# Homework 9 Solutions to Selected Problems

Size: px
Start display at page:

Download "Homework 9 Solutions to Selected Problems"

Transcription

1 Homework 9 Solutions to Selected Problems June 11, Chapter 17, Problem 12 Since x 2 + x + 4 has degree 2 and Z 11 is a eld, we may use Theorem 17.1 and show that f(x) is irreducible because it has no zeros: x x 2 + x + 4 mod = = = = = = = = 4 Since the polynomial has no zeros in Z 11, it is irreducible. 1

2 2 Chapter 17, Problem 14 Let us start by nding zeros of f(x) in Z 2. It turns out that f(0) = 1, while f(1) = 4 = 0 (mod 2). Thus, x 1 divides f(x). By using long division (remember to reduce mod 2), we see that x 2 +1 x 1 ) x 3 +x 2 +x +1 x 3 x x +1 x 1 0 f(x) = (x 1)(x 2 + 1). Is x irreducible? Let us nd zeros again. Since = 2 = 0 (mod 2), x 1 divides x We can use long division again, but since we are working mod 2, 1 = 1, so we can write and therefore x = x 2 1 = (x 1)(x + 1) = (x 1)(x 1) f(x) = (x 1)(x 2 + 1) = (x 1)(x 1)(x 1) = (x 1) 3. 3 Chapter 17, Problem 30 Note that f(x) = x p 1 x p 2 +x p 3... x 1 +1 = ( x) p 1 +( x) p 2 +( x) p ( x)+1 = Φ p ( x). That is, f(x) is the pth cyclotomic polynomial, but with x replaced by x. Therefore, if f(x) = g(x)h(x), then Φ p (x) = f( x) = g( x)h( x). By the Corollary on page 310, Φ p (x) is irreducible, so either g( x) or h( x) is a unit, so either g( x) = a or h( x) = b where a, b Z p and a, b 0. Thus, g(x) = a, or h(x) = b, so either g(x) is a unit or h(x) is a unit. Therefore, f(x) is irreducible. 2

3 4 Chapter 17, Problem x is a prime ideal Let f(x), g(x) Z[x], and suppose f(x)g(x) x Then there is a polynomial q(x) Z[x] such that f(x)g(x) = q(x)(x 2 + 1). Since x is monic (in particular its leading coecient is a unit in Z), we can use the division algorithm from page 296. Although the book proves the division algorithm for polynomials with coecients in a eld, if you look at the proof, the only multiplicative inverse needed is for the leading coecient of the dividing polynomial. Thus, f(x) = q 1 (x)(x 2 + 1) + r 1 (x), g(x) = q 2 (x)(x 2 + 1) + r 2 (x), where r 1 (x) and r 2 (x) have degree less than 2 (the degree of x 2 + 1). Then f(x)g(x) = q 1 (x)q 2 (x)(x 2 + 1) 2 + q 1 (x)(x 2 + 1)r 2 (x) +q 2 (x)(x 2 + 1)r 1 (x) + r 1 (x)r 2 (x) = q(x)(x 2 + 1). We can get rid of the terms involving x by plugging in x = i. i = 0, we get Since f(i)g(i) = r 1 (i)r 2 (i) = q(i)(i 2 + 1) = 0. Since r 1 (x) and r 2 (x) have degree less than 2, write r 1 (x) = a 1 x + a 0 and r 2 (x) = b 1 x + b 0. Then r 1 (i)r 2 (i) = (a 1 i + a 0 )(b 1 i + b 0 ) = 0. Since C is a eld, and hence an integral domain, either a 1 i+a 0 = 0 or b 1 i+b 0 = 0. Without loss of generality, say a 1 i + a 0 = 0. Then a 1 = 0 and a 0 = 0, so and therefore r 1 (x) = 0x + 0 = 0, f(x) = q 1 (x)(x 2 + 1) + r 1 (x) = q 1 (x)(x 2 + 1) x 2 + 1, so x is a prime ideal. 4.2 x is not a maximal ideal Consider x 2 + 1, 2 = { p 1 (x)(x 2 + 1) + p 2 (x) 2: p 1 (x), p 2 (x) Z[x] }. It is the ideal generated by x and 2. We need to show that x x 2 + 1, 2 Z[x]. 3

4 4.2.1 x x 2 + 1, 2 Note that every nonzero element of x has the form q(x)(x 2 + 1) where q(x) 0, so the degree of a nonzero element is the sum of the degree of q(x) and the degree of x Hence the degree of any nonzero element of x is greater than or equal to 2, so there are no nonzero constant polynomials in x Thus 2 / x 2 + 1, but 2 x 2 + 1, 2, so x x 2 + 1, x 2 + 1, 2 Z[x] We need to show that 1 / x 2 + 1, 2. We will proceed by contradiction and assume that 1 x 2 + 1, 2, so there exist polynomials p 1 (x) and p 2 (x) in Z[x] such that 1 = p 1 (x)(x 2 + 1) + p 2 (x) 2. Warning: We cannot conclude that f(x) = 0 because the left hand side is a constant polynomial. I apologize for this mistake from Problem 24, Chapter 16 of HW6 (a corrected proof has been posted). We can get rid of p 1 (x)(x 2 + 1) by plugging in x = i: 1 = p 1 (i)(i 2 + 1)p 2 (i) 2 = p 2 (i) 2, so p 2 (i) = 2 1 = 1 2. However, the coecients of p 2 (x) are integers, and since i 2 = 1 Z, p 2 (i) must be a complex number of the form a + bi where a and b are integers (that 1 is, p 2 (i) Z[i]. Thus, p 2 (i) cannot equal 2, a contradiction. Therefore, 1 / x 2 + 1, 2, so x 2 + 1, 2 Z[x]. Alternate Method: Take 1 = p 1 (x)(x 2 + 1) + p 2 (x) 2 and reduce both sides mod 2 (so we will be working in Z 2 [x]). This gets rid of the p 2 (x) 2 term and leaves us with 1 = p 1 (x)(x 2 + 1) where the coecients of p 1 (x) are those of p 1 (x) reduced mod 2. If p 1 (x) = 0, then we get a contradiction (1 = 0). If p 1 (x) 0, then by Problem 17 from Chapter 16, the degree of p 1 (x)(x 2 + 1) equals the sum of the degrees of p 1 (x) and x 2 + 1, so the degree of p 1 (x)(x 2 + 1) is greater than or equal to the degree of x 2 + 1, which is 2. However, the constant polynomial 1 has degree zero, a contradiction. 4

5 4.2.3 Conclusion Since x x 2 + 1, 2 Z[x], x is strictly contained in an ideal which is not equal to Z[x], so x is not a maximal ideal. 5 Chapter 17, Problem 34 Suppose r is a real number and r + r 1 = 2m + 1 where m is an integer (so 2m + 1 is an odd integer). Let us multiply both sides by r: r = (2m + 1)r. Move everything to the left: Thus, r is a zero of the polynomial r 2 (2m + 1)r + 1 = 0. f(x) = x 2 (2m + 1)x + 1. Does f(x) have any zeros in Q? Since it has degree two, this is equivalent (by Theorem 17.1) to asking whether f(x) is irreducible in Q[x]. Since the coecients are integers, we can use Theorem 17.3 and reduce the polynomial mod 2 (I chose 2 because the coecient of x is only known to be odd, so it will denitely reduce to 1 mod 2): Note that f(x) has no zeros in Z 2 : f(x) = x 2 (1)x + 1 = x 2 + x + 1 mod 2. f(0) = = 1 0, f(1) = = 3 = 1 0. Since f(x) has degree 2, by Theorem 17.1, f(x) is irreducible over Z2, and since it has the same degree as f(x), by Theorem 17.3, f(x) is irreducible over Q, so by Theorem 17.1, f(x) has no zeros in Q. Since r is a zero of f(x), r cannot be in Q, so it must be irrational. 5

### Homework 8 Solutions to Selected Problems

Homework 8 Solutions to Selected Problems June 7, 01 1 Chapter 17, Problem Let f(x D[x] and suppose f(x is reducible in D[x]. That is, there exist polynomials g(x and h(x in D[x] such that g(x and h(x

More information

### Section IV.23. Factorizations of Polynomials over a Field

IV.23 Factorizations of Polynomials 1 Section IV.23. Factorizations of Polynomials over a Field Note. Our experience with classical algebra tells us that finding the zeros of a polynomial is equivalent

More information

### Homework 7 Solutions to Selected Problems

Homework 7 Solutions to Selected Prolems May 9, 01 1 Chapter 16, Prolem 17 Let D e an integral domain and f(x) = a n x n +... + a 0 and g(x) = m x m +... + 0 e polynomials with coecients in D, where a

More information

### MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION

MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION 1. Polynomial rings (review) Definition 1. A polynomial f(x) with coefficients in a ring R is n f(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n i=0

More information

### Polynomial Rings. i=0

Polynomial Rings 4-15-2018 If R is a ring, the ring of polynomials in x with coefficients in R is denoted R[x]. It consists of all formal sums a i x i. Here a i = 0 for all but finitely many values of

More information

### MTH310 EXAM 2 REVIEW

MTH310 EXAM 2 REVIEW SA LI 4.1 Polynomial Arithmetic and the Division Algorithm A. Polynomial Arithmetic *Polynomial Rings If R is a ring, then there exists a ring T containing an element x that is not

More information

### Abstract Algebra: Chapters 16 and 17

Study polynomials, their factorization, and the construction of fields. Chapter 16 Polynomial Rings Notation Let R be a commutative ring. The ring of polynomials over R in the indeterminate x is the set

More information

### Homework problems from Chapters IV-VI: answers and solutions

Homework problems from Chapters IV-VI: answers and solutions IV.21.1. In this problem we have to describe the field F of quotients of the domain D. Note that by definition, F is the set of equivalence

More information

### Polynomials. Chapter 4

Chapter 4 Polynomials In this Chapter we shall see that everything we did with integers in the last Chapter we can also do with polynomials. Fix a field F (e.g. F = Q, R, C or Z/(p) for a prime p). Notation

More information

### Math 547, Exam 2 Information.

Math 547, Exam 2 Information. 3/19/10, LC 303B, 10:10-11:00. Exam 2 will be based on: Homework and textbook sections covered by lectures 2/3-3/5. (see http://www.math.sc.edu/ boylan/sccourses/547sp10/547.html)

More information

### Chapter 4. Remember: F will always stand for a field.

Chapter 4 Remember: F will always stand for a field. 4.1 10. Take f(x) = x F [x]. Could there be a polynomial g(x) F [x] such that f(x)g(x) = 1 F? Could f(x) be a unit? 19. Compare with Problem #21(c).

More information

### g(x) = 1 1 x = 1 + x + x2 + x 3 + is not a polynomial, since it doesn t have finite degree. g(x) is an example of a power series.

6 Polynomial Rings We introduce a class of rings called the polynomial rings, describing computation, factorization and divisibility in such rings For the case where the coefficients come from an integral

More information

### RINGS: SUMMARY OF MATERIAL

RINGS: SUMMARY OF MATERIAL BRIAN OSSERMAN This is a summary of terms used and main results proved in the subject of rings, from Chapters 11-13 of Artin. Definitions not included here may be considered

More information

### Polynomial Rings. i=0. i=0. n+m. i=0. k=0

Polynomial Rings 1. Definitions and Basic Properties For convenience, the ring will always be a commutative ring with identity. Basic Properties The polynomial ring R[x] in the indeterminate x with coefficients

More information

### 3.4. ZEROS OF POLYNOMIAL FUNCTIONS

3.4. ZEROS OF POLYNOMIAL FUNCTIONS What You Should Learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions. Find rational zeros of polynomial functions. Find

More information

### Contents. 4 Arithmetic and Unique Factorization in Integral Domains. 4.1 Euclidean Domains and Principal Ideal Domains

Ring Theory (part 4): Arithmetic and Unique Factorization in Integral Domains (by Evan Dummit, 018, v. 1.00) Contents 4 Arithmetic and Unique Factorization in Integral Domains 1 4.1 Euclidean Domains and

More information

### CHAPTER I. Rings. Definition A ring R is a set with two binary operations, addition + and

CHAPTER I Rings 1.1 Definitions and Examples Definition 1.1.1. A ring R is a set with two binary operations, addition + and multiplication satisfying the following conditions for all a, b, c in R : (i)

More information

### Computations/Applications

Computations/Applications 1. Find the inverse of x + 1 in the ring F 5 [x]/(x 3 1). Solution: We use the Euclidean Algorithm: x 3 1 (x + 1)(x + 4x + 1) + 3 (x + 1) 3(x + ) + 0. Thus 3 (x 3 1) + (x + 1)(4x

More information

### 17 Galois Fields Introduction Primitive Elements Roots of Polynomials... 8

Contents 17 Galois Fields 2 17.1 Introduction............................... 2 17.2 Irreducible Polynomials, Construction of GF(q m )... 3 17.3 Primitive Elements... 6 17.4 Roots of Polynomials..........................

More information

### COMMUTATIVE RINGS. Definition 3: A domain is a commutative ring R that satisfies the cancellation law for multiplication:

COMMUTATIVE RINGS Definition 1: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative

More information

382 4 7 q X

More information

### Gauss s Theorem. Theorem: Suppose R is a U.F.D.. Then R[x] is a U.F.D. To show this we need to constuct some discrete valuations of R.

Gauss s Theorem Theorem: Suppose R is a U.F.D.. Then R[x] is a U.F.D. To show this we need to constuct some discrete valuations of R. Proposition: Suppose R is a U.F.D. and that π is an irreducible element

More information

### be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UFD. Therefore

More information

### Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman October 17, 2006 TALK SLOWLY AND WRITE NEATLY!! 1 0.1 Factorization 0.1.1 Factorization of Integers and Polynomials Now we are going

More information

### 2-4 Zeros of Polynomial Functions

Write a polynomial function of least degree with real coefficients in standard form that has the given zeros. 33. 2, 4, 3, 5 Using the Linear Factorization Theorem and the zeros 2, 4, 3, and 5, write f

More information

### where c R and the content of f is one. 1

9. Gauss Lemma Obviously it would be nice to have some more general methods of proving that a given polynomial is irreducible. The first is rather beautiful and due to Gauss. The basic idea is as follows.

More information

### CHAPTER 14. Ideals and Factor Rings

CHAPTER 14 Ideals and Factor Rings Ideals Definition (Ideal). A subring A of a ring R is called a (two-sided) ideal of R if for every r 2 R and every a 2 A, ra 2 A and ar 2 A. Note. (1) A absorbs elements

More information

### Quasi-reducible Polynomials

Quasi-reducible Polynomials Jacques Willekens 06-Dec-2008 Abstract In this article, we investigate polynomials that are irreducible over Q, but are reducible modulo any prime number. 1 Introduction Let

More information

### PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include

PUTNAM TRAINING POLYNOMIALS (Last updated: December 11, 2017) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

### Class Notes; Week 7, 2/26/2016

Class Notes; Week 7, 2/26/2016 Day 18 This Time Section 3.3 Isomorphism and Homomorphism [0], [2], [4] in Z 6 + 0 4 2 0 0 4 2 4 4 2 0 2 2 0 4 * 0 4 2 0 0 0 0 4 0 4 2 2 0 2 4 So {[0], [2], [4]} is a subring.

More information

### Linear Algebra, 3rd day, Wednesday 6/30/04 REU Info:

Linear Algebra, 3rd day, Wednesday 6/30/04 REU 2004. Info: http://people.cs.uchicago.edu/laci/reu04. Instructor: Laszlo Babai Scribe: Richard Cudney Rank Let V be a vector space. Denition 3.. Let S V,

More information

### Algebra Review 2. 1 Fields. A field is an extension of the concept of a group.

Algebra Review 2 1 Fields A field is an extension of the concept of a group. Definition 1. A field (F, +,, 0 F, 1 F ) is a set F together with two binary operations (+, ) on F such that the following conditions

More information

### Math 121 Homework 2 Solutions

Math 121 Homework 2 Solutions Problem 13.2 #16. Let K/F be an algebraic extension and let R be a ring contained in K that contains F. Prove that R is a subfield of K containing F. We will give two proofs.

More information

### Practice problems for first midterm, Spring 98

Practice problems for first midterm, Spring 98 midterm to be held Wednesday, February 25, 1998, in class Dave Bayer, Modern Algebra All rings are assumed to be commutative with identity, as in our text.

More information

### Eighth Homework Solutions

Math 4124 Wednesday, April 20 Eighth Homework Solutions 1. Exercise 5.2.1(e). Determine the number of nonisomorphic abelian groups of order 2704. First we write 2704 as a product of prime powers, namely

More information

### Factorization in Polynomial Rings

Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18. PIDs Definition 1 A principal ideal domain (PID) is an integral

More information

### Informal Notes on Algebra

Informal Notes on Algebra R. Boyer Contents 1 Rings 2 1.1 Examples and Definitions................................. 2 1.2 Integral Domains...................................... 3 1.3 Fields............................................

More information

### Lagrange s polynomial

Lagrange s polynomial Nguyen Trung Tuan November 16, 2016 Abstract In this article, I will use Lagrange polynomial to solve some problems from Mathematical Olympiads. Contents 1 Lagrange s interpolation

More information

### Simplifying Rational Expressions and Functions

Department of Mathematics Grossmont College October 15, 2012 Recall: The Number Types Definition The set of whole numbers, ={0, 1, 2, 3, 4,...} is the set of natural numbers unioned with zero, written

More information

### 2a 2 4ac), provided there is an element r in our

MTH 310002 Test II Review Spring 2012 Absractions versus examples The purpose of abstraction is to reduce ideas to their essentials, uncluttered by the details of a specific situation Our lectures built

More information

### Section 19 Integral domains

Section 19 Integral domains Instructor: Yifan Yang Spring 2007 Observation and motivation There are rings in which ab = 0 implies a = 0 or b = 0 For examples, Z, Q, R, C, and Z[x] are all such rings There

More information

### Math 109 HW 9 Solutions

Math 109 HW 9 Solutions Problems IV 18. Solve the linear diophantine equation 6m + 10n + 15p = 1 Solution: Let y = 10n + 15p. Since (10, 15) is 5, we must have that y = 5x for some integer x, and (as we

More information

### Finite Fields. SOLUTIONS Network Coding - Prof. Frank H.P. Fitzek

Finite Fields In practice most finite field applications e.g. cryptography and error correcting codes utilizes a specific type of finite fields, namely the binary extension fields. The following exercises

More information

### Group Theory. 1. Show that Φ maps a conjugacy class of G into a conjugacy class of G.

Group Theory Jan 2012 #6 Prove that if G is a nonabelian group, then G/Z(G) is not cyclic. Aug 2011 #9 (Jan 2010 #5) Prove that any group of order p 2 is an abelian group. Jan 2012 #7 G is nonabelian nite

More information

### Factorization in Integral Domains II

Factorization in Integral Domains II 1 Statement of the main theorem Throughout these notes, unless otherwise specified, R is a UFD with field of quotients F. The main examples will be R = Z, F = Q, and

More information

### Some practice problems for midterm 2

Some practice problems for midterm 2 Kiumars Kaveh November 14, 2011 Problem: Let Z = {a G ax = xa, x G} be the center of a group G. Prove that Z is a normal subgroup of G. Solution: First we prove Z is

More information

### 8. Limit Laws. lim(f g)(x) = lim f(x) lim g(x), (x) = lim x a f(x) g lim x a g(x)

8. Limit Laws 8.1. Basic Limit Laws. If f and g are two functions and we know the it of each of them at a given point a, then we can easily compute the it at a of their sum, difference, product, constant

More information

### Classification of Finite Fields

Classification of Finite Fields In these notes we use the properties of the polynomial x pd x to classify finite fields. The importance of this polynomial is explained by the following basic proposition.

More information

### Math 121 Homework 3 Solutions

Math 121 Homework 3 Solutions Problem 13.4 #6. Let K 1 and K 2 be finite extensions of F in the field K, and assume that both are splitting fields over F. (a) Prove that their composite K 1 K 2 is a splitting

More information

### A Note on Cyclotomic Integers

To the memory of Alan Thorndike, former professor of physics at the University of Puget Sound and a dear friend, teacher and mentor. A Note on Cyclotomic Integers Nicholas Phat Nguyen 1 Abstract. In this

More information

### ' Liberty and Umou Ono and Inseparablo "

3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <

More information

### EE512: Error Control Coding

EE512: Error Control Coding Solution for Assignment on Cyclic Codes March 22, 2007 1. A cyclic code, C, is an ideal genarated by its minimal degree polynomial, g(x). C = < g(x) >, = {m(x)g(x) : m(x) is

More information

### Selected Math 553 Homework Solutions

Selected Math 553 Homework Solutions HW6, 1. Let α and β be rational numbers, with α 1/2, and let m > 0 be an integer such that α 2 mβ 2 = 1 δ where 0 δ < 1. Set ǫ:= 1 if α 0 and 1 if α < 0. Show that

More information

### 6]. (10) (i) Determine the units in the rings Z[i] and Z[ 10]. If n is a squarefree

Quadratic extensions Definition: Let R, S be commutative rings, R S. An extension of rings R S is said to be quadratic there is α S \R and monic polynomial f(x) R[x] of degree such that f(α) = 0 and S

More information

### 2 (17) Find non-trivial left and right ideals of the ring of 22 matrices over R. Show that there are no nontrivial two sided ideals. (18) State and pr

MATHEMATICS Introduction to Modern Algebra II Review. (1) Give an example of a non-commutative ring; a ring without unit; a division ring which is not a eld and a ring which is not a domain. (2) Show that

More information

### ALGEBRA AND NUMBER THEORY II: Solutions 3 (Michaelmas term 2008)

ALGEBRA AND NUMBER THEORY II: Solutions 3 Michaelmas term 28 A A C B B D 61 i If ϕ : R R is the indicated map, then ϕf + g = f + ga = fa + ga = ϕf + ϕg, and ϕfg = f ga = faga = ϕfϕg. ii Clearly g lies

More information

### Section X.55. Cyclotomic Extensions

X.55 Cyclotomic Extensions 1 Section X.55. Cyclotomic Extensions Note. In this section we return to a consideration of roots of unity and consider again the cyclic group of roots of unity as encountered

More information

### 3.4 The Fundamental Theorem of Algebra

333371_0304.qxp 12/27/06 1:28 PM Page 291 3.4 The Fundamental Theorem of Algebra Section 3.4 The Fundamental Theorem of Algebra 291 The Fundamental Theorem of Algebra You know that an nth-degree polynomial

More information

### x 3 2x = (x 2) (x 2 2x + 1) + (x 2) x 2 2x + 1 = (x 4) (x + 2) + 9 (x + 2) = ( 1 9 x ) (9) + 0

1. (a) i. State and prove Wilson's Theorem. ii. Show that, if p is a prime number congruent to 1 modulo 4, then there exists a solution to the congruence x 2 1 mod p. (b) i. Let p(x), q(x) be polynomials

More information

### Chapter 9, Additional topics for integral domains

Chapter 9, Additional topics for integral domains Many times we have mentioned that theorems we proved could be done much more generally they only required some special property like unique factorization,

More information

### Rings. Chapter Definitions and Examples

Chapter 5 Rings Nothing proves more clearly that the mind seeks truth, and nothing reflects more glory upon it, than the delight it takes, sometimes in spite of itself, in the driest and thorniest researches

More information

### Homework #2 Solutions

Homework # Solutions Thayer Anderson, Davis Lazowski, Handong Park, Rohil Prasad Eric Peterson 1 For submission to Thayer Anderson Problem 1.1. Let E denote the extended reals: E := R {, }. The usual arithmetic

More information

### Chapter 14: Divisibility and factorization

Chapter 14: Divisibility and factorization Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Summer I 2014 M. Macauley (Clemson) Chapter

More information

### Mathematics for Business and Economics - I. Chapter 5. Functions (Lecture 9)

Mathematics for Business and Economics - I Chapter 5. Functions (Lecture 9) Functions The idea of a function is this: a correspondence between two sets D and R such that to each element of the first set,

More information

### Polynomial Rings. (Last Updated: December 8, 2017)

Polynomial Rings (Last Updated: December 8, 2017) These notes are derived primarily from Abstract Algebra, Theory and Applications by Thomas Judson (16ed). Most of this material is drawn from Chapters

More information

### Homework 10 M 373K by Mark Lindberg (mal4549)

Homework 10 M 373K by Mark Lindberg (mal4549) 1. Artin, Chapter 11, Exercise 1.1. Prove that 7 + 3 2 and 3 + 5 are algebraic numbers. To do this, we must provide a polynomial with integer coefficients

More information

### Section 0.2 & 0.3 Worksheet. Types of Functions

MATH 1142 NAME Section 0.2 & 0.3 Worksheet Types of Functions Now that we have discussed what functions are and some of their characteristics, we will explore different types of functions. Section 0.2

More information

### Notes 6: Polynomials in One Variable

Notes 6: Polynomials in One Variable Definition. Let f(x) = b 0 x n + b x n + + b n be a polynomial of degree n, so b 0 0. The leading term of f is LT (f) = b 0 x n. We begin by analyzing the long division

More information

### LECTURE NOTES IN CRYPTOGRAPHY

1 LECTURE NOTES IN CRYPTOGRAPHY Thomas Johansson 2005/2006 c Thomas Johansson 2006 2 Chapter 1 Abstract algebra and Number theory Before we start the treatment of cryptography we need to review some basic

More information

### Section 33 Finite fields

Section 33 Finite fields Instructor: Yifan Yang Spring 2007 Review Corollary (23.6) Let G be a finite subgroup of the multiplicative group of nonzero elements in a field F, then G is cyclic. Theorem (27.19)

More information

### U + V = (U V ) (V U), UV = U V.

Solution of Some Homework Problems (3.1) Prove that a commutative ring R has a unique 1. Proof: Let 1 R and 1 R be two multiplicative identities of R. Then since 1 R is an identity, 1 R = 1 R 1 R. Since

More information

### Polynomials. Henry Liu, 25 November 2004

Introduction Polynomials Henry Liu, 25 November 2004 henryliu@memphis.edu This brief set of notes contains some basic ideas and the most well-known theorems about polynomials. I have not gone into deep

More information

### Math 0320 Final Exam Review

Math 0320 Final Exam Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Factor out the GCF using the Distributive Property. 1) 6x 3 + 9x 1) Objective:

More information

### Section 6.6 Evaluating Polynomial Functions

Name: Period: Section 6.6 Evaluating Polynomial Functions Objective(s): Use synthetic substitution to evaluate polynomials. Essential Question: Homework: Assignment 6.6. #1 5 in the homework packet. Notes:

More information

### Math1a Set 1 Solutions

Math1a Set 1 Solutions October 15, 2018 Problem 1. (a) For all x, y, z Z we have (i) x x since x x = 0 is a multiple of 7. (ii) If x y then there is a k Z such that x y = 7k. So, y x = (x y) = 7k is also

More information

### φ(xy) = (xy) n = x n y n = φ(x)φ(y)

Groups 1. (Algebra Comp S03) Let A, B and C be normal subgroups of a group G with A B. If A C = B C and AC = BC then prove that A = B. Let b B. Since b = b1 BC = AC, there are a A and c C such that b =

More information

### MATH 115, SUMMER 2012 LECTURE 12

MATH 115, SUMMER 2012 LECTURE 12 JAMES MCIVOR - last time - we used hensel s lemma to go from roots of polynomial equations mod p to roots mod p 2, mod p 3, etc. - from there we can use CRT to construct

More information

### Minimum Polynomials of Linear Transformations

Minimum Polynomials of Linear Transformations Spencer De Chenne University of Puget Sound 30 April 2014 Table of Contents Polynomial Basics Endomorphisms Minimum Polynomial Building Linear Transformations

More information

### Fundamental Theorem of Algebra

EE 387, Notes 13, Handout #20 Fundamental Theorem of Algebra Lemma: If f(x) is a polynomial over GF(q) GF(Q), then β is a zero of f(x) if and only if x β is a divisor of f(x). Proof: By the division algorithm,

More information

### Information Theory. Lecture 7

Information Theory Lecture 7 Finite fields continued: R3 and R7 the field GF(p m ),... Cyclic Codes Intro. to cyclic codes: R8.1 3 Mikael Skoglund, Information Theory 1/17 The Field GF(p m ) π(x) irreducible

More information

### A few exercises. 1. Show that f(x) = x 4 x 2 +1 is irreducible in Q[x]. Find its irreducible factorization in

A few exercises 1. Show that f(x) = x 4 x 2 +1 is irreducible in Q[x]. Find its irreducible factorization in F 2 [x]. solution. Since f(x) is a primitive polynomial in Z[x], by Gauss lemma it is enough

More information

### SEVERAL PROOFS OF THE IRREDUCIBILITY OF THE CYCLOTOMIC POLYNOMIALS

SEVERAL PROOFS OF THE IRREDUCIBILITY OF THE CYCLOTOMIC POLYNOMIALS STEVEN H. WEINTRAUB ABSTRACT. We present a number of classical proofs of the irreducibility of the n-th cyclotomic polynomial Φ n (x).

More information

### A. H. Hall, 33, 35 &37, Lendoi

7 X x > - z Z - ----»»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < - - 7 - x -X - -- 6 97 9

More information

### REDUNDANT TRINOMIALS FOR FINITE FIELDS OF CHARACTERISTIC 2

REDUNDANT TRINOMIALS FOR FINITE FIELDS OF CHARACTERISTIC 2 CHRISTOPHE DOCHE Abstract. In this paper we introduce so-called redundant trinomials to represent elements of nite elds of characteristic 2. The

More information

### Explicit Methods in Algebraic Number Theory

Explicit Methods in Algebraic Number Theory Amalia Pizarro Madariaga Instituto de Matemáticas Universidad de Valparaíso, Chile amaliapizarro@uvcl 1 Lecture 1 11 Number fields and ring of integers Algebraic

More information

### Page Points Possible Points. Total 200

Instructions: 1. The point value of each exercise occurs adjacent to the problem. 2. No books or notes or calculators are allowed. Page Points Possible Points 2 20 3 20 4 18 5 18 6 24 7 18 8 24 9 20 10

More information

### Dividing Polynomials: Remainder and Factor Theorems

Dividing Polynomials: Remainder and Factor Theorems When we divide one polynomial by another, we obtain a quotient and a remainder. If the remainder is zero, then the divisor is a factor of the dividend.

More information

### 1 The Galois Group of a Quadratic

Algebra Prelim Notes The Galois Group of a Polynomial Jason B. Hill University of Colorado at Boulder Throughout this set of notes, K will be the desired base field (usually Q or a finite field) and F

More information

### Irreducible Polynomials over Finite Fields

Chapter 4 Irreducible Polynomials over Finite Fields 4.1 Construction of Finite Fields As we will see, modular arithmetic aids in testing the irreducibility of polynomials and even in completely factoring

More information

### + 1 3 x2 2x x3 + 3x 2 + 0x x x2 2x + 3 4

Math 4030-001/Foundations of Algebra/Fall 2017 Polynomials at the Foundations: Rational Coefficients The rational numbers are our first field, meaning that all the laws of arithmetic hold, every number

More information

### Repeated-Root Self-Dual Negacyclic Codes over Finite Fields

Journal of Mathematical Research with Applications May, 2016, Vol. 36, No. 3, pp. 275 284 DOI:10.3770/j.issn:2095-2651.2016.03.004 Http://jmre.dlut.edu.cn Repeated-Root Self-Dual Negacyclic Codes over

More information

### Section III.6. Factorization in Polynomial Rings

III.6. Factorization in Polynomial Rings 1 Section III.6. Factorization in Polynomial Rings Note. We push several of the results in Section III.3 (such as divisibility, irreducibility, and unique factorization)

More information

### Modern Algebra 2: Midterm 2

Modern Algebra 2: Midterm 2 April 3, 2014 Name: Write your answers in the space provided. Continue on the back for more space. The last three pages are left blank for scratch work. You may detach them.

More information

### CHAPTER 10: POLYNOMIALS (DRAFT)

CHAPTER 10: POLYNOMIALS (DRAFT) LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN The material in this chapter is fairly informal. Unlike earlier chapters, no attempt is made to rigorously

More information

### Math 61CM - Solutions to homework 2

Math 61CM - Solutions to homework 2 Cédric De Groote October 5 th, 2018 Problem 1: Let V be the vector space of polynomials of degree at most 5, with coefficients in a field F Let U be the subspace of

More information

### Origami Constructions of Rings of Algebraic Integers

Bates College SCARAB Honors Theses Capstone Projects Spring 5-2016 Origami Constructions of Rings of Algebraic Integers Juergen Desmond Kritschgau Bates College, jkritsch@bates.edu Follow this and additional

More information

### Solutions for Field Theory Problem Set 1

Solutions for Field Theory Problem Set 1 FROM THE TEXT: Page 355, 2a. ThefieldisK = Q( 3, 6). NotethatK containsqand 3and 6 3 1 = 2. Thus, K contains the field Q( 2, 3). In fact, those two fields are the

More information

### On attaching coordinates of Gaussian prime torsion points of y 2 = x 3 + x to Q(i)

On attaching coordinates of Gaussian prime torsion points of y 2 = x 3 + x to Q(i) Gordan Savin and David Quarfoot March 29, 2010 1 Background One of the natural questions that arises in the study of abstract

More information

### University of Ottawa

University of Ottawa Department of Mathematics and Statistics MAT3143: Ring Theory Professor: Hadi Salmasian Final Exam April 21, 2015 Surname First Name Instructions: (a) You have 3 hours to complete

More information

### PROBLEMS ON CONGRUENCES AND DIVISIBILITY

PROBLEMS ON CONGRUENCES AND DIVISIBILITY 1. Do there exist 1,000,000 consecutive integers each of which contains a repeated prime factor? 2. A positive integer n is powerful if for every prime p dividing

More information