sets of a Group 1

Some Properties of D-sets of a Group 1 International Mathematical Forum, Vol. 9, 2014, no. 21, 1035-1040 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.45104 Some Properties of D-sets of a Group 1 Joris N. Buloron, Cristopher

More information

On Disjoint Restrained Domination in Graphs 1

On Disjoint Restrained Domination in Graphs 1 Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 3 (2016), pp. 2385-2394 Research India Publications http://www.ripublication.com/gjpam.htm On Disjoint Restrained Domination

More information

More on Tree Cover of Graphs

More on Tree Cover of Graphs International Journal of Mathematical Analysis Vol. 9, 2015, no. 12, 575-579 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.410320 More on Tree Cover of Graphs Rosalio G. Artes, Jr.

More information

Inverse Closed Domination in Graphs

Inverse Closed Domination in Graphs Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 2 (2016), pp. 1845-1851 Research India Publications http://www.ripublication.com/gjpam.htm Inverse Closed Domination in

More information

Rainbow Connection Number of the Thorn Graph

Rainbow Connection Number of the Thorn Graph Applied Mathematical Sciences, Vol. 8, 2014, no. 128, 6373-6377 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.48633 Rainbow Connection Number of the Thorn Graph Yixiao Liu Department

More information

A Characterization of the Cactus Graphs with Equal Domination and Connected Domination Numbers

A Characterization of the Cactus Graphs with Equal Domination and Connected Domination Numbers International Journal of Contemporary Mathematical Sciences Vol. 12, 2017, no. 7, 275-281 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2017.7932 A Characterization of the Cactus Graphs with

More information

Double Total Domination in Circulant Graphs 1

Double Total Domination in Circulant Graphs 1 Applied Mathematical Sciences, Vol. 12, 2018, no. 32, 1623-1633 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.811172 Double Total Domination in Circulant Graphs 1 Qin Zhang and Chengye

More information

On Symmetric Bi-Multipliers of Lattice Implication Algebras

On Symmetric Bi-Multipliers of Lattice Implication Algebras International Mathematical Forum, Vol. 13, 2018, no. 7, 343-350 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2018.8423 On Symmetric Bi-Multipliers of Lattice Implication Algebras Kyung Ho

More information

Mappings of the Direct Product of B-algebras

Mappings of the Direct Product of B-algebras International Journal of Algebra, Vol. 10, 2016, no. 3, 133-140 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2016.615 Mappings of the Direct Product of B-algebras Jacel Angeline V. Lingcong

More information

Locating Chromatic Number of Banana Tree

Locating Chromatic Number of Banana Tree International Mathematical Forum, Vol. 12, 2017, no. 1, 39-45 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.610138 Locating Chromatic Number of Banana Tree Asmiati Department of Mathematics

More information

Note on Strong Roman Domination in Graphs

Note on Strong Roman Domination in Graphs Applied Mathematical Sciences, Vol. 12, 2018, no. 11, 55-541 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.851 Note on Strong Roman Domination in Graphs Jiaxue Xu and Zhiping Wang Department

More information

Direct Product of BF-Algebras

Direct Product of BF-Algebras International Journal of Algebra, Vol. 10, 2016, no. 3, 125-132 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2016.614 Direct Product of BF-Algebras Randy C. Teves and Joemar C. Endam Department

More information

Axioms of Countability in Generalized Topological Spaces

Axioms of Countability in Generalized Topological Spaces International Mathematical Forum, Vol. 8, 2013, no. 31, 1523-1530 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2013.37142 Axioms of Countability in Generalized Topological Spaces John Benedict

More information

Edge Fixed Steiner Number of a Graph

Edge Fixed Steiner Number of a Graph International Journal of Mathematical Analysis Vol. 11, 2017, no. 16, 771-785 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2017.7694 Edge Fixed Steiner Number of a Graph M. Perumalsamy 1,

More information

Regular Generalized Star b-continuous Functions in a Bigeneralized Topological Space

Regular Generalized Star b-continuous Functions in a Bigeneralized Topological Space International Journal of Mathematical Analysis Vol. 9, 2015, no. 16, 805-815 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.5230 Regular Generalized Star b-continuous Functions in a

More information

Root Square Mean Labeling of Some More. Disconnected Graphs

Root Square Mean Labeling of Some More. Disconnected Graphs International Mathematical Forum, Vol. 10, 2015, no. 1, 25-34 HIKARI Ltd,www.m-hikari.com http://dx.doi.org/10.12988/imf.2015.411196 Root Square Mean Labeling of Some More Disconnected Graphs S. S. Sandhya

More information

Contra θ-c-continuous Functions

Contra θ-c-continuous Functions International Journal of Contemporary Mathematical Sciences Vol. 12, 2017, no. 1, 43-50 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2017.714 Contra θ-c-continuous Functions C. W. Baker

More information

Graceful Labeling for Complete Bipartite Graphs

Graceful Labeling for Complete Bipartite Graphs Applied Mathematical Sciences, Vol. 8, 2014, no. 103, 5099-5104 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.46488 Graceful Labeling for Complete Bipartite Graphs V. J. Kaneria Department

More information

International Mathematical Forum, Vol. 9, 2014, no. 36, HIKARI Ltd,

International Mathematical Forum, Vol. 9, 2014, no. 36, HIKARI Ltd, International Mathematical Forum, Vol. 9, 2014, no. 36, 1751-1756 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.411187 Generalized Filters S. Palaniammal Department of Mathematics Thiruvalluvar

More information

On Regular Prime Graphs of Solvable Groups

On Regular Prime Graphs of Solvable Groups International Journal of Algebra, Vol. 10, 2016, no. 10, 491-495 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ija.2016.6858 On Regular Prime Graphs of Solvable Groups Donnie Munyao Kasyoki Department

More information

Solving Homogeneous Systems with Sub-matrices

Solving Homogeneous Systems with Sub-matrices Pure Mathematical Sciences, Vol 7, 218, no 1, 11-18 HIKARI Ltd, wwwm-hikaricom https://doiorg/112988/pms218843 Solving Homogeneous Systems with Sub-matrices Massoud Malek Mathematics, California State

More information

Diophantine Equations. Elementary Methods

Diophantine Equations. Elementary Methods International Mathematical Forum, Vol. 12, 2017, no. 9, 429-438 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.7223 Diophantine Equations. Elementary Methods Rafael Jakimczuk División Matemática,

More information

Integration over Radius-Decreasing Circles

Integration over Radius-Decreasing Circles International Journal of Mathematical Analysis Vol. 9, 2015, no. 12, 569-574 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.47206 Integration over Radius-Decreasing Circles Aniceto B.

More information

ACG M and ACG H Functions

ACG M and ACG H Functions International Journal of Mathematical Analysis Vol. 8, 2014, no. 51, 2539-2545 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.12988/ijma.2014.410302 ACG M and ACG H Functions Julius V. Benitez Department

More information

Inverse and Disjoint Restrained Domination in Graphs

Inverse and Disjoint Restrained Domination in Graphs Intern. J. Fuzzy Mathematical Archive Vol. 11, No.1, 2016, 9-15 ISSN: 2320 3242 (P), 2320 3250 (online) Published on 17 August 2016 www.researchmathsci.org International Journal of Inverse and Disjoint

More information

A Note of the Strong Convergence of the Mann Iteration for Demicontractive Mappings

A Note of the Strong Convergence of the Mann Iteration for Demicontractive Mappings Applied Mathematical Sciences, Vol. 10, 2016, no. 6, 255-261 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.511700 A Note of the Strong Convergence of the Mann Iteration for Demicontractive

More information

Approximations to the t Distribution

Approximations to the t Distribution Applied Mathematical Sciences, Vol. 9, 2015, no. 49, 2445-2449 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.52148 Approximations to the t Distribution Bashar Zogheib 1 and Ali Elsaheli

More information

ALL GRAPHS WITH PAIRED-DOMINATION NUMBER TWO LESS THAN THEIR ORDER. Włodzimierz Ulatowski

ALL GRAPHS WITH PAIRED-DOMINATION NUMBER TWO LESS THAN THEIR ORDER. Włodzimierz Ulatowski Opuscula Math. 33, no. 4 (2013), 763 783 http://dx.doi.org/10.7494/opmath.2013.33.4.763 Opuscula Mathematica ALL GRAPHS WITH PAIRED-DOMINATION NUMBER TWO LESS THAN THEIR ORDER Włodzimierz Ulatowski Communicated

More information

A Generalization of p-rings

A Generalization of p-rings International Journal of Algebra, Vol. 9, 2015, no. 8, 395-401 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2015.5848 A Generalization of p-rings Adil Yaqub Department of Mathematics University

More information

µs p -Sets and µs p -Functions

µs p -Sets and µs p -Functions International Journal of Mathematical Analysis Vol. 9, 2015, no. 11, 499-508 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.412401 µs p -Sets and µs p -Functions Philip Lester Pillo

More information

Fuzzy Sequences in Metric Spaces

Fuzzy Sequences in Metric Spaces Int. Journal of Math. Analysis, Vol. 8, 2014, no. 15, 699-706 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.4262 Fuzzy Sequences in Metric Spaces M. Muthukumari Research scholar, V.O.C.

More information

Devaney's Chaos of One Parameter Family. of Semi-triangular Maps

Devaney's Chaos of One Parameter Family. of Semi-triangular Maps International Mathematical Forum, Vol. 8, 2013, no. 29, 1439-1444 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2013.36114 Devaney's Chaos of One Parameter Family of Semi-triangular Maps

More information

A note on the total domination number of a tree

A note on the total domination number of a tree A note on the total domination number of a tree 1 Mustapha Chellali and 2 Teresa W. Haynes 1 Department of Mathematics, University of Blida. B.P. 270, Blida, Algeria. E-mail: m_chellali@yahoo.com 2 Department

More information

Regular Weakly Star Closed Sets in Generalized Topological Spaces 1

Regular Weakly Star Closed Sets in Generalized Topological Spaces 1 Applied Mathematical Sciences, Vol. 9, 2015, no. 79, 3917-3929 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.53237 Regular Weakly Star Closed Sets in Generalized Topological Spaces 1

More information

Introduction to Domination Polynomial of a Graph

Introduction to Domination Polynomial of a Graph Introduction to Domination Polynomial of a Graph arxiv:0905.2251v1 [math.co] 14 May 2009 Saeid Alikhani a,b,1 and Yee-hock Peng b,c a Department of Mathematics Yazd University 89195-741, Yazd, Iran b Institute

More information

Order-theoretical Characterizations of Countably Approximating Posets 1

Order-theoretical Characterizations of Countably Approximating Posets 1 Int. J. Contemp. Math. Sciences, Vol. 9, 2014, no. 9, 447-454 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2014.4658 Order-theoretical Characterizations of Countably Approximating Posets

More information

2-bondage in graphs. Marcin Krzywkowski*

2-bondage in graphs. Marcin Krzywkowski* International Journal of Computer Mathematics Vol. 00, No. 00, January 2012, 1 8 2-bondage in graphs Marcin Krzywkowski* e-mail: marcin.krzywkowski@gmail.com Department of Algorithms and System Modelling

More information

Caristi-type Fixed Point Theorem of Set-Valued Maps in Metric Spaces

Caristi-type Fixed Point Theorem of Set-Valued Maps in Metric Spaces International Journal of Mathematical Analysis Vol. 11, 2017, no. 6, 267-275 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2017.717 Caristi-type Fixed Point Theorem of Set-Valued Maps in Metric

More information

On the Probability that a Group Element Fixes a Set and its Generalized Conjugacy Class Graph

On the Probability that a Group Element Fixes a Set and its Generalized Conjugacy Class Graph International Journal of Mathematical Analysis Vol. 9, 2015, no. 4, 161-167 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.411336 On the Probability that a roup Element Fixes a Set and

More information

Geometric Properties of Square Lattice

Geometric Properties of Square Lattice Applied Mathematical Sciences, Vol. 8, 014, no. 91, 4541-4546 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.014.46466 Geometric Properties of Square Lattice Ronalyn T. Langam College of Engineering

More information

Generalized Derivation on TM Algebras

Generalized Derivation on TM Algebras International Journal of Algebra, Vol. 7, 2013, no. 6, 251-258 HIKARI Ltd, www.m-hikari.com Generalized Derivation on TM Algebras T. Ganeshkumar Department of Mathematics M.S.S. Wakf Board College Madurai-625020,

More information

Prime and Semiprime Bi-ideals in Ordered Semigroups

Prime and Semiprime Bi-ideals in Ordered Semigroups International Journal of Algebra, Vol. 7, 2013, no. 17, 839-845 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2013.310105 Prime and Semiprime Bi-ideals in Ordered Semigroups R. Saritha Department

More information

Complete Ideal and n-ideal of B-algebra

Complete Ideal and n-ideal of B-algebra Applied Mathematical Sciences, Vol. 11, 2017, no. 35, 1705-1713 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.75159 Complete Ideal and n-ideal of B-algebra Habeeb Kareem Abdullah University

More information

On the Union of Graphs Ramsey Numbers

On the Union of Graphs Ramsey Numbers Applied Mathematical Sciences, Vol. 8, 2014, no. 16, 767-773 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.311641 On the Union of Graphs Ramsey Numbers I Wayan Sudarsana Combinatorial

More information

International Journal of Algebra, Vol. 7, 2013, no. 3, HIKARI Ltd, On KUS-Algebras. and Areej T.

International Journal of Algebra, Vol. 7, 2013, no. 3, HIKARI Ltd,   On KUS-Algebras. and Areej T. International Journal of Algebra, Vol. 7, 2013, no. 3, 131-144 HIKARI Ltd, www.m-hikari.com On KUS-Algebras Samy M. Mostafa a, Mokhtar A. Abdel Naby a, Fayza Abdel Halim b and Areej T. Hameed b a Department

More information

On a 3-Uniform Path-Hypergraph on 5 Vertices

On a 3-Uniform Path-Hypergraph on 5 Vertices Applied Mathematical Sciences, Vol. 10, 2016, no. 30, 1489-1500 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.512742 On a 3-Uniform Path-Hypergraph on 5 Vertices Paola Bonacini Department

More information

On Uniform Limit Theorem and Completion of Probabilistic Metric Space

On Uniform Limit Theorem and Completion of Probabilistic Metric Space Int. Journal of Math. Analysis, Vol. 8, 2014, no. 10, 455-461 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.4120 On Uniform Limit Theorem and Completion of Probabilistic Metric Space

More information

Diameter of the Zero Divisor Graph of Semiring of Matrices over Boolean Semiring

Diameter of the Zero Divisor Graph of Semiring of Matrices over Boolean Semiring International Mathematical Forum, Vol. 9, 2014, no. 29, 1369-1375 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.47131 Diameter of the Zero Divisor Graph of Semiring of Matrices over

More information

Locating-Total Dominating Sets in Twin-Free Graphs: a Conjecture

Locating-Total Dominating Sets in Twin-Free Graphs: a Conjecture Locating-Total Dominating Sets in Twin-Free Graphs: a Conjecture Florent Foucaud Michael A. Henning Department of Pure and Applied Mathematics University of Johannesburg Auckland Park, 2006, South Africa

More information

β Baire Spaces and β Baire Property

β Baire Spaces and β Baire Property International Journal of Contemporary Mathematical Sciences Vol. 11, 2016, no. 5, 211-216 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2016.612 β Baire Spaces and β Baire Property Tugba

More information

On a Certain Representation in the Pairs of Normed Spaces

On a Certain Representation in the Pairs of Normed Spaces Applied Mathematical Sciences, Vol. 12, 2018, no. 3, 115-119 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.712362 On a Certain Representation in the Pairs of ormed Spaces Ahiro Hoshida

More information

Some New Approaches for Computation of Domination Polynomial of Specific Graphs

Some New Approaches for Computation of Domination Polynomial of Specific Graphs Journal of Mathematical Extension Vol. 8, No. 2, (2014), 1-9 Some New Approaches for Computation of Domination Polynomial of Specific Graphs S. Alikhani Yazd University E. Mahmoudi Yazd University M. R.

More information

The Split Hierarchical Monotone Variational Inclusions Problems and Fixed Point Problems for Nonexpansive Semigroup

The Split Hierarchical Monotone Variational Inclusions Problems and Fixed Point Problems for Nonexpansive Semigroup International Mathematical Forum, Vol. 11, 2016, no. 8, 395-408 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2016.6220 The Split Hierarchical Monotone Variational Inclusions Problems and

More information

On Annihilator Small Intersection Graph

On Annihilator Small Intersection Graph International Journal of Contemporary Mathematical Sciences Vol. 12, 2017, no. 7, 283-289 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2017.7931 On Annihilator Small Intersection Graph Mehdi

More information

Remarks on Fuglede-Putnam Theorem for Normal Operators Modulo the Hilbert-Schmidt Class

Remarks on Fuglede-Putnam Theorem for Normal Operators Modulo the Hilbert-Schmidt Class International Mathematical Forum, Vol. 9, 2014, no. 29, 1389-1396 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.47141 Remarks on Fuglede-Putnam Theorem for Normal Operators Modulo the

More information

Generalized Boolean and Boolean-Like Rings

Generalized Boolean and Boolean-Like Rings International Journal of Algebra, Vol. 7, 2013, no. 9, 429-438 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2013.2894 Generalized Boolean and Boolean-Like Rings Hazar Abu Khuzam Department

More information

H Paths in 2 Colored Tournaments

H Paths in 2 Colored Tournaments International Journal of Contemporary Mathematical Sciences Vol. 10, 2015, no. 5, 185-195 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2015.5418 H Paths in 2 Colo Tournaments Alejandro

More information

Inner Variation and the SLi-Functions

Inner Variation and the SLi-Functions International Journal of Mathematical Analysis Vol. 9, 2015, no. 3, 141-150 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.411343 Inner Variation and the SLi-Functions Julius V. Benitez

More information

Strong Convergence of the Mann Iteration for Demicontractive Mappings

Strong Convergence of the Mann Iteration for Demicontractive Mappings Applied Mathematical Sciences, Vol. 9, 015, no. 4, 061-068 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.015.5166 Strong Convergence of the Mann Iteration for Demicontractive Mappings Ştefan

More information

Weak Resolvable Spaces and. Decomposition of Continuity

Weak Resolvable Spaces and. Decomposition of Continuity Pure Mathematical Sciences, Vol. 6, 2017, no. 1, 19-28 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/pms.2017.61020 Weak Resolvable Spaces and Decomposition of Continuity Mustafa H. Hadi University

More information

Domination and Total Domination Contraction Numbers of Graphs

Domination and Total Domination Contraction Numbers of Graphs Domination and Total Domination Contraction Numbers of Graphs Jia Huang Jun-Ming Xu Department of Mathematics University of Science and Technology of China Hefei, Anhui, 230026, China Abstract In this

More information

Supra g-closed Sets in Supra Bitopological Spaces

Supra g-closed Sets in Supra Bitopological Spaces International Mathematical Forum, Vol. 3, 08, no. 4, 75-8 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/imf.08.8 Supra g-closed Sets in Supra Bitopological Spaces R. Gowri Department of Mathematics

More information

INDEPENDENT TRANSVERSAL DOMINATION IN GRAPHS

INDEPENDENT TRANSVERSAL DOMINATION IN GRAPHS Discussiones Mathematicae Graph Theory 32 (2012) 5 17 INDEPENDENT TRANSVERSAL DOMINATION IN GRAPHS Ismail Sahul Hamid Department of Mathematics The Madura College Madurai, India e-mail: sahulmat@yahoo.co.in

More information

-Complement of Intuitionistic. Fuzzy Graph Structure

-Complement of Intuitionistic. Fuzzy Graph Structure International Mathematical Forum, Vol. 12, 2017, no. 5, 241-250 HIKRI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.612171 -Complement of Intuitionistic Fuzzy Graph Structure Vandana ansal Department

More information

Convex Sets Strict Separation in Hilbert Spaces

Convex Sets Strict Separation in Hilbert Spaces Applied Mathematical Sciences, Vol. 8, 2014, no. 64, 3155-3160 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.44257 Convex Sets Strict Separation in Hilbert Spaces M. A. M. Ferreira 1

More information

KKM-Type Theorems for Best Proximal Points in Normed Linear Space

KKM-Type Theorems for Best Proximal Points in Normed Linear Space International Journal of Mathematical Analysis Vol. 12, 2018, no. 12, 603-609 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2018.81069 KKM-Type Theorems for Best Proximal Points in Normed

More information

Relations between edge removing and edge subdivision concerning domination number of a graph

Relations between edge removing and edge subdivision concerning domination number of a graph arxiv:1409.7508v1 [math.co] 26 Sep 2014 Relations between edge removing and edge subdivision concerning domination number of a graph Magdalena Lemańska 1, Joaquín Tey 2, Rita Zuazua 3 1 Gdansk University

More information

A Generalization of Generalized Triangular Fuzzy Sets

A Generalization of Generalized Triangular Fuzzy Sets International Journal of Mathematical Analysis Vol, 207, no 9, 433-443 HIKARI Ltd, wwwm-hikaricom https://doiorg/02988/ijma2077350 A Generalization of Generalized Triangular Fuzzy Sets Chang Il Kim Department

More information

Domination in Cayley Digraphs of Right and Left Groups

Domination in Cayley Digraphs of Right and Left Groups Communications in Mathematics and Applications Vol. 8, No. 3, pp. 271 287, 2017 ISSN 0975-8607 (online); 0976-5905 (print) Published by RGN Publications http://www.rgnpublications.com Domination in Cayley

More information

A Novel Approach: Soft Groups

A Novel Approach: Soft Groups International Journal of lgebra, Vol 9, 2015, no 2, 79-83 HIKRI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ija2015412121 Novel pproach: Soft Groups K Moinuddin Faculty of Mathematics, Maulana zad National

More information

Formula for Lucas Like Sequence of Fourth Step and Fifth Step

Formula for Lucas Like Sequence of Fourth Step and Fifth Step International Mathematical Forum, Vol. 12, 2017, no., 10-110 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.612169 Formula for Lucas Like Sequence of Fourth Step and Fifth Step Rena Parindeni

More information

Double domination edge removal critical graphs

Double domination edge removal critical graphs AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 48 (2010), Pages 285 299 Double domination edge removal critical graphs Soufiane Khelifi Laboratoire LMP2M, Bloc des laboratoires Université demédéa Quartier

More information

Decompositions of Balanced Complete Bipartite Graphs into Suns and Stars

Decompositions of Balanced Complete Bipartite Graphs into Suns and Stars International Journal of Contemporary Mathematical Sciences Vol. 13, 2018, no. 3, 141-148 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2018.8515 Decompositions of Balanced Complete Bipartite

More information

A Short Note on Universality of Some Quadratic Forms

A Short Note on Universality of Some Quadratic Forms International Mathematical Forum, Vol. 8, 2013, no. 12, 591-595 HIKARI Ltd, www.m-hikari.com A Short Note on Universality of Some Quadratic Forms Cherng-tiao Perng Department of Mathematics Norfolk State

More information

On a Boundary-Value Problem for Third Order Operator-Differential Equations on a Finite Interval

On a Boundary-Value Problem for Third Order Operator-Differential Equations on a Finite Interval Applied Mathematical Sciences, Vol. 1, 216, no. 11, 543-548 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.216.512743 On a Boundary-Value Problem for Third Order Operator-Differential Equations

More information

Analogies and discrepancies between the vertex cover number and the weakly connected domination number of a graph

Analogies and discrepancies between the vertex cover number and the weakly connected domination number of a graph Analogies and discrepancies between the vertex cover number and the weakly connected domination number of a graph M. Lemańska a, J. A. Rodríguez-Velázquez b, Rolando Trujillo-Rasua c, a Department of Technical

More information

Bounded Subsets of the Zygmund F -Algebra

Bounded Subsets of the Zygmund F -Algebra International Journal of Mathematical Analysis Vol. 12, 2018, no. 9, 425-431 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2018.8752 Bounded Subsets of the Zygmund F -Algebra Yasuo Iida Department

More information

ON THE NUMBERS OF CUT-VERTICES AND END-BLOCKS IN 4-REGULAR GRAPHS

ON THE NUMBERS OF CUT-VERTICES AND END-BLOCKS IN 4-REGULAR GRAPHS Discussiones Mathematicae Graph Theory 34 (2014) 127 136 doi:10.7151/dmgt.1724 ON THE NUMBERS OF CUT-VERTICES AND END-BLOCKS IN 4-REGULAR GRAPHS Dingguo Wang 2,3 and Erfang Shan 1,2 1 School of Management,

More information

Convex Sets Strict Separation. in the Minimax Theorem

Convex Sets Strict Separation. in the Minimax Theorem Applied Mathematical Sciences, Vol. 8, 2014, no. 36, 1781-1787 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4271 Convex Sets Strict Separation in the Minimax Theorem M. A. M. Ferreira

More information

On Positive Stable Realization for Continuous Linear Singular Systems

On Positive Stable Realization for Continuous Linear Singular Systems Int. Journal of Math. Analysis, Vol. 8, 2014, no. 8, 395-400 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.4246 On Positive Stable Realization for Continuous Linear Singular Systems

More information

Algebraic Models in Different Fields

Algebraic Models in Different Fields Applied Mathematical Sciences, Vol. 8, 2014, no. 167, 8345-8351 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.411922 Algebraic Models in Different Fields Gaetana Restuccia University

More information

A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials

A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials Applied Mathematical Sciences, Vol. 8, 2014, no. 35, 1723-1730 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4127 A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating

More information

Toric Deformation of the Hankel Variety

Toric Deformation of the Hankel Variety Applied Mathematical Sciences, Vol. 10, 2016, no. 59, 2921-2925 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.6248 Toric Deformation of the Hankel Variety Adelina Fabiano DIATIC - Department

More information

Second Hankel Determinant Problem for a Certain Subclass of Univalent Functions

Second Hankel Determinant Problem for a Certain Subclass of Univalent Functions International Journal of Mathematical Analysis Vol. 9, 05, no. 0, 493-498 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ijma.05.55 Second Hankel Determinant Problem for a Certain Subclass of Univalent

More information

On Domination Critical Graphs with Cutvertices having Connected Domination Number 3

On Domination Critical Graphs with Cutvertices having Connected Domination Number 3 International Mathematical Forum, 2, 2007, no. 61, 3041-3052 On Domination Critical Graphs with Cutvertices having Connected Domination Number 3 Nawarat Ananchuen 1 Department of Mathematics, Faculty of

More information

A Bound on Weak Domination Number Using Strong (Weak) Degree Concepts in Graphs

A Bound on Weak Domination Number Using Strong (Weak) Degree Concepts in Graphs ISSN 974-9373 Vol. 5 No.3 (2) Journal of International Academy of Physical Sciences pp. 33-37 A Bound on Weak Domination Number Using Strong (Weak) Degree Concepts in Graphs R. S. Bhat Manipal Institute

More information